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Abstract

We consider the control of a single batch processing machine with random processing times
and incompatible job families (jobs of different families cannot be processed together in the same
batch). Holding costs are incurred for each unit of time that a job waits in the system before
being served, and the objective is to minimize the long-run average cost per unit time. We first
determine optimal policies for the static problem where all jobs are available simultaneously.
We next characterize the optimal policies for certain problems with dynamic arrivals of jobs
under the restriction that the machine is not allowed to idle. Finally, we develop a simple
heuristic scheduling policy to control the machine. Simulation results are provided to demonstrate
the effectiveness of our heuristic over a wide range of problem instances and to compare its

performance with existing heuristics.

1 Introduction

There are many manufacturing operations in which a single machine processes several parts simulta-
neously. Examples include plating baths, heat-treating ovens, kilns for drying lumber, and diffusion
and oxidation ovens in semiconductor wafer fabrication [5]. Despite the numerous practical exam-
ples of such batch processing machines, how to optimally control these machines remains largely
unknown. We will define a batch processing machine, also referred to as a bulk service queue in
the queueing literature, to be a single machine which can process up to a certain number of jobs

(the capacity of the machine) at the same time. The processing time is independent of the number



of jobs in the batch. Systems that have such characteristics also arise in bus, subway and elevator
operations [1], as well as in material handling.

When a batch processing machine is available and the number of jobs ready to be processed is
less than the capacity of the machine, a nontrivial decision must be made to either process a partial
load or wait for additional jobs to arrive. When the machine serves multiple job families and jobs
from different families cannot be processed together, the decisions also include selecting which job
family to serve and thus become even more complicated.

There is extensive literature in queueing theory on bulk processing. Most of this literature,
however, focuses on performance evaluation rather than control. Neuts [11] and Deb and Serfozo
[3] have addressed the problem of controlling a bulk service queue with Poisson arrivals of a single
type of job. Deb and Serfozo proved that the optimal policy for this system is a control limit policy.
Powell and Humblet [13] developed efficient computational procedures to describe the characteristics
of a queue controlled by this optimal policy. Makis [10] considered the case where the waiting time
of any job can not exceed a constant T. Gurnani et al. [6] considered a two-stage serial-batch
system with the serial stage feeding a single batch processing machine. They assumed a control-
limit policy for loading the batch machine and performed an average cost analysis to compute the
optimal control limit.

In the deterministic scheduling literature, the problem of scheduling batch processing machines
has also been addressed. Ikura and Gimple [8] studied the problem of scheduling a single batch
processing machine in the presence of release dates and due dates. Lee et al. [9] developed an
efficient algorithm to minimize the number of tardy jobs under the same assumptions. Uzsoy [15]
provided a review of the deterministic literature on scheduling of batch processing machines and
also developed an efficient optimal algorithm for minimizing the makespan and heuristic algorithms
for minimizing maximum lateness. Chandru et al. [2] and Lee et al. [9] have also considered
deterministic scheduling of batch processing machines where jobs from different families can be
processed together in the same batch.

The highly stochastic environment of wafer fabrication has led to recent work in the semiconduc-
tor manufacturing literature to address batch processing with stochastic arrivals (Uzsoy et al. [16],
[17] provided a comprehensive review of production planning and scheduling models in the semi-
conductor industry). Glassey and Weng [5] developed a dynamic batching heuristic (DBH) which

uses information about future arrivals to minimize waiting time in queue for the case of a single job



type. Fowler et al. [4] developed two heuristics for the single and multiple product cases which also
take into account information about future arrivals. Their Next Arrival Control Heuristics (NACH)
consider only the arrival time of the next job from each family in their control decisions. Weng
and Leachman [18] also developed an effective heuristic for the single and multiple products cases.
However, their heuristic assumes that arrival times for all future jobs arriving during a planning
horizon are known with certainty. All of the above papers which focus on the problem with multiple,
incompatible job types assume that the arrival times of some future jobs are known. The problem
of how to control a batch processing machine when no information on future arrivals is available
has received less attention.

In this paper, we focus on the optimal control of a batch processing machine with incompatible
job families. We derive new structural results for the optimal policy and develop a new heuristic
for the cases with and without future arrival time information. The rest of the paper is organized
as follows. In the next section, we formulate the problem and introduce notation that will be used
throughout the paper. Section 3 contains results for the static version of the problem where all jobs
are available simultaneously. Section 4 characterizes the optimal policies for some dynamic versions
of the problem under the added restriction that the machine is not allowed to idle. In section
5 we present a simple heuristic scheduling policy to control the machine, and provide simulation
results in section 6 which demonstrate the heuristic’s effectiveness. Finally, section 7 contains some

concluding remarks and identifies future research directions.

2 Problem Formulation and Notation

We consider the problem of scheduling jobs from incompatible families on a single batch processing
machine. The jobs belong to m different job families, and only jobs of the same family may be
processed together in a batch. All jobs require one unit of machine capacity, but the machine may
have different capacities for the different job families. Let K; denote the capacity of the machine
when serving family j. Jobs from family j require a random processing time (strictly positive) with
mean 1/p; and cumulative distribution function F;. The processing times are assumed independent.
We assume that any preparation time is included in the service time, and that preemptions are not
allowed.

Jobs of family j waiting in queue to be served incur a holding cost of ¢; per job per unit time,

where ¢; > 0 for all j. The buffer in front of the machine is assumed to be unlimited. The objective



is to minimize the long run average cost per unit time. Note that by setting ¢; = 1 for all j, this
objective will minimize the average waiting time of jobs in the queue and consequently the average
number of jobs in the queue by Little’s law.

We consider both static and dynamic versions of this problem. In the static version, all jobs
are assumed ready to be processed at the present time, with no future arrivals. In the dynamic
version, jobs of family j arrive to the machine with rate A; independent of all other processes. As

a necessary condition for stability, we assume that 3777, K_,:J;Z <1

3 Static Problem

In this section, we show how a deterministic result obtained by Uzsoy [15] can be extended to the
stochastic model of this paper. We consider the static problem of n jobs awaiting scheduling at a
batch service machine. Let n; denote the number of jobs of family j and B; denote the ith batch
in the final schedule. The following Lemma describes the structure of the batches that are formed

in the optimal solution to this static problem.

Lemma 1 There ezxists an optimal schedule in which all batches are full except possibly the last

batch of each family occurring in the schedule.

Proof: Consider an optimal schedule which contains a partially full batch By of jobs from family
J which is not the last batch containing jobs of that family. Let B; be the last batch in the schedule
containing jobs of family j. Denote the time at which batch By begins processing under this schedule
by the random variable ¢ and the time at which batch B; begins processing by the random variable
t;. Since B; comes after By, in the schedule, we know that E[t;]— E[t;] > 0. Take any job from batch
B; and include it in batch By, keeping the rest of the schedule exactly the same. We know that
this can be done since By is not full. In the new schedule that results from this change, all jobs will
begin service at exactly the same time as before except for the job that was changed. This job will
begin service ¢; — t time units earlier than before, so the new schedule will have an expected total
cost which is ¢; E[t; — ] less than the original schedule. Since ¢;E[t; — ;] > 0, the new schedule is
no worse than the original. Repeating this procedure results in an optimal schedule with the desired

property. O

This result, together with the fact that jobs of the same family have the same holding cost,

allows us to determine an optimal formation of batches. For each job family j, arbitrarily select



jobs to form |n;/K;| full batches and (possibly) one partially full batch of n; — 'J% | K; jobs, where
|z| denotes the largest integer smaller than z. Since each job of family j has the same holding cost,
it does not matter how these jobs are assigned to the batches. As in Uzsoy [15], we can now view
each batch By containing jobs of family j as an individual job with mean processing time 1/y; and
weight Wy, where Wy is the sum of the weights (holding costs) of all jobs in batch k. The optimal
sequencing of these ) 7, [%’J—] batches, where [z] denotes the smallest integer larger than z, then
follows from the optimality of the WSEPT rule for a single unit capacity machine.

Theorem 1 The following procedure creates an optimal schedule:

1. For each family j, arbitrarily select jobs to form |n;/K;| full batches and (possibly) one par-
tially full batch of nj — [%JK  jobs.

2. Sequence these 3 7, [%] batches in decreasing order of Wip;, where Wi is the sum of the
holding costs of all jobs in the batch and 1/p; is the mean processing time for the family j
which makes up the batch. Note that W, = c¢;K; for all but possibly one batch of type j. The

remaining batch has Wy = (n; — I_T’%J K;)c;.

