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Abstract

In this paper, we consider a multiple-stage tandem production/inventory system. The cost
of holding WIP inventory is different at each stage. Therefore, decions on when to release work
to the system as well as when to transfer WIP from one stage to another need to be made. We
formulate this problem of release/production control as a Markov Decision Process. However,
the optimal policy is rather complex making its implementation impractical in practice. We
therefore investigate the performance of simple base stock policies. Our approach aggregates
several stages into one and uses a simple approximation to compute “approximately optimal”
base stock levels. We present the results of a simulation study which tests the performance of
our approximation in estimating the best base stock levels, and the performance of base stock

policies as compared to the optimal policy.

1 Introduction

Recently, considerable effort has been devoted to developing effective control mechanisms for pro-
duction/inventory systems. Driven in part by the success of Japanese “pull production systems,”
researchers have focused on the analysis of mechanisms that dictate when work will be released to
a production system, as well as the conditions under which work can be transferred from one stage
to another in the production process. |

Most research to date has focused on the performance evaluation of specific policies. The perfor-
mance of the kanban control mechanism has been studied for tandem make-to-order systems (e.g.,
Mitra and Mitrani 1990, Muckstadt and Tayur, 1993), tandem make-to-stock systems (Mitra and
Mitrani, 1991) as well as for assembly systems (Duenyas and Keblis, 1995). Chang and Yih (1994a,



1994b) develop a generic kanban system for dynamic environments. Research on the performance
of the CONWIP release mechanism (Spearman et al., 1990) has resulted in approximations for the
throughput of tandem systems (Hopp and Spearman, 1991), and the variance of the output process
(Duenyas et al. 1993). Duenyas and Hopp (1993) and Duenyas (1994a) have also derived approxima-
tions for the throughput of assembly systems under the CONWIP release mechanism. Buzacott et
al. (1992), Buzacott and Shanthikumar (1993), and Lee and Zipkin (1992) have developed approxi-
mations for the performance of base-stock policies and compare their approximations to simulation
for systems with two and three machines. Rubio and Wein (1994) extended the CONWIP system to
the make-to-stock case. Under their policy, a new unit of product is released to the shop floor when-
ever the total WIP plus finished goods inventory (where backordered demand represents negative
inventory) falls below a specified base stock level. They show how the optimal inventory level can
be analytically computed, under product-form assumptions. Uzsoy et al. (1994) provide a detailed
survey of release control mechanisms in the context of the semiconductor industry.

The performance of different control rules has very rarely been compared. Muckstadt and Tayur
(1993) and Duenyas and Keblis (1995) compare the performance of kanban and CONWIP. The
purpose of the comparisons is to find out which policy achieves a target throughput level with the
minimum possible WIP (equivalently, which policy achieves a higher throughput for a given WIP
level). This objective implicitly assumes that WIP costs are the same at each stage of production.
However, in a manufacturing system with many stages of production, the cost of holding a unit of
WIP is not likely to be the same throughout the production process. This is because value is added
to the product at each stage of the production process in the form of labor hours spent processing
the product and materials used at the different stages. Even though the value added at any one
individual machine may be small, the difference between the value of a unit of WIP at the last stage
of production and at the first stage of production is significant in most manufacturing systems. In
some cases, production of a product requires work at several different plants and a significant part
of the value added is the transportation costs of transferring the parts from one plant to another.
A modelling approach that penalizes holding inventory more severely at each stage of production
is required to handle such situations. Clearly, it is not necessary to compute the value added after
each minor operation of the production process. This would be unnecessarily complex especially
in an environment with thousands of operations, and computing the optimal parameters for any

policy for a system modelled in such detail is unlikely to be tractable. Therefore, we consider an



approach that models several stages each of which consists of multiple operations with a distinct
cost of inventory for each stage. This cost can be taken to be the average cost of inventory at that
stage. This modelling approach enables us to find approximately optimal base stock levels for large
systems consisting of many machines very rapidly.

