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Abstract. In this article, we formulate a semiparametric model for counting processes in which the effect of

covariates is to transform the time scale for a baseline rate function. We assume an arbitrary dependence

structure for the counting process and propose a class of estimating equations for the regression

parameters. Asymptotic results for these estimators are derived. In addition, goodness of fit methods for

assessing the adequacy of the accelerated rates model are proposed. The finite-sample behavior of the

proposed methods is examined in simulation studies, and data from a chronic granulomatous disease

study are used to illustrate the methodology.
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1. Introduction

In many medical and scientific studies, subjects can experience recurrent or repeated
events during follow-up. Examples of recurrent events include transient ischemic
attacks in subjects with epilepsy, repeated opportunistic infections in HIV-infected
subjects, and warranty claims in actuarial studies. Other areas in which recurrent
events occur include sociology and reliability engineering. In these studies, the
investigators are often interested in assessing the effects of covariates on certain
features of the recurrent events process.
The majority of the work in the analysis of recurrent failure time data has focused

on the counting process model of Andersen and Gill (1982). In their proposal, a
nonhomogeneous Poisson process structure is assumed for the recurrent events;
dependence between recurrent events is modelled using time-varying covariates. The
Andersen–Gill model in the original paper specifies the effects of time-varying co-
variates on the intensity function of the process.
In the case of external covariates (Kalbfleisch and Prentice, 1980, Chapter 5.2.1),

the Andersen–Gill model has been generalized to a proportional rates regression
model by other authors (Pepe and Cai, 1993; Lawless et al., 1997; Lin et al., 2000).
While there is a conditioning on history in the intensity-based model, there exists no
such conditioning for the rate model. In the proportional rates models, the effect of
covariates is multiplicative on the rate function, which often is of interest in many
scientific settings (Wang et al., 2001). The rate function of a counting process is the
first derivative of the mean function, which has been the quantity most often
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modelled in regression settings for recurrent events data (Lawless and Nadeau, 1995;
Lin et al., 1998; Lin et al., 2001). However, there are instances in which the
assumptions here may not be valid or that the rate function is directly of interest.
This motivates the need to consider alternative regression models for the analysis of
recurrent failure time data.
One class of models which have been developed in many contexts is

time-transformation models. In this framework, all subjects have similar trajecto-
ries, and the effect of covariates is to alter the time scale of the trajectories. Al-
though these models have been studied for univariate survival data (Cox and
Oakes, 1984, Chapter 5; Chen and Wang, 2000) and mean functions of recurrent
failure time data (Lin et al., 1998), no such work has been developed for rate
modelling in the context of recurrent failure time data. In this paper, we propose a
model for arbitrary counting processes in which the effect of covariates is to
change the time scale for a baseline rate function. This function will be left
unspecified so that the model will be semiparametric; this model will be referred to
as the accelerated rates model. It is related to the accelerated hazards model for
univariate survival data studied by Chen and Wang (2000); we later discuss the
connection between the two. We will assume an arbitrary dependence structure for
the recurrent events process and develop procedures based on estimating equations
for the regression parameters in the model using estimating equations. Asymptotic
properties of the resulting estimators are derived; the proofs of the results are
deferred to the Appendix. In Section 3, we also develop goodness of fit statistics
for checking the adequacy of the accelerated rates model. In Section 4, we examine
the finite-sample properties of the proposed methodology through simulation
studies and application to data from a chronic granulomatous disease study. We
conclude with some discussion in Section 5.

2. Model and inference procedures

Let N�ðtÞ denote the number of recurrences that occur in the absence of censoring
in ½0; t� and letZdenote a p�vector of external (Kalbfleisch andPrentice, 1980,Chapter
5.2.1) covariates. Define dlðtjZÞ � EfdN�ðtÞjZg and dl0ðtÞ ¼ EfdN�ðtÞjZ ¼ 0g. The
model we propose for the analysis of recurrent events is given by

dlðtjZÞ ¼ dl0ðeb
T
0ZtÞ; ð1Þ

where b0 is a vector of unknown regression coefficients, and aT is the transpose of the
vector a. We refer to (1) as the accelerated rates model for counting processes. The
effect of covariates in this model is to expand or contract the time scale of the baseline
rate function, depending on the sign of b0. Typically, we leave dl0ð�Þ unspecified so
that (1) is a semiparametric model. Because N�ðtÞ is increasing in t, we have that
dl0 � 0. If N�ðtÞ is a simple counting process (i.e., can only take a value of 0 or 1),
then (1) reduces to a version of the accelerated hazards model studied by Chen and
Wang (2000) for independent survival data. It is also important for l0ðtÞ to not be
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constant, or else b0 will be nonidentifiable. This is one of the regularity conditions
assumed in the theoretical derivations in the Appendix.
In order to highlight the difference between this model with the AFT model for