Proof: The optimality of the first step follows from the fact that it satisfies Lemma 1. The
optimality of the second step follows from the well-known result that sequencing jobs in decreasing
order of w;/ E[X;] , where X is the random processing time of job j and wj is its weight, minimizes
E[Y; w;Cj), where C; is the completion time of job j (see, for example, Pinedo [12]). Note that
C; = D; + X, where D; is the time spent by job j waiting in queue to be processed, so the above
sequence minimizes E[Y; w;D;]+ E[Y; w;X;]. However, E[}"; w; X;] is a constant which does not

depend on the sequencing rule, so the above sequence must minimize E[}; w;D;]. O

4 Optimal Results for Dynamic Problems

In the remaining sections, we consider the problem of scheduling a batch processing machine in
the presence of dynamic job arrivals. This section contains problems for which the structure of the
optimal policy can be determined.

We will initially consider problems with Poisson arrivals and m = 2, and add the restriction that

the machine is not allowed to idle. Under these assumptions, the problem of minimizing long-run



average costs per unit time can be formulated as a semi-Markov decision problem. The following

notation will be used to describe the system:

n; = the number of jobs of type j waiting to be processed
(the state of the system)
§; = arandom variable with mean 1/p; and cumulative
distribution function F; (§; represents an arbitrary
service time for jobs of type j)
X;(t) = the (random) number of arrivals of type j over time ¢,

which has a Poisson distribution with rate A;

(z)* = max{z,0}
g = the optimal long-run average cost per unit time
V(n1,m3) = the relative cost of being in state (ny,n2) and following
the optimal policy

The state of the system will be reviewed immediately after each service completion. These review
points are the only times at which a decision needs to be made. The memoryless property of the
exponential interarrival time distribution guarantees that the system satisfies the Markov property.
That is, the future evolution of the system depends only on the current state and the action taken,
and not on the elapsed time since the last arrival or any other information about the past behavior
of the system. Since the time between consecutive decision epochs is random, the semi-Markov

decision model applies. The underlying recursive equation is:

[ B[S eal(ma — Kot + Xa(8)] + eafna + Xa(1)] dt
+V((n1 - K1)t + X1(81),n2 + X2(51))]

E[f3* ealn1 + X1 ()] + e2[(na — Ka)* + Xa()] dt
+V(m + X1(52), (n2 — Ka)* + X5(S2))]

The first term in the minimization represents the decision to serve jobs of type 1. If this decision is

V(n1,n2) + ¢ = min ¢ (4.1)

\

made, we will serve all waiting jobs of type 1 if n; < K7, or serve a full batch of K; jobs if n; > Kj.
The remaining jobs of family 1 and all jobs of family 2, as well as any jobs that arrive during the
service time, incur holding costs until the next decision epoch. At this time the state of the system
is ((m1 — K1)t + X1(81), n2 + X2(51)). Similarly, the second term in the minimization represents
the decision to serve jobs of family 2.

The structural form of the optimal policy for this semi-Markov decision problem is described by



the following theorem.

Theorem 2 The optimal policy is completely characterized by the control-limit function l(ny), such
that in state (n1,n;), the decision is to serve type 2 if ny > l(n1) and to serve type 1 otherwise.

Furthermore, l(ny) is increasing in n;.

Proof: The proof is given in Appendix A.

The optimal policy is further characterized by the next theorem.

Theorem 3 Label the job families so that cyjuy Ky > capo K. If the machine completes service and

ny > K, then an optimal schedule exists which serves a full batch of family 1.

Proof: Consider an optimal schedule S which serves jobs of family 2 at a time ¢o when the machine
is ready to be loaded and n; > K;. Let t2 be the first time after time #o that schedule S serves jobs
of family 1, and let t3 be the time that this batch of type 1 is completed. We will refer to this batch
of type 1 as By. The batch that completed service immediately before By must have been a batch
of type 2. We will refer to this batch of type 2 as By. Let t; be the time that Bj is started under
schedule S. Construct a new schedule S’ by interchanging By and B, while keeping all else the same.
This interchange decreases costs by K¢S, and increases costs by at most min{ns, K3}cz51, where
ny is the number of jobs of family 2 waiting at time ¢;. The increase in costs may in fact be less
than min{ny, K5}cyS; if ny < K,. This is because under S’ some jobs of type 2 that arrive during
the processing of B; can be served in By if ny < K. Let C(S) (C(S")) represent the expected total
cost under schedule S (S') up until time t3. Then C(S) — C(S") > E[K;1¢152 — min{ny, K2}¢351).
The fact that Kycipq > Kacapa then implies that C(S) — C(S’) > 0. Additionally, the state of the
system at time t3 will be at least as small under schedule §’ as it will be under S (the number of
type 1 jobs will be the same under both schedules while the number of type 2 jobs under S will
be less than or equal to the number of type 2 jobs under S). As a result, the expected cost under
schedule S’ is less than or equal to the expected cost under S both before and after time t3, so
schedule S’ must also be optimal. Repeating this adjacent pairwise interchange results in a schedule

with the desired property. O

We note that Theorem 3 remains valid even when idling is allowed and there are more than two

families by a similar interchange argument.



We can now completely characterize the optimal policy for this two family problem without
idling. If ny > K, then it is optimal to process a full batch of family 1. Otherwise, for each fixed
n1 < K1, a value I(n;) can be found such that the optimal policy is to serve family 1 if ny < I(ny)
and to serve family 2 if ny > I(ny). The control limits I(n;) are increasing in n;. Therefore, when
idling is not allowed, the optimal policy is completely specified by K1 numbers which are increasing.

We initially conjectured that when idling is allowed, the optimal policy would be specified
by two control-limit functions. In particular, we conjectured that for any fixed n;, there would
be two control-limit functions l;(ny) and l3(nq) such that i) for ny < l3(n;), the optimal policy
would be to process type 1, ii) for ng > Iy(n;), the optimal policy would be to process type
2, and iii) for lj(n;) < ny < ly(ny), the optimal policy would be to idle. However, we have
found that the monotonicity and submodularity conditions sufficient to satisfy this structure do not
necessarily hold. Furthermore, we were able to find some counterexamples to this structure (although
nearly all of the other examples we numerically solved yielded this structure). Consider a two-type
problem with exponential interarrival and service times and ¢; = 1.00,¢; = 1.50, K; = 10, K, = 8,
A1 = 2.00,A; = 1.00, gy = 0.40, and pz = 0.50. A numerical solution of this problem (with the
arrivals truncated when the number of jobs for any class exceeds 160; we have made sure that the
truncation limit is sufficiently large) results in a policy such that when n; = 8, it is optimal to idle
if ny < 2, to serve type 1 for ny = 3 and ny = 4, to idle for ny = 5, and to serve type 2 for ngy > 5.
This example demonstrates that the optimal policy when idling is allowed has a complex structure
even for the two-family case.

We have found that problems with more than two families are also very complex, even when
idling is not allowed. We can only characterize the optimal solution for completely symmetric
problems (i.e., all families have the same arrival rates, service rates, holding costs, and capacities)

without idling. However, we do not need to assume Poisson arrivals.

Theorem 4 Ifc; = ¢, pj = p, \j = ), and K; = K for all j = 1,...,m, then there ezists an
optimal schedule for the problem without idling which always serves the family with the greatest

number of jobs waiting at each decision epoch.

Proof: The result can be obtained by a simple interchange argument and we omit the proof in the
interest of space. O
We note that even when only the arrival rates differ across families, Theorem 4 no longer holds

and the structure of the optimal policy is complex. The complexity of the optimal solution and the



difficulty of its computation led us to develop a simple, implementable heuristic which we describe

in the next section.

5 A Heuristic Policy

For most instances of the dynamic problem formulated in Section 2, the optimal policy can not be
generated by a simple scheduling rule. Additionally, dynamic programming is not a practical solution
technique for realistically sized problems since the size of the state space grows non-polynomially
in the number of job families. For these reasons, we focus on developing a simple, implementable
heuristic policy.

