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Improved Perturbation Solutions for Laminar Natural Convection 
on a Vertical Cylinder 

A. Aziz, Riyadh,  Saudi  A r a b i a  and T. Y. Na,  Dearborn ,  Michigan,  U S A  

Abstract. The method of extended perturbation series is applied 
to solve for laminar natural convection from an isothermal, thin 
vertical cylinder. The series in terms of the transverse curvature 
parameter ~ extended to five terms and is subsequently improved 
by applying the Shanks transformation twice. The validity of the 
solution is extended up to ~ = 10 and possibly even beyond. Up to 

= 10, the results for wall shear as well as the local and average 
Nusselt numbers agree very closely with those of local nonsimilar- 
ity and finite difference solutions. The ease of computation 
coupled with high accuracy makes the present approach far more 
attractive than the currently popular local nonsimilarity and finite 
difference methods. Its success with the present problem should 
motivate applications to a host of nonsimilar boundary layer 
flows. 

Verbesserte Stfrungsl6sungen ftir laminare freie Konvektion am 
senkrechten Zylinder 

Zusammenfassung. Die Methode der erweiterten Strrungsserien 
wird auf die laminare freie Konvektion am isothermen senkrechten 
diirmen Zylinder angewendet. Die Serien in Ausdriicken des 
Kriimmungsparameters ~ werden auf 5 Terme ausgedehnt mad 
welter durch doppelte Auswertung der Shank-Transformation 
verbessert. Die Lrsung gilt mindestens bis ~ = 10, vielleicht sogar 
welter. Bis ~ = 10 stimmen die Lrsungen ftir die Wandschubspan- 
hung mad die 6rtliche trod mittlere NuBelt-Zahl gut tiberein mit 
jenen, die auf der 6rtlichen Nicht-Ahnlichkeit mad finiten Diffe- 
renzen beruhen. Die leichte Berechenbarkeit und die hohe Ge- 
nauigkeit machen diesen Lrsungsweg attraktiver als die heute 
popul~iren Verfahren der 6rtlichen Nicht-)khnlichkeit mad der 
finlten Differenzen. Der hier aufgezeigte Erfolg sollte zur Anwen- 
dung auf nlcht4ihnliche Grenzschichtstr0mungen motivieren. 

Nomenclature 

e operator defined by Eq. (31) 
F dimensionless stream function 
Fn nth order approximation for dimensionless stream function 
g acceleration of gravity 
h local heat transfer coefficient 
/7 average heat transfer coefficient 
k thermal conductivity 
Nu~ local Nusselt number, h x / k  
N~x average Nusselt number, h x /k  
Pr Prandtl number, v/e 
r radial coordinate 
r o radius of cylinder 

T temperature 
Tw wall temperature of cylinder 
T~ ambient temperature 
u, v velocity components 
x axial coordinate 

Greek symbols 

thermal diffusivity 
/? coefficient of thermal expansion 
t/ similarity variable, Eq. (7) 
0 dimensionless temperature, ( T -  T~)/(Tw - T~) 
0n nth order approximation for dimensionless temperature 
v kinematic viscosity 

transverse curvature parameter, Eq. (8) 
q/ stream function 

Subscripts 

fp fiat plate 
cyl cylinder 

1 Introduction 

Current interest in l aminar  boundary  layer flows centers 
around nonsimilar  flows and their  solut ion techniques.  
The nonsimilari t ies arise due to a number  o f  factors such 
as variable freestream velocity, mass transfer, t ransverse  
curvature, complicated thermal  boundary  condit ions etc. 
Over the years a number  o f  techniques have been devel-  
oped and appl ied  to such problems.  To discuss the 
relative merits of  different  techniques,  we will concentrate 
on the problem of  natural  convection from the outer  
surface of  an isothermal  vertical,  thin cylinder. In this case 
the nonsimilari ty is due to the transverse curvature  effect 
which becomes quite significant when the radius  of  the 
cylinder and the boundary  layer thickness are of  compar-  
able magnitude. Among  the procedures  used to solve this 
problem are the heat  balance integral  [1, 2], local non- 
similari ty [3], two-point  finite difference [4] and the 
per turbat ion expansion [5-7] .  