counting processes of Lin et al. (1998), it is necessary to consider the model for the
mean function of the point process induced by (1). Simple integration yields the
following model:

lðtjZÞ ¼ l0ðeb
0
0ZtÞe�b00Z;

where lðtjZÞ ¼ EfN�ðtÞjZg. Inspection shows that this models differs from the AFT
model of Lin et al. (1998) by a factor of e�b00Z. Thus, formulation of covariate effects
through model (1) induces a model for the mean function of the point process that is
more complicated than the AFT model.
Let C denote the censoring time. Because of censoring, it is impossible to observe

N�ð�Þ. Rather, we observe fNið�Þ;Ci;Zig; i ¼ 1; . . . ; n, a random sample from
fNð�Þ;C;Zg, where NðtÞ ¼ N�ðt ^ CÞ and a ^ b is the minimum of a and b. If Tik is
the time to the kth event for the ith subject ði ¼ 1; . . . ; n; k ¼ 1; 2; . . .Þ, then it is easy
to see that

N�
i ðtÞ ¼

X1
k¼1

IðTik � tÞ;

and

NiðtÞ ¼
X1
k¼1

IðTik � t ^ CiÞ:

Let us define

N�
i ðt; bÞ ¼

X1
k¼1

IðTike
bTZi � tÞ;

Yiðt; bÞ ¼ IðCie
bTZi � tÞ, and ~Niðt; bÞ ¼ N�

i ðt ^ Cie
bTZi ; bÞ; ði ¼ 1; . . . ; nÞ. It then fol-

lows that EfN�
i ðt;b0Þg ¼ EfN�

i ðte�bT0ZiÞg; in view of this fact and model (1), we have
that

EfN�
i ðt; b0Þg ¼ l0ðtÞe�bT0Zi : ð2Þ

By (2), for i ¼ 1; . . . ; n,

Miðt; bÞ ¼
Z t

0

Yiðs; bÞdfN�
i ðs; bÞ � l0ðsÞe�bTZig

¼ ~Niðt; bÞ �
Z t

0

Yiðs; bÞe�bTZi dl0ðsÞ ð3Þ

are mean-zero processes when b ¼ b0. Since eb
TZi ði ¼ 1; . . . ; nÞ is constant with

respect to time, we can multiply both sides of (3) by it and still preserve the zero
mean structure of the processes. This motivates the following class of estimating
functions for b0
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UðbÞ ¼
Xn
i¼1

Z 1

0

Wðt; bÞfZi � �Zðt; bÞgebTZi d ~Niðt; bÞ; ð4Þ

where Wðt; bÞ is a bounded weight function that converges in probability to a
function wðtÞ and �Zðt; bÞ ¼

Pn
j¼1 Yjðt; bÞZj=

Pn
j¼1 Yjðt; bÞ. Since UðbÞ is a discrete

function of b, we define bb to be the zero-crossing from setting (4) equal to zero.
Various methods of solving this equation exist, such as bisection (Press et al., 1992)
or simulated annealing (Lin and Geyer, 1992). Given b̂, an Aalen–Breslow type
estimator of l0ð�Þ is given by bl0ðt; bbÞ, where

bl0ðt; bÞ ¼Xn
i¼1

Z t

0

eb
TZi d ~Niðs; bÞPn
j¼1 Yjðs; bÞ

:

The baseline rate function dl0ð�Þ in (1) can then be computed using nonparametric
regression techniques in a manner similar to estimation of the hazard function
(Ramlau-Hansen, 1983). We briefly describe this kernel estimation procedure in the
appendix.
We note that in (4), there is a weight function that needs to be specified. Ideally,

we would choose Wðt; bÞ to minimize the variance of UðbÞ. However, it does not
appear possible to derive an optimal weight without specification of the depen-
dence structure on the increments of N�ðtÞ. Therefore, we suggest two possible
choices for W. The first option is to take Wðt; bÞ � 1, which we term the log-rank
weight function. The second choice of a weight function is Wðt; bÞ �
n�1