We first observe that the only times when decisions are made are either when a new job arrives
and the machine is available, or when the machine completes service and there are jobs waiting. At
each of these decision epochs, a heuristic policy must select one of the m job families to serve or
instead decide to idle (note that if the decision is to serve family j, it will always be best to process
min{n;, K;} jobs). The logic of our heuristic divides this decision into three steps. The first step
uses stability considerations and an M/G/1 nonpreemptive priority queue analysis to determine
which job families are eligible to be selected for service. In the second step, the heuristic selects one
of the eligible job families as the best candidate for service. The third step then decides whether to
serve the family selected in the previous step or to idle until the next decision epoch, at which time
the decision process will begin all over again.

We next describe the development of these steps for systems with two types of jobs, and then
extend the results to systems with any number of job families. Finally, we describe how the heuristic
would utilize information about future arrival times if such information were available. In what fol-
lows we assume that the job families are labelled so that ¢;u; K; > cjtipj1 K41 forj =1,...,m~1,
and that arrivals of family j occur according to a Poisson process with rate A;. As before, we let n;

represent the number of jobs of family j currently waiting at the machine.

5.1 Heuristic for Systems with Two Job Families

For systems with two job families, the three steps of the heuristic operate as follows.
Determination of Eligible Job Families
When n; > Ky, it is optimal to serve family 1 regardless of the value of ny. This follows from the

extension of Theorem 3 to allow idling. When n; < K; and ng > Kj, it may still be preferable to



serve a partial load of family 1 even though a full load of family 2 is available. This is due to the fact
that the larger holding cost (or faster service rate, or both) of family 1 might make it worthwhile
to serve a partial load. However, we need to ensure that serving partial loads of family 1 when full
loads of family 2 are available does not result in an unstable system. This is achieved by making
family 1 eligible for service when ny > Kj only if ny > M where M is the smallest integer which

satisfies

<1 (5.2)

This condition guarantees that serving partial batches of family 1 when there is a full load of
family 2 available does not result in the number of type 2 jobs growing without bound. However,
M computed from (5.2) is not necessarily the “optimal” minimum batch size of family 1 to make
family 1 eligible for service. Rather, it is a lower bound on the “optimal” minimum batch size which
ensures stability.

To compute an approximately “optimal” minimum batch size B* such that whenever n; >
B*, family 1 is eligible for service when full loads of family 2 are available, we use an M/G/1
nonpreemptive priority queue analysis. That is, we assume that jobs of family 2 are always served
in batches of size Ky, and that jobs of family 1 are always served in batches of B* > M. Furthermore,
we assume that a batch of family 1 always has nonpreemptive priority over a batch of family 2.

The expected time for a full batch of type 2 to form is K,/),, which gives an arrival rate for type
2 batches of A2/ K. Similarly, the arrival rate of type 1 batches of size B is A;/B. For simplicity, we
approximate the distribution of the arrival process of full batches by a Poisson process. Therefore,
if we let d; denote the delay that a batch of family j experiences after a full batch (of size B for
family 1 and size K3 for family 2) has formed, using standard results for priority queues we can
write

d; = AE[S?Y] ’
2(1- iciPi)(1— Zigj pi)

where A is the overall arrival rate of batches, § denotes a generic “overall” service time, and p; is

(5.3)

the utilization factor for batches of family [19]. For our two family system, the overall arrival rate
is A = A2/K2 + A\1/B and the utilization factors are p; = A1/Bpy and py = Ay/Kapy. The value
E[5?%] can be calculated from

E[5%] = py E[S}] + p, E[S3), (54)

where p; is the probability that an arrival is a batch with priority J and S; is an arbitrary service

time for batches of family j. For this system, py = A;/BX and p; = A, /K2 .
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In addition to the delay d; incurred by batches waiting to be served, individual jobs must also
wait within a batch for the complete batch to form. For batches of family 1, the first job to arrive
must wait for B — 1 other arrivals before the batch is complete. The second job must wait for B — 2
other arrivals, and so on. This results in a total expected waiting time of

L (&)= 260

= \M 2\
for each batch of size B, or an average of (B — 1)/(2A;) per job. Similarly, the expected waiting
time for a job of family 2 within each batch of size K3 is (K3 — 1)/(2X2).

We can now write the total expected cost per job as

Gam)b @ T GER)bEST)l e

The best minimum batch size B* for family 1 is then the integer value of B which minimizes (5.5)

over the range M < B < Kj.

Therefore, when n; > K, our heuristic immediately decides to serve a batch of family 1. When
B* < n1 < K; and ny > K, both family 1 and family 2 are eligible for service. When n; < B* and
ng > K, only family 2 is eligible for service. Finally, when ny < K; and ny; < K, both family 1
and family 2 are eligible for service.
Selection of Job Family for Service

Our heuristic selects one of the eligible job families as the best candidate for service based on a
simple rule. It is well known that for an M/G/1 queue with multiple job types, the non-preemptive
cp rule minimizes the average holding cost per unit time [19]. This rule attaches the index c;jpu; to
each job in the jth queue, and at each decision epoch serves the available job possessing the largest
index. We develop a similar rule for a batch processing machine by viewing each batch of family j
as a single job with expected processing time 1/p; and holding cost ¢; min{n;, K;}. Our rule then
attaches the index ¢; min{n;, K;}u; to each eligible family j, and at each decision epoch serves the
available family possessing the largest index. We will refer to this rule as the ¢ min{n, K }u rule.
Rule for Idling

Once a family has been selected as the best candidate for service, the net benefit of idling until
the next decision epoch is evaluated. If the net benefit of idling is found to be positive, the decision
is to idle until the next decision epoch at which time the decision process will begin all over again.

If the net benefit is not positive, the decision is to serve the selected family immediately.

11



If the heuristic has selected family 1, the net benefit of idling is approximated as

emtem) (55) + (53) (o)
171 212 ,\1+,\2 /\1+A2 i1

+ (,\1/:_2)\2) max{cz(nz + 1)(1/p1) — erna(1/p2),0}.  (5.6)

The first term in (5.6) represents the cost of idling. By idling until the next decision epoch, we have
delayed the starting time of all jobs currently in the system by an expected time of 1/(A\1 + Az).
The remaining terms in (5.6) represent the benefits of delaying service until the next arrival. If
the next arrival is a job of family 1 (which happens with probability A;/(A1 + Az)), the heuristic
will again select family 1 as the best candidate for service. Had the heuristic not chosen to idle,
this arrival of type 1 would have incurred holding costs for a period of time at least as long as the
remaining processing time of the current batch of family 1. We approximate this period of time by
the expected service time of family 1, resulting in a savings of ¢;/p1 due to idling. If the next arrival
is a job of family 2 (with probability A;/(A1 + A2)), then there may or may not be a benefit from
idling. If the heuristic still selects family 1 for service even after this additional arrival of type 2,
then idling will not produce a benefit. However, if the heuristic now selects to serve family 2 after
this additional arrival, idling will produce a benefit. We approximate the benefit of the decision to
idle and then serve family 2 by ca(ng + 1)(1/p1) — c1n1(1/p2), where the first term represents the
holding costs saved for the na +1 jobs of family 2 and the last term represents the holding costs now
incurred for the n; jobs of family 1. Note that this benefit is positive only if an additional arrival
of type 2 results in the heuristic selecting type 2 ( i.e. ca(ng + 1)pg > c1nyp).

If the heuristic has selected family 2 as the best candidate for service, similar reasoning gives

the following expression for the net benefit of idling:

emrem) (5) + (535 (2)
PTERIAN + M+ A/ \pe

b (52 ) maten(m 4 (1)~ eanalt ) 0). 67

We now describe in full our heuristic policy for systems with two families.
Heuristic Policy for Systems with Two Families

At each decision epoch:
1. If n; > K; then serve a full batch of family 1.

2. If n1 < K7 and ny > K, then:

12



(a) If n; < B* then serve a full batch of family 2.

(b) If »; > B* then use the cmin{n, K}p rule to decide which family to serve (i.e. if

c1p1ny > capa Ko then serve family 1, otherwise serve family 2).
3. If n; < Ky and ny < K, then:

(a) Use the cmin{n, K}u rule to select the best candidate family for service.

(b) Use the appropriate idling expression ((5.6) or (5.7)) to determine whether to serve the

selected family or to idle until the next decision epoch.