Fo r  the uniform surface temperature ,  the heat  balance 
integral results [1] for the average Nussel t  number  have 
been found to be substantial ly in error in the l ight  of  local 
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nonsimilarity solution [3]. However, the local nonsimilar- 
ity method, which is currently very popular, in itself 
involves considerable difficulties. For example, the third 
level truncation requires the solution of fifteen nonlinear, 
simultaneous ordinary differential equations with six miss- 
ing initial conditions. The standard shooting procedure 
runs into problem of poor or no convergence and con- 
sequently excessive computational cost. The situation is 
particularly serious at higher degrees of nonsimilarity [3]. 
To ensure more rapid convergence, a new scheme has 
been proposed recently [8] in which the governing dif- 
ferential equations are replaced by integral equations. 
However, the execution of the new scheme necessitated 
further refinements such as the division of boundary layer 
thickness into four zones, use of variable step size and 
incorporation of experience based under relaxation factorl 
With the finite difference proposed in [4], one is led to 
highly implicit and nonlinear equations, the solution of 
which often entails convergence difficulties. It would seem 
that the perturbation approach is much simpler because, 
except for the zero-order problem, the subsequent order 
problems are all linear and therefore very easily solved. 
On the other hand, the disadvantage is that the expansion, 
if terminated at the third term as in [5-7], is valid for 
only small values of curvature parameter ~, that is ~ < 1. 
If the restriction of small ~ can somehow be removed it is 
obvious that the method can become very attractive. 
Indeed, the purpose of the present contributibn is to 
demonstrate how this restriction can be overcome and the 
series improved so as to be applicable at high values of ~. 

The tool to be employed is the method of extended 
perturbation series and its subsequent improvement. This 
method has proved extremely effective in fluid mechanics 
for many years [9] but only very recently in nonlinear heat 
conduction [10]. However, its applicability to nonsimilar 
boundary layer flows has hitherto remained unexplored. 
The specific approach to be used here is to extend the 
series (in terms of ~) to five terms and then apply the 
Shanks transformation twice. With this artifice, the valid- 
ity of the expansion is extended to ~ = 10 and possibly 
beyond. The expansion thus covers the entire range of 
for which the local nonsimilarity and finite difference 
results have been reported. It will be seen that the present 
results for both the wall shear as well as local and average 
Nusselt numbers agree very closely with those of local 
nonsimilarity and finite difference. 

In testing the method we chose a natural convection 
problem rather than a forced convection problem because 
it was felt that with coupled velocity and temperature 
fields it provided a more challenging test for the effec- 
tiveness of the method. 

2 Governing Equations 

Let us consider a thin vertical cylinder of radius ro 
maintained at a uniform temperature Tw and convecting 

naturally to an environment at temperature T~. The 
radial coordinate r is measured from the axis of the 
cylinder while the axial coordinate x is measured verti- 
cally upward such that x = 0 corresponds to the leading 
edge where the boundary layer thickness is zero. 

Based on the usual Boussinesq model, the governing 
equations can be written as 

~ 
~ x  (r u) + (r v) = 0 (1) 

Su Su v S ( S u )  
U ~x + V --~r = g fl ( T - T~~ ) + -r ~r r ~ (2) 

ST ST a S ( S T )  
U ~ x  + V - r (3) ~-r - - r -  Sr ~-r 

r=ro, u = v = 0 ,  T=Tw (4) 

r = o o ,  u = 0 ,  T=Too (5) 

By defining the stream function ~u, pseudo-similarity 
variable ~/, transverse curvature parameter ~ and dimen- 
sionless temperature 0 as 

gt=ev rox3/4 [g f l(Tw- T~176 ] TM 
4v 2 F(~, q) (6) 

P 
rl = ] 2ro XV 4 (7) 

2(X/ro) TM 

-- [gfl(Tw -- T~) d /4~]  TM (8) 

T -  T= 
0 (~, V) (9) 

Tw- Too 

and introducing them in Eqs. (1 -5)  yields 

(1 + ~ rl) F"' + ~ F" + 3FF"-2(F')2 + 0 

[ , SF' F" SF/ 
- -  ( l o )  

[ , $0 0' SF/] (l+~rl) O ' + ~ O ' + 3 P r F O ' = P r ~ [ g -  ~ -  --~--] (11) 

~/=0,  F=F'=O,  0 = 1  (12) 
~ / = ~ ,  F ' = 0 ,  0 = 0  (13) 

where primes denote differentiation with respect to ~/. 