In a recent paper, Veatch and Wein (1994) considered the optimal control of a two-stage make-
to-stock system where each stage consists of a single exponential machine. They derived sufficient
conditions under which it would be optimal to hold no finished goods or WIP inventory. They
also used simulation to compare the performance of base stock, kanban, and fixed buffer policies
against the optimal policy computed using dynamic programming. In their simulation experiments,
the base-stock policy performed very well except when the upstream machine is slow. The base-
stock policy that they analyze releases a new job to the first machine in the system immediately
whenever a finished good is demanded. As they explain, this results in unnecessary stockpiling of
WIP when there are many backorders. To prevent this phenomenon from occuring, in this paper,
we focus on a basestock policy with a limit on the WIP on the shop floor. This is motivated by
the observation that if a system has enough WIP to keep the bottleneck starvation probability low,
the extra benefits of any additional WIP will be marginal. Therefore, if there is already sufficient
WIP on the shop floor, our policy (unlike those analyzed in Lee and Zipkin or Veatch and Wein)
does not automatically release another unit of WIP to the shop floor every time a finished good is
demanded.

In this paper, we provide a simple approximate analysis of the base stock policy for multiple stage
make-to-stock systems with a limit on the WIP on the shop floor. We also conduct a simulation
study which confirms that Veatch and Wein'’s observatioﬁs on the effectiveness of base stock policies
extend to systems larger than the 2-machine systems they considered. Furthermore, we find that our
simple approximation performs very well in estimating the parameters of the best base stock policy.
The rest of this paper is organized as follows. In Section 2, we formulate the optimal control problem
as a Markov Decision Process (MDP), and present details of our proposed base stock policy. In
Section 3, we present a simple approximation method for computing the parameters of the optimal
base stock policy. In Section 4, we conduct a simulation study to test how well the proposed base
stock policy works as compared to the optimal policy and to test the accuracy of the approxiination
method developed in Section 3 to estimate the parameters of the optimal base stock policy. The

paper concludes in Section 5.
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Figure 1: Tandem Production/Inventory System

2 Problem Formulation

We consider an N stage tandem manufacturing system that produces a single product as shown in
Figure 1. There are m; machines in series in stage i, and the j** machine in stage ¢ has a mean
processing time of t;; (and processing rate pu;j = 1/t;;), and standard deviation of o;;. Each
unit of inventory held in stage of i for a unit of time incurs a holding cost h;. Raw material is
assumed to be available at all times for the first machine in stage 1, and the cost of holding the
raw material in front of machine 1 is set to be zero since no value has been added to the material
at that point (Duenyas, 1994b).When a unit’s processing is finished at the last machine in stage N,
it is transferred to finished goods inventory. Each unit of finished goods inventory incurs a holding
cost of hy4) per unit time. Demand is assumed to have a Poisson distribution with rate up per
unit time. All unfilled demand is backordered and the backordering cost is 7 per unit per unit time.
The objective is to meet the demand with the minimum expected cost per unit time.

In the special case where each stage consists of a single exponential machine, the optimal control
problem can be formulated as a Markov Decision Process (Veatch and Wein). In this case, the state
of the system can be represented by an N-vector z. The ith entry (i = 1,..., N) of z represents the
amount of WIP in front of the machine at stage i, while z is the difference between the amount
of finished goods inventory (FGI) in the system and the amount of backorders. (We will refer to

zy as “net FGI” and to zj; = max(0, zn) as “actual FGI”). We use uniformization as in Lippman



(1975), and let A = Zﬁl ui+ pp and e; denote a unit vector along the ith axis. We can then write

the MDP optimality equation as

N
IV (5) = HIea DV (e—e )+ mindV (2), V (a-ber)}+ 3 pmin V (), V (e esmeccr)} 2.1
i=2

where ¢(z) = Efi_ll hizi + hN:z:;'\} —nzy, and z7 = min{0, z}.

Although a similar formulation is possible for the case where each stage has multiple machines
in series, the dynamic programming formulation quickly suffers from the curse-of-dimensionality as
the number of machines per stage or the number of stages is inreased. Furthermore, even for very
few stages or machines per stage, the optimal solution has a rather complex structure that makes
its implementation very difficult in practice. We therefore focus on simpler base-stock policies.