5.2 Heuristic for Systems with m Job Families

Using the ideas developed previously for two job families, we extend our heuristic to systems with
any number of job families.
Determination of Eligible Job Families

If ny > K, then as before it is optimal to immediately serve a full batch of family 1 regardless
of the number of jobs of any other family waiting at the machine. However, if there exists a family
I (I #1) such that n; > K; and n; < Kj for all j < [, then the optimal policy is not clear. In
this situation it will never be optimal to serve a family 7 with j > [, so our heuristic only considers
serving a full batch of family / or a partial batch of families with j < I. To ensure that the stability
of the system is maintained, a partial batch of family j (j < ) must be at least as large as Mj;,

where the M;; satisfy

1 Mijps o Kk

<1 (5.8)

j=
To be able to solve this inequality for the -1 M};’s, we add the I—2 equations Mj; = (¢ Mip1)/(cju;)
for j = 2,...,1 — 1. These additional equations make the minimum batches for each family equally
attractive. Note that if this results in M;; > K; for some family j, then we set M;; = K; for this
family and resolve (5.8).

As in the heuristic for the 2-family case, (5.8) only guarantees that serving partial batches
of a family when full loads of another family are available will not result in instability. To find
approximately “optimal” minimum batch sizes, we once again use an M/G/1 nonpreemptive priority

queue analysis. However, in this case we need to carry out the analysis m — 1 times to cover all

possible full load scenarios.

13



Suppose that family [ is the family with the lowest index among all families that have a full
load. To carry out the M/G/1 analysis, we assume that family j is served in batches of size Bj;
for j < I and in batches of size K for j > I. Each batch can then be viewed as a single job and
(5.3) can again be used to find the expected delay d; for batches of family j. The delay incurred
by individual jobs waiting within a batch for the complete batch to form is calculated exactly as
before, resulting in the following expression for the total expected cost per job in the system:

5 () () £ (oo 5) o

Jj=1

Again using the / — 2 equations B;; = (¢;Bup)/(cjpj) for j = 2,...,1 -1, (5.9) can be written as
a function of the single variable Bj; and minimized over the range M;; < B;; < K;. The value B}
that minimizes this cost function then determines the remaining Bj; (if this results in Bj; > K; for
some family j, then BJ; is set equal to K; for this family and we resolve (5.9)). The family ! and all
families j which satisfy j < ! and n; > B;"j are then eligible for service. We note that the By; values
need to be computed only once and their computation is very rapid.
Selection of Job Family for Service

The selection rule developed for systems with two families extends without change to systems
with any number of families. The index ¢; min{n;, K;}u; is attached to each eligible family j, and
at each decision epoch the family possessing the largest index is selected.
Rule for Idling

The rule for idling developed for systems with two families extends with only slight modifications
to systems with any number of families. Using the reasoning described previously for two families,
the net benefit of idling until the next decision epoch given that the heuristic has selected family i

as the best candidate for service is approximated by:

( Z) (f_> * (zfjx)(u‘)

+ Z <Ek T max{c;(n; + 1)(1/p:) - eini(1/p;), 0})(5 10)

J=Lj#4

If (5.10) is positive, the decision is to idle until the next decision epoch, at which time the decision
process will begin all over again. Otherwise, the decision is to serve the selected family immediately.

We now describe in full our heuristic policy for systems with any number of job families.
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Heuristic Policy for Systems with m Families

At each decision epoch:
1. If at least one full load is available:

(a) Let ! denote the smallest value of j such that n; > K;. The family / and all families j

with j <l and n; > Bj; are eligible for service.

(b) Serve the eligible family with the largest value of ¢; min{n;, K;}u;.
2. If no full loads are available:

(a) Calculate the index ¢; min{nj, K;}p; for each of the m families and select the family

possessing the largest index as the best candidate for service.

(b) If the net benefit of idling as given by (5.10) is positive, idle until the next decision epoch.

Otherwise, serve the selected family immediately.

5.3 Heuristic with Next Arrival Information

Manufacturers may have shop-floor control systems which provide a means to predict with reasonable
accuracy the timing of future arrivals to a batch processing machine. Such prediction capability can
significantly enhance the performance of a batch processing machine. Our heuristic can be easily
modified to make use of such information if it exists. We will consider only information about the
next arrival from each job family because the return from more information has rapidly decreasing
marginal value [5], and getting more information may be difficult in practice. We note that nearly
all of the literature to date on batch service queues with incompatible job families has assumed that
some information on future arrivals is available.

The flow of our heuristic remains the same with next arrival information. The determination of
eligible job families and the selection of the best eligible family for service are performed exactly as
they were for the case with no knowledge of future arrivals. Only the idling rule changes when the
timing of future arrivals can be predicted. If family i is selected as the best candidate for service,
the benefit of idling until the next arrival of family j is calculated for each family j = 1,...,m. If
any one of these m benefits is positive, the decision is to idle until the next decision epoch.

The net benefit of idling until the next arrival of each family given that family 4 is the best

candidate for service is found as follows. Let T} represent the time until the next arrival of family
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J. First, if ¢;(n; + 1)u; > ¢;(nj + 1)p; for all j such that T; < T3, the net benefit of idling until the
next arrival of family ¢ is approximated by
m m
- (Z clnl) T; - Z emax{T; — T;,0} + (¢i/)- (5.11)
=1 =1
We note that if ¢;(n; + 1)u; < cj(n; + 1)p; for some j with T; < T;, there is no benefit to idling
until the next arrival of family ¢ since the heuristic will no longer select to serve family ¢ at that
decision epoch. Next, for each family j with T; < T;, the net benefit of idling until the next arrival
is approximated by
m m
- (Z cmz) T~ Y emax{T; - T},0} + ¢j(n; + 1)(1/mi) — cini(1/p;)- (5.12)
=1 =1
Finally, for each family j with T; > T;, the net benefit of idling until the next arrival is approximated
by
m m
- (Z cmz) T; - ) emax{T; = T},0} + ¢j(n; + 1)(1/ps) - ei(ni + 1)(1/p;)- (5.13)

=1 =1
The reasoning behind these expressions is identical to that discussed for the idling rule without

knowledge of future arrivals, with the addition of a term to account for the possible holding costs
incurred for the next arrival of each family.

In summary, when there is knowledge of future arrivals, the heuristic operates exactly as de-
scribed in Section 5.2 with only a slight change in the rule for idling. When no full loads are
available, the idling decision is made by checking to see if any of equations (5.11), (5.12), or (5.13)
are positive. If any of them are positive, then the decision is to idle until the next decision epoch
(i.e., the next arrival from any family). Otherwise, we choose to serve the best candidate found in
step 2a of the algorithm.

Finally, we note that our heuristic with next arrival information can easily be applied even when
interarrival times do not follow the exponential distribution. The only place where our heuristic
requires the exponential interarrival time distribution is in the calculation of the By; values using
M/G/1 nonpreemptive priority queue results. If interarrival times are non-exponential, the By;
values can be computed using simulation of G/G/1 priority queues. However, we have found that
computing these values using M/G/1 queue results works very well even when the interarrival times
are not exponential. In the next section, we give examples with uniform interarrival times where we

computed the Bj; values assuming exponential interarrival time distributions.
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6 Computational Results

The real test of any heuristic is its performance with respect to the optimal solution. For the problem
considered here, however, the optimal solution can only be computed without great difficulty for
examples with exponential interarrival times and only two or three families. Increasing the number
of families to four or five leads to very large state space sizes. For example, even truncating the
state space such that the content of each queue is allowed to vary between 0 and 100 still leads to a
state space size of over 108 in problems with four families. There also does not seem to be an easy
way to compute the optimal solution for problems where future arrival information is available.

Given the difficulty of computing the optimal solution for problems with more than three fam-
ilies, we chose to compare our heuristic to the optimal solution for problems with two and three
families and exponential interarrival and processing times under the assumption that future arrival
information is not available. For these same problems, we also compared our heuristic to a gen-
eralization of the heuristic by Fowler et al. [4] under the assumption that the arrival time for the
next job from each family is exactly known. The original multiple product heuristic of Fowler et al.
does not allow for different holding costs or random processing times, so we modified their heuristic,
NACHM, to meet the assumptions of this paper (in the discussion below, we refer to this modified
heuristic as MNACHM). We summarize their heuristic and our modification of it in Appendix B.

We first tested our heuristic on a variety of problems with two job families. The data for the
31 different examples with two families is displayed in Table 1. As Table 1 indicates, the examples
represent a wide variety of different situations. The examples include moderate through high traffic
intensities, and cover most combinations of equal and different holding costs, capacities, arrival
rates, and service rates. As required by the heuristic, all families are labelled so that ¢; K;u; >
¢j+1K;411541. In our examples, the ratio of the holding costs for the two families, C;/C2, ranges
from 1/3 to 10. The ratio of the arrival rates, A; /A2, ranges from 3/16 to 2.5, and the ratio of the
service rates, /2, ranges from 0.75 to 3.00. We also consider different ratios of K;/K2, hence
our examples represent a wide variety of situations that might arise in practice.