3 Perturbation Expansion 

To solve Eqs. (10-13) we assume a regular perturbation 
expansion for T and 0 in powers of ~ as 

F = ~ ~" F ,  (14) 
n = 0  

0 = ~'~ ~"On (15) 
n = 0  
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Substituting (14, 15) into Eqs. (10, 11), equating coef- 
ficients of  like powers o f  ~ and truncating the expansion at 
the fifth term, we have 

~o: F,o,, + 3 Fo Fo, _ 2 ( Fo)~ + Oo = O 

0o' + 3PrFo 0o = 0 

~: N"+3FoF'(-5FoF'I+4Fo'FI+01 
+ ~/Fo" + Fo' = 0 (18) 

0~' + 3 Pr F o 0~ - Pr F o 01 + 4 Pr F 1 0 o 

+ ~ 0o' + 0o = 0 (19) 

42: F'~" + 3 F o F z ' - 6 F o F z  + 5Fo' F2 + O~ + rlF'I" 

+ F~' + 4F1 F~' - 3 (F~) 2 = 0 (20) 

0'2' + 3Pr FoO'2- 2Pr FoO2 + 5PrOoF2 + ~lO~' 

+ 0~ + 4 Pr F 1 0~ - Pr 01 F~ = 0 (21) 

(16) 
(17) 

Table 1. Values of F~ (0) and 0~(0) for different Pr 

Pr=0.72 Pr= 10 

F" 0 0~(0) n , (  ) 0~(0) n F'd(0) 

0 0.676000 -0.504600 0 0.419200 
1 0.059500 -0.231658 1 0.020150 
2 -0.003843 0.030660 2 -0.002764 
3 0.001008 -0.030357 3 0.004576 
4 0.010500 0.081054 4 -0.008929 

Pr= 1 Pr= 100 

- 1 . 1 6 9 4 0 0  
-0.231192 

0.021149 
-0.014759 

0.029316 

F"tO ~ 0~(0) n Fg(O) 0~(0) n n~ , 

0 0.642100 -0.567100 0 0.251700 -2.191000 
1 0.054220 -0.232920 1 0.005751 -0.223947 
2 -0.003105 0.027835 2 0.000099 0.005879 
3 0.004505 -0.021908 3 0.000726 -0.004863 
4 -0.000139 0.056546 4 -0.002821 0.022791 

43: ~ "  + 3 Fo F'3' - 7 Fo F'3 + 6 Fo' F3 + O3 + ~I F~" 

+ F ~ ' + 4 F 1 F ' 2 ' + 5 F 2 F ' ( - 7 F ~ F ~ = O  (22) 

03' + 3 Pr F o 0~ - 3 Pr F o 0a + 6 Pr F s 0o + ,/0~' 

+ 02 + Pr (F 1 02 + F z 0~) - Pr (01 F2 + 2 02 F; 

- 3 0~ F 1 - 4 0~ r2)  = 0 (23)  

~4: ~ , ,  + 3FoF,4,_8FoF,4 + 7Fo, F, + O, + rI F, J, 

+ F~' + 4 F1F;' + 5 F2 F~' + 6 F3 F~' - 8 F~ F ~ 

- 4 (F'2) 2 = 0 (24) 

0'4' + 3 P r F o O ; - 4 P r F o O 4  + 7PrOoF, + rl03' 

+ 03 + 4 Pr F 1 0~ + 5 Pr F2 0~ + 6 Pr F 3 0' 1 

- Pr (F~ 01 + 2 F 2 02 + 3 F~ 03) = 0 (25)  