Our proposed base-stock policy requires only the specification of N + 1 nonnegative target
inventory (base stock) levels T} through Tn41, for implementation. T; denotes the target sum of
inventory in stages ¢ through N +1. Similarly, Tn; denotes the target finished goods mventory level.
For example, if;rzjt,+1 < TN+1, this implies that the finished goods inventory level is below target and
more finished goods inventory is needed. Therefore, the machines in stage N will keep producing
until the finished goods inventory reaches the target level. Similarly, if E;Vm zj + :cR}H < T; this
implies that the total inventory downstream from stage ¢ (including stage i) is not sufficient and
machines in stage : — 1 will keep producing until the level of inventory downstream reaches the
target level. Finally, if Z;V:I T+ J:X,H < T, this implies that the total amount of inventory in the
system is less than the target level and that a new unit of raw material inventory csn be released
to stage 1. This also implies that the maximum level of inventory in the system it T7. (We note
that this definition of base-stock target levels is slightly different than those in Vaulch and Wein
or Buzacott et al. or Lee and Zipkin. Their conditions are of the form Z;-V:ia:j +zN4+1 < Ty Our
conditions on the level of actual inventory in the system provide a way to limit the total amount of
inventory on the shop floor.)

We note that the specific case of the above-described base-stock policy where T; = T for all
i = 1,..., N + 1, corresponds to the make-to-stock version of the CONWIP policy. This policy
keeps the total actual inventory in the system constant at all times by releasing a r.:w unit of raw
material to the shop floor whenever the total WIP plus actual finished goods inventory in the system
falls below T. This job is then pushed through the system. Rubio and Wein (1994) propose a version
of this policy where the total WIP plus net FGI is kept constant and show that the performance of

this policy is easily analyzable under product-form assumptions.



Clearly, in order to implement the base-stock policy we describe above, the “optimal” target
inventory levels need to be computed. For large systems with many machines per stage, computing
the optimal target levels become very difficult. We therefore next present a simple approxima-
tion for computing “approximately optimal” target levels. We then test the performance of the

approximation as well as the adequacy of using the proposed base-stock policy.

3 Approximating the Base-Stock Levels

This section describes how we approximate the “optimal” target inventory levels. We first describe
the approximation for a one stage system and then show how it can be generalized to the N-stage

case.

3.1 Single Stage Case

In order to compute the optimal target inventory levels, we need to be able to compute the cost
for any particular choice of target levels. For example, in a single stage system, in order to set T}
and T3, the optimal target levels, we need to be able to compute average WIP, FGI and backorder
cost per unit time for any choice of target levels 77 and Ty. Our approach estimates this cost by
approximating each stage by a single equivalent machine.

Consider a single stage system with m; machines. Clearly, as long as the last machine has WIP
to process, FGI can be produced at the rate of the last machine p1,m,. Therefore, as long as the
finished goods inventory is below Ty, the last machine in the system will be converting WIP into
FGI if it is not starved of WIP. We approximate the rate with which the rest of the machines in
the system provide WIP to the last machine by replacing the rest of the machines in the system by
a single machine. That is, we replace machines (1, 1) through (1,m; — 1) by a single machine. We
then have a simpler 2-machine system to analyze. The first machine in this simpler system replaces
all machines except the last one in the original system, and the second machine is the same as the
last machine in the original system. We let ;i; denote the output rate from the first machine to
the second machine in this simpler system, and i denote the output rate from the second machine
to finished goods inventory. In our approximation, these rates are functions of the inventory levels
at the two machines. Let i denote the net finished goods inventory at a given point in time and j

denote the amount of inventory in front of the second machine in this simplified system. Clearly,



since the second machine is exactly equivalent to the last machine in the original system, we have

pim; forj>0andi< T (3.2)