The two family examples of Table 1 were used to test the performance of the heuristic assuming
1) exponential interarrival and processing times and 2) uniform interarrival times and deterministic
processing times. With uniform interarrival times, we used the same mean 1/)\; as we did for
exponential interarrival times. The range of the uniform interarrival times was from '2'15 to -2-?'):

When processing times were deterministic, they were assumed to be exactly equal to 1/p;.
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The optimal long-run average cost per unit time under the assumption of exponential interarrival
and processing times was found by formulating the problem with idling as a Markov Decision Process.
To avoid the difficulties of an infinite state space, an upper limit was placed on the number of jobs
of each family allowed in queue. Therefore, the dynamic programming solution gave a lower bound
on the actual optimal cost. We then compared this result to the performance of our heuristic under
the assumption of no knowledge of future arrivals. For the same data with exponential assumptions,
we also compared the performance of our heuristic with next arrival information and MNACHM.
Finally, for the case with uniform interarrival and deterministic processing times, we again compared
the performance of our heuristic with next arrival information with MNACHM. As described in the
previous section, we used the M/G/1 analysis to obtain the B* values for our heuristic.

Table 2 summarizes the results we obtained. It contains the lower bound on the optimal average
cost per unit time obtained by solving the MDP for the problem without next arrival information
(LOPT), the results for our heuristic without next arrival information (H) and with next arrival
information (HA), and the results for MNACHM. To obtain the simulation results, we used a
GPSS/H simulation program. The simulations were run for 264,000 time units, with a warmup
period of 8000 time units and the average cost calculated every 4000 time units. We report the
average cost as well as 95 % confidence intervals for each example.

The results in Table 2 clearly show that our heuristic works very well with or without next
arrival information. When interarrival and processing times were exponential, our heuristic H gave
results that were very close to the lower bound on the optimal cost computed by solving the MDP.
On average, the cost obtained by our heuristic H was less than 2 % above the lower bound on the
optimal solution. When future arrival information was available, our heuristic HA outperformed
MNACHM for every example. In fact, on average MNACHM resulted in costs that were 7.5 %
higher than those obtained by HA. Interestingly, in many examples our heuristic H, which uses no
information on future arrivals, was able to outperform MNACHM, which assumes such information.
However, on average MNACHM was better than H by nearly 1.7 %.

Our heuristic HA also outperformed MNACHM in all but one example when arrivals were
uniform and services were deterministic. However, under these assumptions the average difference
between the two heuristics was much less (3.3 %). This is intuitive as there is much less variability
in this case, and therefore sequencing is less likely to have as significant an effect on performance.

We also tested our heuristic on examples with three job families. In this case, all our examples
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Example | ¢; | ¢ | Ky | Ko | A | A2 | p1 | 2
1 10 |10 10 )10 | 10|10 05]0.5
2 10 |1.0] 10 ) 10 {15 (15({0.5 05
3 1.0 |10| 10| 10 [1.0] 1.0 0.6 | 0.2
4 10 (10| 10 | 10 [ 25| 1.0]0.5 0.5
5 1.0 (10| 12| 3 {10 100505
6 20 |1.0| 10|10 |)1.0|10(05 (0.5
7 20 |1.0| 10| 10 |2.0[20/|05 0.5
8 20 (10| 10|10 |2.0]1.0|05 0.5
9 20 (1.0 10 [ 10 | 1.0 2.0 05| 0.5
10 20 (10| 5 |10 |15]15]|06 0.6
11 20 (10| 10| 4 0515|0906
12 1.1 110 8 | 7 [20(10]07)04
13 1.1 |10(10f 9 {0.7]08]|04(04
14 12 |10 10| 6 [1.0[20]0.6]0.5
15 13 10|10 8 {08(07]03])04
16 30 (10|10 3 |15|14|1310.7
17 30 110| 8 | 7 |110|20/(06]0.5
18 50 |10 10| 4 |1.0]20/|08|0.8
19 100{10( 8 | 8 |0520|06]0.5
20 15 (10| 8 | 8 |[12{13]|04]05
21 15 | 10| 6 | 10 [ 10|20 0.8 0.6
22 1.7 110} 6 | 8 [14(12]05 |06
23 20 1.0 5 |10 |20]1.0]08|0.6
24 10 15| 6 | 9 {10|15]1.0]0.3
25 1.0 {2010} 7 [09]09]07]03
26 10 |20 10| 8 {13 (160704
27 10 (30| 10| 5 {12]11]08]04
28 20 2010 | 5 |08]13[081}0.6
29 20 |10 7| 9 |05]07[04{0.5
30 50 10|10 | 4 |03]|16[05]0.6
31 1001010 3 |05 (201210

Table 1: Input Data for Two Family Examples
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Poisson arrivals, exponential services

uniform arrivals, det. services

Ex. | LOPT H HA MNACHM HA MNACHM
1 5.72 | 5.73+0.08 | 5.05+0.08 | 5.21+0.08 | 3.54+0.01 3.6610.01
2 | 10.87 | 11.01+0.25 | 10.18+0.24 | 10.2540.20 | 5.5440.01 5.73+0.01
3 | 13.67 | 14.09£0.52 | 13.38+0.59 | 13.73+0.61 | 6.2440.01 6.43+0.01
4 | 15.29 | 15.70+0.40 | 14.76+0.41 | 15.114+0.39 | 6.7340.01 6.84+0.01
5 | 14.00 | 14.00+0.53 | 13.63+0.60 | 15.0640.95 | 5.0240.01 5.01+0.01
6 8.31 | 8.3240.11 | 7.33+0.09 | 7.69+0.12 | 5.26+0.01 5.48+0.01
7 | 31.94 | 32.74+1.10 | 31.93+1.21 | 34.65+1.47 | 11.94+0.02 12.4740.02
8 | 16.28 | 16.73+0.32 | 15.31+£0.29 | 15.67+0.27 | 9.3340.01 9.36+0.01
9 | 14.30 | 14.41+0.20 | 13.34+0.20 | 13.814+0.27 | 7.3240.01 7.7140.01

10 | 19.40 | 19.59+0.50 | 18.65+0.60 | 19.06+0.58 | 6.97+0.01 7.29+0.01
11 | 836 | 8.55+0.22 | 7.84+0.23 | 8.764+0.23 | 3.3240.01 3.4740.01
12 | 12.70 | 12.9240.27 | 12.17+0.32 | 12.584+0.33 | 5.90+0.01 6.011+0.01
13 | 557 | 5.57+0.07 | 4.90+0.08 | 5.02+0.07 | 3.44+0.01 3.5540.01
14 | 20.48 | 21.45+1.10 | 20.56+0.96 | 23.27+1.52 | 6.8630.01 6.89+0.01
15 | 7.85 | 7.97+0.16 | 7.07+0.12 | 7.2440.12 | 4.5440.01 4.69+0.01
16 | 16.18 | 17.2920.43 | 16.55+0.40 | 18.42+0.43 | 6.95+0.02 7.0540.02
17 | 23.21 | 23.74+0.62 | 22.62+0.69 | 24.01+0.63 | 10.0640.02 10.10+0.02
18 | 21.24 | 22.5020.43 | 21.06+0.47 | 23.43+0.41 | 10.4840.02 10.69+0.02
19 | 21.69 | 22.30£0.35 | 20.23+0.36 | 23.93+0.42 | 11.4140.03 12.61+0.04
20 | 15.29 | 15.29+0.28 | 14.26+0.33 | 14.964+0.39 | 6.40+0.01 6.71+0.01
21 | 840 | 8.40+0.14 | 7.60+0.12 | 7.8240.11 | 4.56+0.01 4.69+0.01
22 | 15.42 | 15.92+0.42 | 14.30+0.36 | 14.8040.46 | 5.9840.01 6.26+0.01
23 | 13.57 | 13.9540.29 | 12.59+0.29 | 13.2140.29 | 6.68+0.01 6.71+0.01
24 | 18.35 | 18.60%0.55 | 17.74+0.70 | 18.2140.64 | 6.57+0.01 6.74+0.01
256 | 11.53 | 11.6240.25 | 10.37+0.20 | 10.75+0.25 | 5.77+0.01 5.9310.01
26 | 19.92 | 19.98+0.53 | 19.04+0.56 | 19.154+0.56 | 8.17+0.01 8.556+0.02
27 | 20.53 | 20.67+0.77 | 18.57+0.55 | 19.96+0.65 | 7.50+0.01 7.9510.01
m 28 | 10.36 | 10.54+0.17 | 9.17+0.16 | 9.63+0.18 | 5.2240.01 5.40+0.01
29 | 5.03 | 5.03+0.06 | 4.19+0.06 | 4.4040.06 | 3.0940.01 3.2240.01
30 | 15.42 | 15.83+0.46 | 14.77+0.48 | 16.853+0.44 | 6.92+0.02 6.97+0.02
M 31 | 14.77 | 15.10+0.28 | 14.63+0.32 | 22.93+0.53 | 6.58+0.02 7.03+0.03