Pn
i¼1 Yiðt; bÞ, which is called the Gehan weight function. The performance of

these weight functions is explored later in the simulation studies and in the
numerical application.
For i ¼ 1; . . . ; n, let bMiðt; bÞ ¼ ~Niðt; bÞ �

R t
0 Yiðs; bÞe�bTZi dbl0ðs; bÞ. Assuming cer-

tain regularity conditions, we prove in Appendix B.1 that n�1=2Uðb0Þ converges in
distribution to a normal distribution with mean zero vector and a covariance matrix
that can be consistently estimated by VðbbÞ, where

VðbÞ ¼ n�1
Xn
i¼1

QiðbÞQT
i ðbÞ;

and QiðbÞ ¼
R1
0 Wðt;bÞfZi � �Zðt; bÞgebTZi d bMiðt; bÞ ði ¼ 1; . . . ; nÞ. It is also shown

there that n1=2ðbb� b0Þ converges in distribution to a normal random vector with
mean zero and variance matrix A�1VA�1, where V ¼ limn!1 VðbbÞ and

A ¼
Z 1

0

wðtÞE½Y1ðt; b0ÞfZ1 � �zðtÞg�2e2b
T
0Z1 �df _l0ðtÞtg;

with �zðtÞ ¼ limn!1 n�1 �Zðt; b0Þ, _l0ðtÞ ¼ dl0ðtÞ=dt and a�2 ¼ aaT. In Appendix B.2,
we prove that n1=2fbl0ðt; bbÞ � l0ðtÞg converges weakly to a mean-zero Gaussian
process with covariance function
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nðt;sÞ¼E

Z t

0

eb
T
0Z1dM1ðu;b0Þ
EfY1ðu;b0Þg

þ cTðtÞA�1

Z 1

0

wðuÞfZ1��zðuÞgeb
T
0Z1dM1ðu;b0Þ

" # 

	
Z s

0

eb
T
0Z1dM1ðu;b0Þ
EfY1ðu;b0Þg

þ cTðsÞA�1

Z 1

0

wðuÞfZ1��zðuÞgeb
T
0Z1dM1ðu;b0Þ

" #!
;

where cðtÞ ¼ �
R t
0
�z�ðuÞdf _l0ðuÞug and

�z�ðuÞ ¼ lim
n!1

n�1
Xn
i¼1

eb
T
0ZiZiYiðu; b0ÞPn
j¼1 Yjðu; b0Þ

:

Based on this result, we see that estimating A requires an estimate for the derivative
of dl0ð�Þ. Because such density-type estimation tends to be numerically unstable, the
resulting variance estimator will also be unreliable. In order to perform variance
estimation for bb, we use a device from Parzen et al. (1994). We fix fNið�Þ;Ci;Zig
ði ¼ 1; . . . ; nÞ and solve the following set of equations for b�

Uðb�Þ ¼ �
Xn
i¼1

QiðbbÞGi; ð5Þ

where fG1; . . . ;Gng are n iid Nð0; 1Þ random variables. Note that in (5), the only
stochastic components are the fGig. We generate fG1; . . . ;Gng many times and solve
for bb� each time. In Appendix B.3, we prove that the distribution of n1=2ðbb� � bbÞ,
conditional on fNið�Þ;Ci;Zi; i ¼ 1; . . . ; ng is asymptotically equivalent to the
unconditional distribution of n1=2ðbb� b0Þ. Hence, confidence intervals for b0 can be
constructed using the empirical distribution of bb�.
3. Goodness of Fit Methods

As with any regression model, it is important to develop model checking methods for
assessing the adequacy of (1). We propose the use of the following cumulative sums
of residuals

Uoðt; bÞ ¼
Xn
i¼1

Zie
bTZi bMiðt; bÞ: ð6Þ

If the accelerated rates model (1) holds, then these processes will fluctuate ran-
domly about zero. Similar types of processes were considered by Wei (1984) and Lin
et al. (1993) in other contexts. In Appendix B.4, we prove that the null distribution of
n�1=2Uoðt; bbÞ converges weakly to a Gaussian process and is asymptotically equiv-
alent to that of n�1=2U�

oðtÞ, where

U�
oðtÞ ¼

Xn
i¼1

Z t

0

Zi � �Zðu; bbÞn o
e
bbTZi d bMiðu; bbÞGi þ fUoðt; bb�Þ �Uoðt; bbÞg;