Ha(i,j) =

0 otherwise
Equation (3.2) states the obvious fact that the last machine in the original system will produce parts
unless 1) it is starved or 2) the FGI level is equal to the target level. To derive a similar expression
for the output rate of the first machine in the simplified system, we first note that in the original
system, when the level of net finished goods inventory is negative (i.e., there are backordérs) the
system behaves like a closed queueing network with T4 jobs. In this case, whenever the last machine
finishes another job, a new job is released to the first machine. What we would like to approximate
is the rate with which WIP arrives to the last machine in the original system. Clearly, this depends
on the number of jobs at the first m; — 1 machines. For example, if these machines have no WIP
at all, the arrival rate of jobs to the last machine is zero. As the amount of WIP in the first m; —1
machines increases, the arrival rate of WIP to the last machine will approach the rate of the slowest
machine among the first m; — 1 machines. We also note that due to the base-stock policy being
used, when the net finished goods inventory (actual finished goods-backorders) is i, and the number
of jobs at the last machine is j the number of jobs in the remainder of the system (i.e., at the first
m1 — 1 machines) is T} — it — j. Combining these observations that the original system behaves like
a closed queueing network (at least when i < 0) and that the arrival rate of jobs to the last machine
is a function of the number of jobs in the first m; — 1 machines, our simplified system replaces the

first m; — 1 machines, with a single machine with rate
f1(i,5) = TH(T1 =" - j) (3.3)

where TH(T; — it — j) is the throughput of the closed queueing network consisting of the first
m) — 1 machines with T} — it — j jobs. We note that when the processing times are assumed to have
exponential distributions, this throughput can be computed exactly, using mean value analysis.
When the processing times are nonexponential, we use an appproximation due to Shanthikumar
and Gocmen for approximating the throughput of a closed queueing network with nonexponential
machines.

Once we have replaced the original system with a simpler two station system with rates p1(3,7)
and 4i2(3, j), we make a further approximation by approximating the processing time distributions at

these two stations by an exponential distribution. This simplifies the analysis and, as we show in the



next section, the computational results indicate that for highly or moderately variable systems (e.g.,
processing times with exponential, Erlang-2 or even Erlang-4 distributions), the approximations
work very well. For less variable systems, the approach outlined below will tend to overestimate the
optimal threshold levels. Hence, in that case, the results can be used as a starting point for a more
detailed simulation study.

We let p(i,5) denote the long-run probability of the simplified two station system having i units
of finished goods inventory, and j units of WIP at the second station. Then these probabilities can

be easily computed by solving the following system of state equations:

p(3,7)(pp + 42, 5) + 412, 7)) = p(i+1,5) (D) +pi-1,j+182G - 1,5+ 1) +p(3, 5 — 1)1 (5,5 - 1) (3.4)

Once the solution to (3.4) is obtained, the cost of using target inventory levels T; and T can be

easily computed as:

C(TvT)= Y, p(i,5)(hai* = mi™ + hyj) (3.5)
(i<Ty;it+5<T)

Although (3.4) represents a system of infinite number of equations (since i can take on any
integer value below T9), in practice an approximate solution can easily be obtained by assuming
the demand rate falls to zero when the level of finished goods inventory falls below a sufficiently
low value. We note that (3.4) represents a very sparse system of equations, and for a given value of
T1, To, a solution can be obtained very quickly. In fact, an exhaustive search for the best threshold

values takes just a couple of seconds on a Pentium PC.

3.2 Mulvtiple Stages

In the case when there is more than one stage, our approach is very similar. In an N stage problem,
we replace all the machines in the last stage except the last machine by a single machine. Similarly,
all machines in stage k (k = 1,..., N — 1) are replaced by a single “virtual” machine. We thus have
a simplified system with N 4 1 machines. Once again, the last machine in the simplified system has
a processing rate equal to the last machine in the last stage in the original system. In this case,
we can denote the state of the system as an N + 1-vector, (4, jn+1,5N,-..,j2) Where 7 denotes the
amount of finished goods inventory and j; denotes the amount of WIP in front of “virtual machine”

l. The processing rate of the last machine is given by

. o ‘ UNmy for jy+1 > 0and i < Tnyg
AN+1(1,IN+15 - J2) = (3.6)

0 otherwise



and for all other machines k = 1,..., N, it is given by

N+1

bk, N1 d2) = THE(Te =" = ) 41) NGNS
I=kt1

where T Hi(z) is the throughput of a closed queueing network consisting of the machines in stage
k and = jobs (Note that in computing T Hx(z), we exclude the last machine in stage N). Letting
j = (iN+1,.-.,72), and p(3, j) denote the long-run probability of the system being in state (i,3), we

need to solve the following system of equations:

p(i,§)(up + Snt uk(§)) = p(i+1,5)np + pn+1(i— 1,5 + ent1)p(i — 1,j + eng1)+

(CAap(i,g — eksr + e)ur(i,§ — exsr + ex)) +p(i,j — e2)u1(G, j — ea).