Table 2: Results for Two Family Examples
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Exa,mple C1 Ca c3 K1 Kz K3 Al /\2 /\3 I75% M2
1 10 (10|10 5 | 5 | & [07(07]07]07]0.7
2 10 1010 5 | & | 8 |0.7/07|07]1.0/0.7
3 10 (10f10| 5 | 5 | 5 |11[{07]03]1.0]0.7
4 10 (10f10| 5 | 5 | & |03|07|11]1.0]0.7
5 20 {15110 5 (&5 |5 |07]07]07]10]0.7
6 20 {1510 5 | 5|5 |11]07]03([10]0.7
7 30 {2010} &5 | &5 |5 [07]07]07(07]0.7
8 30 {20110 5 [ 5 |5 |03]07[13]0.7]0.7
9 30 (2010 5 [ 5 |5 ]03]07[13]04]0.6
10 30 |20|10| 7 (5 | 3 |10]07|04]07 (0.7
11 30 (20 (10| 5 5 3 103(07(11]0.7]0.7
12 30 {2010 3 | 5 |7 (03]07]13(07]05
13 30 (20 (10| 3 5 7 110(08|06|10]0.7
14 12 111110 5 5 5 1071070710707
15 12 {1110 5 | &5 | & |11({07]03]1.0]0.7
16 10 {15(20( 5 | 5 | 5 |07(07]07]12]0.7
17 10 {15(20| 5 | 5 | 5 (03(07]13|15]10
18 10 120130 7 | & 3 10407041007
19 10 {1520 4 | 5 6 {07]07]07]20]10

20 10 {12 (14| 7 | 5 3 {15[10]05]10]|1.0
21 10 |16 (10| 7 | & 3 107(107]07]10]0.7
22 10 |20 |10} 7 | 5 3 105(/06 (051208
23 12 |10 (12| 5 7 5 (050805 |13]08
24 10 (2020 6 | 4 | 4 [03]05]071.0]05
25 20 {1510 5 | 5| 5 |06]|05]|04]08]07
26 20 (15110 5 | &5 | 5 |04]05|06]|10]1.0
27 50 (20|10 5 [ 6 | 2 |07]07|07([08]0.8
28 100 {50 (10 7 | 5 3 1]05(07(09|12(1.0
29 1001010} 7 3 3 106(10(10(20]1.0
30 10 {1010 4 | 5 6 {05/08(09112/09
31 12 1110 5 | 5 | 5 |06|05[04]1.0(0.9
32 30 |20(|10| 5 | 5 | 4 (05]07]06|11]12
33 10 {12f10| 5 | 5 | 5 |06([04]06]|1.0]0.7
34 15 (1012 5 | 6 | 4 |1.0{06|08]|0.7]0.8
35 10 (14 (12| 6 4 5 107(07(07|14/(12
36 20 15|10 7 | 2 | 3 [05|/06]|05|08]10
37 10 (10|10} 6 | 5 | 4 [02]06]1.0{15]10

Table 3: Input Data for Three Family Examples
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Example | LOPT H HA MNACHM [|
1 6.39 | 6.41+0.09 | 5.75+0.10 | 5.85+0.10
2 855 | 8.55+0.19 | 8.04+0.19 | 8.46+0.20
3 6.07 | 6.07£0.08 | 5.50+0.08 | 5.82+0.09 [u
4 13.56 | 13.76+0.56 | 13.26+0.62 | 14.52+0.67
5 11.66 | 11.80+0.22 | 11.00£0.25 | 11.7140.23
6 9.23 | 9.40+0.12 | 853+0.13 | 9.05+0.13
7 11.82 | 11.82+0.16 | 10.66+0.16 | 11.14+0.17
8 11.73 | 11.81£0.19 | 10.88+0.17 | 11.39+0.21
9 13.67 | 13.7740.30 | 12.7440.29 | 13.80+0.32
10 12.43 | 12.65+0.16 | 11.52+0.16 | 12.02+0.17
11 16.26 | 16.52+0.41 | 15.85+0.42 17.45:1:0.68m
12 14.22 | 14.26+0.26 | 13.36+0.32 | 13.58+0.29
13 14.80 | 14.80+0.22 | 13.39+0.26 | 14.02+0.28
14 6.95 | 6.97+0.11 | 6.23+0.11 | 6.37+0.09
15 6.72 | 6.72+0.11 | 6.09+0.10 | 6.48£0.09
16 12.71 | 12.81+0.26 | 11.67+0.29 | 12.90+0.27
17 14.40 | 14.5240.33 | 13.43+0.29 | 14.56+0.38
18 10.70 | 10.80+0.20 | 9.49+0.20 | 10.34+0.21
19 7.00 | 7.01£0.09 | 6.09+0.09 | 8.22+0.08
20 6.74 | 6.74+0.08 | 6.07+0.09 | 6.250.09
21 544 | 557+0.07 | 4.85+0.07 | 5.02+0.06
22 476 | 4.7910.06 | 4.19%0.05 | 4.69+0.07
23 402 | 4.07+0.05 | 348+0.04 | 3.83+0.05
24 11.11 | 11.28+0.25 | 10.26£0.25 | 11.45+0.25
25 5.35 | 5.35+0.06 | 4.59+0.06 | 4.82+0.06
26 295 | 2.97+0.03 | 2.43+0.03 | 2.68+0.03
27 17.10 | 17.37+0.28 | 16.43£0.25 | 17.57+0.23
28 16.78 | 17.73+£0.21 | 16.2140.20 | 20.0420.26
29 13.18 | 13.41+0.25 | 13.2740.32 | 20.95+0.29 M
30 519 | 5.1940.06 | 4.60+0.06 | 4.88+0.07
31 270 | 2.70+0.03 | 2.24+£0.02 | 2.41+0.02
32 432 | 4.3240.04 | 3.63£0.04 | 3.93%0.04
33 352 | 3.52+0.04 | 2.9620.04 | 3.15+0.04
34 10.33 | 10.33+0.19 | 9.50+£0.18 | 9.92+0.18
35 3.32 | 3.33+0.03 | 2.76£0.03 | 2.95+0.03
36 5.88 | 5.94+0.09 | 5.32+0.08 | 5.610.09
37 577 | 5.77+0.11 | 5.32+0.11 | 5.87+0.11 m

Table 4: Results for Three Family Examples
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Traffic Intensity H NACHM | MCR HA |
0.1 0.1856 + 0.0043 | 0.1545 | 0.1505 | 0.1605 + 0.0033
0.2 0.7917 £ 0.0115 | 0.6503 | 0.6487 | 0.6567 + 0.0090
0.3 1.7507 + 0.0148 | 1.4584 | 1.4388 | 1.4075 + 0.0130
04 2.6801 + 0.0200 | 2.4449 | 2.3396 | 2.2961 + 0.0186
0.5 3.6678 £ 0.0223 | 3.5516 | 3.3198 | 3.2868 =+ 0.0205
0.6 47686 + 0.0301 | 4.8138 | 4.4175 | 4.3953 + 0.0323
0.7 6.0070 + 0.0336 | 6.3066 | 5.7459 | 5.6669 = 0.0350
0.8 7.6919 £ 0.0623 | 8.1426 | 7.5121 | 7.3936 + 0.0621
0.9 10.8808 + 0.1442 | 11.6875 | 11.0549 | 10.6759 + 0.1522

Table 5: Average Total Queue Length for Four Family Examples

had exponential interarrival and processing time distributions. Once again, we considered examples
that represent many different situations. The input data for our examples is given in Table 3 and
our results are reported in Table 4. In the case with no future arrival information, our heuristic
H resulted in costs that were very close to the lower bound on the optimal cost. On average, the
difference between H and LOPT was less than 1 %. In the case with known next arrival times, our
heuristic HA once again outperformed MNACHM. On average, MNACHM resulted in costs which
were more than 9 % higher than those of HA.