The boundary conditions (4, 5) transform to 

~ = 0 ,  F n = 0 ,  F ~ = 0 ,  n = 0 , 1 , 2 , 3 , 4  (26) 

q = 0 ,  0 o = 1 ,  0 n = 0 ,  n = 1 , 2 , 3 , 4  (27) 

q = ~ ,  F ~ = 0 ,  n = 0 , 1 , 2 , 3 , 4  (28) 

t / = ~ ,  0 n = 0 ,  n = 0 , 1 , 2 , 3 , 4  (29) 

The zero-order approximation given by Eqs. (16, 17) 
corresponds to a flat plate and its solution is well known. 
The subsequent order problems (Eqs. 2 0 - 2 5 )  involve 
linear simultaneous equations and were solved nonitera- 
tively by the method of  superposition [11]. 

4 R e s u l t s  and  D i s c u s s i o n  

4.1 Wall Shear Series 

First, we consider the wall shear which is proportional to 
F"  (0). For  Pr = 0.72, the series for F"  (0) can be written 
from Table 1 as 

F"  (0) = 0.67600 + 0.059500 4 - 0.003843 42 + 0.001008 ~a 

+ 0.010500 ~' (30) 

As it stands, Eq. (30) is valid for small values of  ~ and 
cannot cover the range of  4 from 0 to 10 as reported in [3]. 
However, the series can be remarkably improved if  
Shanks transformation is applied twice. Table 2 shows a 
sample calculation for ~ = 10. The second column gives 
the partial sum Sn while the result of  the first application 
of Shanks transformation, denoted by e(Sn), appears in 
the third column. The operator e is defined as 

Sn+l Sn_l - S~ 
e(Sn) - (31) 

Sn+l+  S n - 1 -  2Sn 

The above transformation is next applied to the values 
appearing in the third column and the final result appears 
in the last column. The value of  1.0765 obtained here is 
under 4 per cent compared to the value of  1.117 by local 
nonsimilarity [3]. At lower values of  4, the agreement 
between the present results and local nonsimilarity is still 
better. It is interesting to note from Table 2 how the wildly 

Table2. Application of Shanks transformation to series (30): 
~=10 

n Sn e e 2 

The results of  numerical computat ion of  Eqs. (16-25)  are 
summarized in Table 1 for Pr = 0.72, 1, 10 and 100. Only 
values of  Fg (0) and 0~(0) are given which are relevant to 
the calculation of  wall shear and heat transfer rate respec- 
tively. 

0 0.6760 
1 1.2710 1.0375 
2 0.8867 1.1649 
3 1.8947 0.8769 
4 106.8947 

1.0765 
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fluctuating partial sums of  the second column are smoothed 
out with the repeated application of  Shanks transforma- 
tion. We also note that the values o f  F"  (0) with just two 
and three terms of  the series are 1.2710 and 0.8867 respec- 
tively which are obviously significantly in error compared 
to the value of  1.117. 

Local Nusselt Number Series 

Following the usual convention, we express the heat 
transfer rate in terms of  the ratio of  local Nusselt  number  
for the cylinder, (Nux)eyl and the local Nusselt number  for 
a flat plate, (Nu~)fp.The series can be derived as 

(Nu.)oyx 1 O~ (0) O~ (0) ~ + O~ (0) ~a 
= 

Oo(O) 

0;(0) ~4 (32) 

Using the information from Table 1 in Eq. (32) and 
applying the Shanks transformation gives the final results 
of  Table 3. These results cover Pr = 0.72, 1, 10 and 100, 
with each set covering a range of  values o f  ~. For  
comparison, the corresponding finite difference results o f  
Cebeci [4] are also included. The values o f  ~ were chosen 
so as to correspond exactly to the values used in [4] to 
facilitate comparison. The local nonsimilarity results o f  
Minkowycz and Sparrow [3] for Pr = 0.733 are also in- 
cluded under the results for Pr = 0.72 to provide corn- 

Table 3. Ratio of local Nusselt numbers, (Nu~)xyl/(Nu~),p 

Pr=0.72 Pr= 1 

Present Cebeci Minkowycz Present Cebeci 
[4] & Sparrow [4] 