(3.8)
We let
N+1
o={(i,4) i <Tn413i" + ) i <Tefork=1,...,N}, (3.9)
I=k+1
the cost of using target inventory levels (T1,...,Tn+1) is then given by
N+1
C(Ty, .-, Tn41) = D_p(6, §) (hwai™ =i + Y heyix). (3.10)
") k=2

Once again, the system of equations (3.8) can be solved rapidly due to the sparsity of the system of
equations. We next report on the quality of the solutions obtained by this approximation technique
in terms of estimating the best threshold values as well as on the performance of the proposed base

stock policy as compared to the optimal policy.

4 Computational Results

This section reports the results of a simulation study we conducted to test the performance of
the proposed base stock policy as well as the success of the approximation scheme outlined in the
previous section. To conduct our study, we generated 50 example cases representing a wide variety
of situations. We created examples with three different processing time distributions: Exponential,
Erlang-2, and Erlang-4 to capture the effects of different levels of variability on the approximation.
We also created examples with varying levels of line length and number of stages as well as different
holding and backorder costs. We tested examples where the backorder cost was higher than the
finished goods inventory cost as well as the case when the reverse was true. For each example, we

used simulation to find the best base stock policy. To find the best base stock policy, we used a



Example | Processing Times | up | h x | OPTIMAL
1 2,3,4,3 5 1,1,1,3 5 19.09
2 3,2,3,4 5 1,1,1,3 5 21.10
3 3,3,4,2 5 1,1,1,3 5 16.66
4 3,4,3,4 5 1,1,1,3 5 27.70
5 2,2,3,4 5 1,1,1,3 5 20.29
6 1,1,3,4 6 1,1,1,1.5 2 6.61
7 33,4 5 1,1,3 5 | 20.71
8 2,34 5 1,1,3 5 | 19.62
9 2,3,4 5 11,3 2 | 12.74
10 3,4,2 5 1,1,3 5 14.29
11 3,4,2 5 1,1,3 2 10.14
12 2,4,3 5 1,1,3 5 | 16.43
13 2,4,3 5 1,1,3 2 | 11.20
14 1,1,3 4 1,1,1.5 2 6.84
15 2,2,4 5 2,2,3 4 | 19.03
16 1,2,3 4 1,1,2 3 | 10.49
17 3,3,2 5 44,5 7 22.58
18 2,4,4 7 2,2,2.5 3 10.43
19 3,5,5 7 2,2,3 5 | 22.18
20 2,5,5 7 1,1,1.5 3 11.31
21 3,4,1 5 2,2,4 5 18.09
22 2,3,4,3 5 0.5,1,1.5,3 5 | 20.73
23 3,2,3,4 5 0.5,1,1.5,3 5 22.17
24 3,3,4,2 5 0.5,1,1.5,3 5 18.12
25 3,434 5 0.5,1,1.5,3 5 | 28.62
26 2,2,3,4 5 0.5,1,1.5,3 5 | 21.39
27 11,34 6 0.7,1,1.3,15 | 2 | 6.87