Finally, we tested our heuristic on 4-family examples presented in Weng and Leachman [18]. In
these examples, families 1, 2, 3, and 4 have deterministic processing times equal to 60, 120, 180,
and 240, respectively. The capacity of the machine is equal to five for all job families. The arrival
distribution is assumed to be Poisson and the arrival rates for all four families are the same. With
traffic intensity p defined as p = E§=1 T(/}J;T," Weng and Leachman report the average total queue
lengths that NACHM, as well as their heuristic MCR, obtained for p values between 0.1 and 0.9.
We refer the reader to [18] for a detailed description of the MCR heuristic. However, we note that
at any decision epoch, MCR requires knowledge of the arrival times of the next K; — n; jobs from
each family j. For instance, in the example we tested, when there is one job from each family in
the system, MCR requires knowledge of 16 arrival times before making a decision.

We report the results obtained by our heuristics H and HA in Table 5, along with the results
obtained by Weng and Leachman for MCR and NACHM. Except in extremely low traffic intensities
(p = 0.1,0.2), HA outperformed both MCR and NACHM. The difference between HA and NACHM
was very significant, with HA outperforming NACHM by nearly 10 % for traffic intensities above 0.5.
The difference between HA and MCR was very small. However, we note the fact that HA achieves
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the same or better performance than MCR with potentially much less information required about
future arrivals. Interestingly, even H, which uses no information on future arrivals, outperforms
NACHM when the traffic intensity is 0.6 or above and outperforms MCR when the traffic intensity
equals 0.9. However, for lower utilizations H does not perform well. This is intuitive as the value
of the information about the exact arrival time of a job is greater when the traffic intensity is low

(i.e., arrivals are rare).

7 Conclusions and Further Research

In this paper, we obtained structural results and an effective heuristic for the control of a batch
processing machine with multiple incompatible job families. Our heuristic performed very well both
with and without future arrival information. Its simplicity and good performance make it a good
candidate for implementation in environments where effective control of batch processing machines
is important, such as wafer fabrication.

Further research should focus on the control of a stochastic batch processing machine where jobs
from different families can be mixed together in the same batch. In these systems, the processing
time of a batch is determined by the job in the batch with the longest processing time. Such systems
have been modelled under deterministic assumptions (see [2] and [9]). However, to our knowledge,
the stochastic control of these systems has not been addressed. Further research is also needed for
the problem of batch machines in parallel, or in a network. Problems where a setup is required

before switching from serving one family to another also need to be considered.

Appendix A: Proof of Theorem 2

Using the data transformation suggested in Tijms [14], the semi-Markov decision model (4.1) can
be converted into a discrete-time Markov decision model such that for each stationary policy the
average costs per unit time are the same in both models. This enables us to use a value iteration
algorithm to solve the original semi-Markov decision model. Labelling the job families so that

E[51] < E[S3], we get the following recursive equation for the value iteration algorithm:
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[ B eallm - Ka)* + X)) + calna + Xa(t))

+EVic1((m — K1)t 4 X1(51), m2 + X2(51))]

Vi(n1,m2) = min{ B[S eafny + Xa(8)] + cal(nz — Ka)¥ + Xa(t)] dt] (A1)
+E2E[Vio1(m + X1(S2), (ng — Ka)* + X5(52))]

+(1 = £2)V_1(n1,m2)

With U;(ny,n9,1) and Ui(nq,n2,2) defined by

Ui(ny,mg,1) = M1E[/OS1 ar[(n1 — K1)t + Xa(2)] + ca[na + Xo(2)] dt]

+ E[Vica((m = K1) + X1(51), n2 + X2(51))] (A.2)
S2
Ui(n1,n2,2) = N2E[/0 er[ny + X1(2)] + e2l(n2 — K2)* + Xo(1)] dt]
+ fE[Vi—l(nl + X1(S2), (n2 — K2)* + X3(S2))] (A3)

+ (1= BWisi(na,ma)
H1
the recursion (A.1) can be written concisely as

U;(n1,n9,1
Vilmang) = min ] Y (A4)
U‘i(nlin2’2)

It follows from (A.4) that it will be optimal to serve family 2 at stage 4 if Ui(ni,n2,1) —
U;(n1,n2,2) > 0. To show the existence of a control-limit function, I(n;), it suffices to show that
for each stage 1, U;(ny1,n2,1) — Ui(n1,n2,2) is increasing in ny for fixed n;. Similarly, to show that
I(n1) is increasing in ny, it is sufficient to show that Ui(ny,n2,2) — Ui(n1,n2,1) is increasing in ny
for fixed nq for each i. We will prove these by induction. To start the induction, let Vg(nq,n2) = 0

for all n; and ny. We need the following lemma for the proof of Theorem 2.

Lemma 2 The following conditions on U;
1a) Ui(ny,mn3,2) — Ui(na,ng,1) is increasing in ny for fized ny,

1b) E[£2Ui(m1 + X1(S2), (n2 = K2)* + Xo(S2), 1)] + (1 = p2/p1)Vi(ma, m2, 1)
— E[U;((n1 = K1)t + X1(81), n2 + X2(51),2)] is increasing in ny for fized no,

Ie) Ui(nq,n2,1) and Ui(ny,mn2,2) are increasing in ny for fized na,
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1d) Ui(ny,n2,1)=U(ny,ny —1,1) and Ui(ny,n2,2) — Ui(ny,ng — 1,2) are increasing in ny for fized

n3,
le) Ui(ny,ng,1) = Ui(ny,n9,2) is increasing in ny for fized ny,

1f) E[Ui((m1 = K1)t + X1(81), 2 + X2(51),2)] = 2 E[Ui(n1 + X1(S2), (n2 — K2)* + X3(S2),1)]
— (1 = pa/p1)Ui(n1,m2,1) + c2(nz — (ny — K3)F) is increasing in ny for fized ny,

1g) Ui(ny1,n2,1) and Ui(n1,n2,2) are increasing in ny for fized ny,

1h) Ui(nq,m3,1) = Ui(ny — 1,n2,1) and U;(ny,n2,2) — Ui(ny — 1,n2,2) are increasing in ny for fized

ny,

hold if the following conditions hold on V;_;

2a) E[E2V;_1(n1 + X1(52), (n2 — K2)* + X2(52))] + (1 = p2/p1)Vi-1(m1, m2)
— E[Vic1((n1 = K1)t + X1(51),m2 + X2(S1)] is increasing in ny for fized n,.

2b) Vi—1(ny,nq) is increasing in ny for fized n,,
2c) Vi—1(na,m3) = Vici(n1,ng — 1) is increasing in ny for fized ns.

2d) E[Vi-1((n1 — K1)t 4 X1(81),n2 + X2(51)] + ca(ng — (ny — Ka)*)
— B2 E[Vica(n1 + X1(52), (ng — K2)* + X2(S2))] = (1= p2/p1)Vie1(n1,n2) is increasing in ng
for fized n,.

2e) Vi_1(n1,my) is increasing in ny for fized ny,
2f) Vi—i(n1,m2) — Vici(ny — 1,n3) is increasing in ny for fized ny.

Furthermore, conditions (2a-2f) hold for V; if conditions (1a-1h) hold for U;.
Proof: The actual proof is very lengthy, so in the interest of space we give the proofs for a few of
the cases. We note that whereas conditions of (1a-1d, 2a-2c) state the monotonicity of the relative
value functions with respect to the number of jobs of type 1, conditions (le-1h, 2d-2f) state the

completely symmetric monotonicity conditions with respect to the number of jobs of type 2. Hence,

their proofs are almost identical.
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We first show that condition (1a) holds for U; if conditions (2a-2c) hold for V;_;. To see this,
note that using (A.2) and (A.3), Ui(n1,n2,2) — Ui(ny,ns,1) can be written as:

alm = (m = K1)+ mE[[§* (. Xa(t) + ef(n2 - K2t + Xa(t)))dt]

~mE[[5" (e1X1(t) + ealnz + Xa(§)))dt] + El(a/p1)Vier(n1 + X1(S2), (ng — Ka)* + Xa(52))]

H(1 = pa/p1)Vier(ma,m2) = E[Viea((m1 = K1)t + X1(S1), 2 + Xa(S1)]]

(A.5)

The first term in (A.5) is increasing in n;. The second and third terms do not depend on N1,
and hence are also increasing with respect to n;. The sum of the fourth, fifth and sixth terms is
increasing because of condition (2a).