[31 

0 1.000 1.000 1.000 
0.503 1.219 1.210 1.212 
1.064 1.445 1.422 1.428 
2.093 1.821 1.778 1.787 
3.364 2.232 2.177 2.170 
4.000 2.419 2.366 2.363 
5.030 2.700 2.660 2.674 
7.5 3.279 - 3.337 
10 3.759 - 3.969 

Pr= 10 

Present Cebeci 
[4] 

1.000 1.000 
1.197 1.188 
1.399 1.380 
1.736 1.704 
2.106 2.068 
2.274 2.240 
2.527 2.508 

Pr= 100 

Present Cebeci 
[4] 

0 1.000 1.000 
0.503 1.096 1.096 
1.064 1.196 1.196 
2.093 1.367 1.373 
3.364 1.560 1.575 
4.000 1.650 1.672 
5.030 1.788 1.823 

1.000 1.000 
1.051 1.051 
1.107 1.107 
1.207 1.204 
1.327 1.318 
1.385 1.373 
1.478 1.460 
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Table 4. Ratio of average Nusselt numbers, (Nu~)eyl/(Nu~)fp 

Pr=0.72 Pr= 1 

Present Cebeci [4] Present Cebeci [4] 

0 1.000 1.000 1.000 1.000 
0.503 1.166 1.153 1.149 1.138 
1.064 1.338 1.312 1.304 1.281 
2.093 1.631 1.590 1.566 1.533 
3.364 1.957 1.911 1.859 1.825 
4.000 2.108 2.063 1.995 1.961 
5.030 2.338 2.295 2.202 2.175 

Pr= 10 Pr= 100 

Present Cebeci [4] Present Cebeci [4] 

0 1.000 1.000 1.000 1.000 
0.503 1.072 1.071 1.039 1.038 
1.064 1.149 1.147 1.081 1.079 
2.093 1.285 1.283 1.156 1.154 
3.364 1.400 1.441 1.246 1.242 
4.000 1.519 1.517 1.292 1.285 
5.030 1.638 1.636 1.366 1.352 

parison at higher values of  ~ namely 7.5 and 10 which are 
not covered in Cebeci's work. The results of  local nonsimi- 
larity as reported in [3] are restricted to Pr = 0.733 only 
and therefore the present results for other Pr cannot be 
compared for higher values of  ~. Upto ~ = 5, the present 
results agree within about 2 per cent with the finite dif- 
ference and local nonsimilarity and within 5 per cent upto 
~ = 1 0 .  

4.2 Average Nusselt Number Series 

Finally, we consider the series for the ratio o f  average 
Nusselt numbers which follows as 

(Nux)eyl 3 0~ (0) 3 0~ (0) ~2 

(Nu---,),~-----~ - 1 + 4 0o (0----~ ~ -~ 5 0; (0) 

1 0~(0) ~a-t 3 0~(0) ~4 (33) 
2 00(0----7 7 0;(0) 

Giving Eq. (33) the same treatment as Eq. (32), the 
final results are obtained as shown in Table 4. Once again 
Cebeci's results are quoted for comparison. The two 
results agree to within about 2 per cent in the range ~ = 0 
to 5. This degree of  accuracy also holds beyond ~ = 5. For  
example, the graphical result of  [3] can be read to give the 
ratio (Nu,)cyl/(Nux)~p= 3.3 at ~ =  10 while the present 
result is 3.2453. If  one uses still higher value of  ~, say 20, 
the twice Shank transformed result gives the ratio of  
4.4012 which falls pretty close to local nonsimilarity 
solution if the curve in [3] is extrapolated to ~ = 20. It 
would thus seem that present approach can be safely used 
upto ~ = 20 and possibly even beyond that. 
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5 Final Remarks 

The use of  Shanks transformation is one of  a group of  
techniques that are available to improve the extended per- 
turbation series. However, it is the simplest and can 
usually be trusted if  the results show good degree of  
internal consistency as in the present problem. Other 
techniques such as Euler transformation, extraction of  
singularity, series reversion are also worthwhile as dem- 
onstrated in [10]. The present work has served to 
establish the usefulness o f  the extended series method in 
solving the nonsimilar boundary layer flows and it is 
hoped that the approach would find other applications. 
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