Table 1: Input Data and the optimal cost for Examples 1-27

GPSS-H program. For each candidate vector of base-stock values, we obtained the simulation value
of the cost by running 20 replications of simulations 10 days in length each (after deleting the warm-
up period). The approximation described in Section 3 was also used to compute the “approximately
optimal” base-stock values. We also report the cost values when the base-stock values suggested
by the approximation were used. Finally, we also report the average cost achieved by the best
CONWIP policy. We note that since the CONWIP policy is a special case of the base stock policy,
the best base stock policy is guaranteed to perform at least as well as the best CONWIP policy.
Table 1 includes the data and the optimal solutions obtained by solving the MDP for Examples
1-27. We note that all of the processing times as well as the time between two consecutive demands
are assumed to have exponential distributions in Examples 1-27. The cost of holding inventory in
front of each machine (starting with the second machine as the cost of holding raw material in front
of machine 1 is set to 0) is given by the vector h. The last entry of h is the cost of finished goods
inventory. For example, in Example 1, the cost of holding WIP is assumed to be 1, and the FGI
cost is 3 per item per unit time. In Examples 1-21 the cost of WIP is the same regardless of the
location of WIP. In Examples 22-27, the cost of WIP changes from machine to machine. However,
the value added is very small except at the very last operation. Therefore, in computing the base-
stock values, we tested the performance of an approximation policy which treats the cost of WIP as

the same at each of these operations. For instance, the WIP costs in Example 27 are 0.7, 1, and 1.3
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Example | BEST BASE STOCK | APP. BASE STOCK | CONWIP ABS/BBS
1 (11,3) 4.6 % 112)73 % (10) 296 % | 2.6 %
2 (10,5) 7.3 % (9,5) 9.0 % (10)10.2 % | 1.6 %
3 (12,0049 % (12,1) 6.7 % (10)42.4% | 1.7 %
3 (16,5) 3.0 % (14,5) 7.3 % (13)13.8% | 4.1%
5 (10,5) 4.5 % (8,5) 6.9 % (8) 12.8 % 1.3 %
3 43) 7.7 % @3) 7.7 % @) 7.8 % 0.0 %
7 (10,5) 3.6 % (9,5) 7.9 % (7) 9.7 % 21 %
8 (9,6) 3.0 % (7,5) 6.6 % (7) 8.4 % 2.0 %
9 (7,3) 7.9 % (6,3) 11.8 % (6)11.7 % | 3.6 %
10 9,1) 74 % (10,1) 11.1 % (7)401% | 3.4%
11 (8,0) 10.9 % (7,0) 16.8 % (6) 36.0 % | 4.4 %
12 (9,2) 7.2 % (9,2) 7.2 % (7)28.6 % | 0.0 %
13 (7,1) 11.6 % (7,1) 11.6 % (6)272% | 0.0%
14 (4,4) 3.2 % (3,3) 7.4 % (4)3.2 % 4.0 %
15 (6,6) 0.9 % (5,5) 1.7 % (6) 0.9 % 0.8 %
16 (5,5) 1.3 % (5,4) 3.3 % (5)1.3 % 2.0 %
17 (5,4) 12.0 % (5,2) 12.8 % (5)15.4 % | 0.7 %
18 (4,3) 6.7 % (4,3) 6.7 % (4)8.1% 0.0 %
19 (7,6) 2.9 % (7.7) 3.9 % (M 39 % 0.9 %
20 7.7) 4.7 % 7.7) 47 % M 4.7 % 0.0 %
21 (7,0) 10.8 % (7,0) 10.8 % (6)285% | 0.0%
22 (10,4) 0.9 % (11,2) 1.5 % (10)13.4% | 0.6 %
23 (9,8) 1.8 % (9,5) 8.1 % 9113% | 62%
24 (11,1) 0.8 % (12,1)5.5 % (10)24.8% | 4.7 %
25 (13,4) 0.1 % (14,5) 7.7 % (13)123% | 7.6 %
26 (9,8) 0.3 % (8,5) 3.6 % (10)121% | 3.3 %
27 (4,4) 6.1 % (4,3) 8.6 % (4) 6.1 % 2.4 %

Table 2: Performance of base stock and CONWIP policies for Examples 1-27

for WIP waiting at machines 2, 3 and 4. Therefore, in order to be able to reduce this problem to
a single stage problem, in our approximation, we as§umed WIP costs to be 1. These examples test
the performance of our strategy which replaces several stages with little value added at each stage
by a single stage with the average WIP cost of the original stages.