Next, we show that condition (2a) holds for V; if conditions (1a-1d) hold for U;. To see this note

that using (A.4), after some simplification we get:

E[£2Vi(n1 + X1(S2), (ng — K3)* + X3(S2))] + (1 - £2)Vi(n1,n2)
- E[Vi((m1 — K1)* + X1(81),n2 + X2(51)] =
E[L2Ui(n1 + X1(82), (n2 — K2)* + X2(52),1)]

+ E[32 min{0, Ui(ny + X1(S2), (n2 — K2)¥ + Xa(52),2) — Ui(m1 + X1(S2), (n2 = K2)* + Xa(S3),1)}]

+ (1 = 82)Ui(n1,n2,1) + (1 = £2) min{0, Ui(n1, n,2) — U(ng, np, 1)}
— E[Ui((m = K1)t + X1(51),n2 + X2(51),2)]

+ E[min{O, U,-((nl - K1)+ + Xl(Sl),ng + Xz(Sl),2) - U,-((nl - If1)+ + Xl(Sl),nz + XQ(SI), 1)}]
(A.6)

We note that the second, fourth and sixth terms on the right hand side of (A.6) are increasing in
ny by condition (1a), and the sum of the first, third and fifth terms is increasing in n; by condition
(1b).

We now show that condition (1b) holds for Uj if conditions (2a-2c) hold for V;_;. Using (A.2)
and (A.3), after a lot of algebra and simplification we get:
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B[220y + X1(52), (ng = Ka)* + Xa(S2),1)] + (1 = £2)Ui(ma, nz, 1)
- E[Ui((n1 — K1)t + X1(51),n2 + X2(51),2)] =
E[8er[(n1 + X1(S2) = K1) = (n1 = Ka)*]] + E[(1 — p2) Jo* (1 X1 (t) + ea(na + Xa(t))dt]
+ E[Elm [ (1X2(2) + eal(nz = Ko)* + Xo(S2) + Xa(t)))dt]
— E[Elp2 [§* ([ X1(51) + Xa(8)] + eal(n2 + Xa(S1) — Ka)* + Xo(t)])dt]
+ E2(E[E[Vi-1((m + X1(S2) — K1)t + X1(81), (n2 — K2)* + X2(S2) + X3(51))

= Vica((m1 = K1)t 4 X1(51) + X1(52), (n2 + X2(81) — K2)t + X3(S52))])
(A7)

The first term on the right hand side of (A.7) is increasing in n, while the second, third and fourth
terms do not depend on n;. Hence, it is sufficient to show that the fifth term is also increasing in

ny. We will show this by establishing that the term
Vica((m + X1(S2) = K1)t 4 Xa(S1), (n2 — K2)* + X(S2) + X2(51))

=Vica((m = K1)* + X1 (1) + X1(S2), (n2 + X2(S1) = K2)* + X5(S2)) (A.8)

is increasing in ny for each realization of X;(Sy), X1(S3), X2(S1) and X5(S3). There are 9 possible

cases that need to be checked:

1.) ny > Kq,ng > Kj: In this case, (A.8) equals 0 and is therefore increasing in n;.

2.) Ky — X1(S2) £ n1 < K1,n2 > Ky: In this case, (A.8) is increasing in ny since V;_j(ny,ny) is

increasing in n; by assumption (2b).

3.) m < Ky — X1(S2),n2 > Ky: In this case, (A.8) does not depend on 7; and is therefore

increasing in n;.

4.) m1 > K1, K3 — X5(81) < n2 < Ky: In this case, (A.8) is increasing in n; since Vi—1(ny,ng) —

Vi-1(n1,n2 — 1) is increasing in n; by (2c).

5.) K1 — X1(S2) < ny < Ky, K2 — X5(81) < ng < Ky: In this case (A.8) is increasing in n; by
condition (2b).

6.) n1 < Ky — X1(52), K2 — X2(S51) < ny < Ky: In this case, (A.8) does not depend on n;.

7.) m1 > Ky, ng < K3 — X5(51): In this case, (A.8) is increasing by condition (2c).
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8.) K1—-X1(52) < ny < K1,n2 < Ky—X3(51): In this case, (A.8) is increasing in ny by condition
(2b).

9.) n1 < Ky — X1(S2),n2 < K3 — X2(S1): In this case, (A.8) does not depend on ;.

Therefore, we have shown that the last term in (A.7) is also increasing in n, and that condition
(1b) holds for U;, when conditions (2a-2c) hold for V;_;.

The rest of the cases are similar, and we omit the details. O.

We can now complete the proof of Theorem 2. To begin the successive approximation algorithm,
set Vp(n1,ng) = 0 for all ny,n,. Note that Vp satisfies conditions (2a-2f), therefore all U; and V;
successively computed using (A.2), (A.3), and (A.4) will satisfy (1a-1h, 2a-2f). By Theorem 2.2 of
Hernandez-Lerma [7], Ui(n1,n2,1) and U;(n1,n2,2) converge to U(ny,ng,1) and U(nq,n2,2) for the
average cost problem, and since they will satisfy conditions (1a) and (1e), the proof of Theorem 2

is complete.

Appendix B: The Heuristic of Fowler, Phillips, and Hogg

Fowler, Phillips, and Hogg [4] develop the NACHM heuristic for multiple job families under slightly
different assumptions than those of this paper. They consider the dynamic problem formulated in
Section 2, but with constant processing times, holding costs of one for all families, and knowledge
of future arrivals. Specifically, they assume that the time of the next arrival of each job family can
be predicted.

The decision logic of NACHM is separated into “push” decision logic and “pull” decision logic.
The “push” decision logic is called when a job arrives and the machine is free. In this case, NACHM
only considers the arriving job family in determining whether or not to start a batch. If the arriving

job is of family j, the decision is to idle until the next arrival if
ny X Ty < 1/p; = Tj (B.1)

where n; is the number of jobs of type j currently in queue, T; is the time until the next arrival of
type j, and 1/p; is the constant processing time for family j. (B.1) holds when the delay caused
by idling for those lots already waiting in queue is less than the waiting time saved for the next

arriving job. If (B.1) does not hold, a batch of family j is started at the present time.
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The “pull” decision logic is called when the machine completes a service. If there is a full load
(a batch which equals the machine capacity) of at least one job family available at this time, a
Weighted Shortest Processing Time (WSPT) scheme is used to select among those products with a
full load. The value

< > ni) - n,) X~ (B.2)

]
is calculated for each family j with a full load, and the family with the minimum value of W; is

selected for service.

When no full loads are available, (B.1) is first used for each job family to determine whether it
is better to start a batch of that family now or idle until the next arrival. If (B.1) holds for all job
families, then the decision is to idle. If (B.1) does not hold for each family, the WSPT scheme of
(B.2) is used to select which family to start. Finally, if (B.1) holds for some families but not for
others, the total delay D; caused by following the course of action suggested by (B.1) is calculated
for each job family over the horizon 1/p;. For those families for which (B.1) does not hold,

D;= ._lf.:#'(ni/uj) + lemaX{O, 1/p; - To}. (B.3)

For those families for which (B.1) holds,

DJ'— (ni xT5) + E ((ni/p;) + max{0,1/p; + T; — T;}). (B.4)
=1 1=1,4#5

The job family with the minimum value of D; is selected, and the action suggested by (B.1) (i.e.
idle if it holds, begin service if it does not hold) is taken.

We extended NACHM to be able to use it under the more general assumptions of this paper. The
modified version MNACHM is obtained from NACHM by simply substituting the expected service
time E[S;] for the constant processing time 1/p;, and by multiplying all waiting time expressions

by the appropriate holding cost. Equations (B.1) through (B.4) become

¢ xni X Tj < ¢(E[S;]-T;) (B.5)
W; = ((4:{‘1 ciny) —Cj"j) x E[S;] (B.6)
D; = 1_2;¢J(c,n,E[S ])+Ec, max{0, E[S;] - T} (B.7)

D; = i(cmiTj) +
,._%‘(“‘”"E[Sf” + cimax{0, E[S;] + T; - T3)) (3
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