The results for Examples 1-27 are displayed in Table 2. For each example, Table 2 includes the
best base-stock values found by simulation and the percentage suboptimality of the hest base stock
policy as compared to the optimal policy found by solving the MDP. Similarly, Tabiz 2 includes
the base stock values computed by using the approximation we presented in the previous section
and the suboptimality of this policy. Table 2 also displays the percentage cost difference between
the cost of the best base stock policy found by simulation, and that found by our approximation
(ABS/BBS). Finally, the best CONWIP policy as well as its suboptimality are also given for each
example.

The results in Table 2 show that the best base stock policy performs very well as compared to
the optimal policy. The average suboptimality of the best base-stock policy found by simulation is
around 5%. We note that the optimal policy is very complex while the base stock policy is very
simple to describe and implement. Given that it is hard to estimate backorder or holding costs to a

precision of 5%, the performance of the simple base stock policy is encouraging. Table 2 also shows
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Example PR. TIMES DIST 1735 h n
28 1,2,3,1,2 EXP 5 0.5,0,5,1,1,3 5
29 2,3,1,2,3 EXP 5 0.5,0.5,1,1,3 5
30 1,3,2,1,3 EXP 5 0.5,0.5,1,1,3 5
31 1,2,3,4,1,2 EXP 5 0.5,0.5,0.5,1,1,3 5
32 2,2,4,3,3,1 EXP 5 1,1,1,2,2,3 6
33 3,1,2,2,1,1 EXP 6 1,1,1,3,3,5 7
34 1,2,3,4,5,1,2 | EXP 7 0.5,0.5,0.5,1,1,1,3 | 5
35 2,1,3,1,4,1,4 | EXP 6 1,1,1,2,2,2,3 6
36 5,1,2,1,1,3,3 | EXP 7 2,2,2,3,3,3,4 4
37 4,3,4,3,1,4,2 | EXP 7 2,2,2,3,3,3,3.5 4
38 4,4,3,1,2,1,2 | EXP 6 1,1,1,5,5,5,6 6
39 2,3,4,3 ERL-2 | § 1,1,1,3 5
40 3,3,4,2 ERL-2 | 5 1,1,1,3 5
41 2,2,3,4 ERL-2 | & 1,1,1,3 5
42 2,3,4 ERL-2 | § 1,1,3 5
43 3,4,2 ERL-2 | § 1,1,3 5
44 3,4,2 ERL-2 | & 1,1,3 2
45 2,4,3 ERL-2 | 5 1,1,3 5
46 2,4,3 ERL-2 | § 1,1,3 2
47 2,3,4,3 ERL-4 | 5 1,1,3 5
48 3,3,4,2 ERL-4 | § 1,1,3 5
49 1,4,4,3 ERL-4 | 5 1,1,2 3
50 2,1,2,1 ERL-4 | 3 2,2,3 4

Table 3: Input Data for Examples 28-50

that our approximation behaves very well. The average suboptimality of the base stock policy with
the target inventory levels computed by using our approximation was 7.3%. As Table 2 clearly
demonstrates, our approximation’s estimates of the best base stock levels were very close to the
optimal base stock levels found by simulation. In fact, the average cost difference between the best
base stock policy and that suggested by our approximation was only 2.2%. Given the speed with
which our approximation computed the best base stock values, these results are encouraging.
Table 3 includes the data for Examples 28-50. In Examples 28-38, the processing times are still
exponential. However, these examples have multiple stages and as many as 7 machines. We were
unable to compute the optimal costs due to the very large size of the state spaces in these examples.
In Examples, 39-46, the processing times had Erlang-2 distributions, while in Examples 47-50, the
distributions were Erlang-4. As described in the previous section, our approach in these cases was
the same as in the exponential cases except that we used an approximation due to Shanthikumar and
Gocmen for computing the throughputs of the non-exponential closed queueing networks involved.
The results for Examples 28-50 are presented in Table 4. Table 4 includes the best base stock
values found by simulation and the cost associated with the best base stock policy, the base stock
values suggested by our approximation and the percentage cost difference between the best base stock
policy and the base stock policy computed by the approximation. We also present the best CONWIP
policy and its percentage difference from the best base stock policy. We note that despite the fact

that these examples were more challenging to our approximation (due to either the greater size
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Example | BEST BASE STOCK | APP. BASE STOCK | CONWIP
28 (6,5,1) 9.19 (6,6,1) 3.0 % (5) 27.4 %

29 (8,7,2) 12.38 (7,7.2) 2.9 % (7) 163 %

30 (7.6,2) 12.22 (6,6,2) 0.7 % (6) 129 %

31 (13,11,0) 15.9 (10,10,1) 11.3 % (8) 40.4 %

32 (11,11,0) 26.3 (10,10,1) 11.2 % (12) 11.9% ||
33 (5,3,0) 13.0 (4,4,0) 3.0 % (4) 198 %

34 (10,10,0) 12.8 (9,9.1) 7.5 % (8)368 % ||
35 (8,88) 22.9 (8,8,4) 3.6 % (®00% |
36 (6,5,2) 18.9 (5,5,2) 12.1 % (6) 7.10 %

37 (8,7,3) 24.1 (7,7,2) 6.3 % 8) 42 %

38 (10,4,1) 26.3 (8,5,2) 10.6 % (8)21.8 %

39 (8,2) 14.9 (11,2) 7.6 % (8)21.4 %

40 (10,1) 13.5 (12.1) 9.2 % (7)30.3 %

41 (7,4) 15.8 (7,7 6.6 % (6) 4.4 %

42 (6,3) 15.1 (5,5) 2.6 % (5)26% |
43 (7,1) 12.0 ©1)32% (6)142% ||
44 (5,0) 8.7 (7,0) 5.7 % (5) 229 %

45 (7,2) 1.7 (9,2)2.9% (6) 13.9 %

46 (5,1) 9.1 (6,1) 4.4 % (4) 154 %

47 (6,2) 12.2 (5,2) 82 % (5) 163 %

48 (7,1) 11.1 (8,1) 2.7 % (6)273% ||
49 (7,2) 11.1 (8,3) 10.1 % (7)12.6 %

50 (4,1) 11.4 41)0% (4)44 %

Table 4: Results for Examples 28-50

of the problems or the non-exponential distributions involved), our approximation still performed
very well in estimating the best base stock parameters. In the examples with Erlang distributions,
our approximation predictably tended to overestimate the target inventory levels. As mentioned
previously, these examples indicate that if the processing times distributions are less variable than
exponential, the results of our approximation can serve as approximate upper bounds on the amount
of inventory required at each stage, and therefore as a starting point for a more detailed simulation
study. However, we note that even using the values suggested by the approximation resulted in costs
that were not much higher than the costs of the best base stock policies. The average percentage
cost difference between the best base stock policy and that suggested by our appromiati?m was
around 5%. Iﬁ contrast, the average percentage difference in cost between the best CONWIP policy
and the best base stock policy was nearly 17%. These results clearly show the significant decrease
in cost that can be obtained by using multiple-stage base stock policies and the success of our

approximation which involves very little computational work.

5 Conclusions and Further Research

In this paper, we analyzed base stock policies for multiple-stage tandem make-to-stock systems.
The base stock policies we analyzed differ from those in the literature in that they limit the WIP
on the shop floor. Therefore, unnecessary stockpiling of WIP on the shop floor when there are

many backorders is avoided. Our simulation results comparing the performance of the proposed
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base stock policies to the performance of the optimal policy indicate that the proposed base stock
policies perform very well. Comparisons of the cost of the optimal policy and the cost of the best
base stock policy in our simulation experiments reveal that Veatch and Wein's observations on the
effectiveness of base stock policies (which were based on a limited set of experiments with only two
machines in their paper) carry over to larger and more complicated systems. We also presented
a simple approximation based on aggregration of several stages (with the same or very close WIP
costs) into one for computation of “approximately optimal” base stock levels. We presented the
results of a simulation study that demonstrated that our approximation is successful in estimating
the best base stock values.

Further research should characterize effective and simple control strategies for more complicated
systems than those considered here. Examples include multiple-stage assembly systems where the
output of several subassembly lines are assembled together and systems with probabilistic routing
of products.
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