and b� is defined as in (5).
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Using this result, we can approximate the null distribution of n�1=2Uoðt; bbÞ by
simulation. We plot both n�1=2Uoðt; bbÞ and a set of K realizations from n�1=2U�

oðtÞ,
the simulated realizations from the null distribution. In the examples considered
here, we take K ¼ 20. If the path of the process for the observed data is more extreme
than those of the simulated processes, it suggests that the model fit (1) is not ade-
quate. More formal tests can be constructed based on the Kolmogorov–Smirnov
type statistic supt jn�1=2Uoðt; bbÞj. As in Lin et al. (1993), we can compare
supt jn�1=2Uoðt; bbÞj to supt jn�1=2U�

oðtÞj for K simulated realizations. We can then
compute a p-value using the simulated processes. Our experience has shown that
using K ¼ 1000 seems to work well.

4. Numerical Results

4.1. Simulation Studies

To assess the finite-sample properties of the proposed methods, extensive numerical
studies were conducted. We considered sample sizes n ¼ 50 and 100. Our primary
interest was in assessing the robustness of the estimators with respect to the corre-
lation between the recurrent event times. Gap times between recurrences were gen-
erated from the following model

kðtjZ;wÞ ¼ wk0ðteb0ZÞ;
where w is a gamma random variable with mean 1 and variance r2, Z is a 0=1
treatment indicator (0 for placebo, 1 for treatment), and k0ðxÞ ¼ x2. Because
kðtjZ;wÞ ¼ EfdN�ðtÞjZ;wg, by the law of iterated expectation, EfdN�ðtÞjZg ¼
E½EfdN�ðtÞjZ;wg� ¼ k0ðteb0ZÞ; which is of the form (1). When r2 ¼ 0, recurrent
events within an individual are independent; nonzero values of r2, on the other hand,
induce correlation between recurrences.
For each simulation study, we considered r2 ¼ 0; 1:0; 2:0 and 4:0. We compared

the estimators of b0 using the log-rank and Gehan weight functions. For each
simulation setting, 1000 simulation samples were considered, and 1000 resamplings
were generated for each simulation sample.
For the results reported here, we took b0 ¼ �0:5. Thus, the effect of treatment is a

rightward shift in the rate function for subjects on treatment by a factor of
expð0:5Þ ¼ 1:6 relative to the rate function for the subjects on placebo. Independent
censoring was generated using both a uniform ð0; 5Þ and a uniform ð0; 15Þ random
variable. Across the settings described, an average of 2:3 recurrences per individual
were observed for the first scenario and 4:4 recurrences per individual for the second.
For coverage probabilities, we will consider those based on the 95% Wald confi-
dence interval, as well as those based on the empirical distribution of b�. These
results are summarized in Table 1.
Based on Table1, we find that the estimators tend to have reasonable small-sample

behavior. There is virtually no bias in the estimator of b0 for the sample sizes and
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correlations considered. The Wald confidence intervals tend to be slightly anticon-
servative in smaller samples, but this behavior diminishes for larger sample sizes. The
confidence intervals based on the empirical distribution of b� tend to behave better
for the sample sizes considered.
In the simulations, the choice of weight functions did not seem to have much effect

on the variance of b0. This trend held true for the other simulation scenarios we
considered. More work needs to be done in investigating the efficiency of the pro-
posed procedures.

4.2. Chronic Granulatomous Data

We now give an example of the proposed methods to data from a chronic granu-
lomatous disease (CGD) study previously analyzed by Therneau and Hamilton
(1997). The study was a randomized clinical trial in which patients with CGD were
randomized to either placebo or interferon-gamma (rIFN-g). The goal of the study
was to assess the efficacy of rIFN-g in reducing the frequency of serious infections in
CGD patients. There were 128 patients randomized in the study; 65 patients received
rIFN-g, and 63 received placebo. There were 20 infections in the rIFN-g arm, while
there were 55 infections among patients in the placebo group. In Table 2, we sum-
marize the recurrent events data by treatment group.
We now analyze the recurrent events data using treatment as the only covariate in

the model (1). The results of the two-sample comparison using the log-rank and
Gehan weight functions are given in Table 3. We find that the effect of treatment on
the rate of recurrent infection is significant. Based on the log-rank weight function,

Table 1. Summary of simulation results for b0 in model (1) with b0 = )0.5.

Log-rank weight Gehan weight

n r2 s Bias SE SEE CP CP* Bias SE SEE CP CP*

50 0 5 )0.01 0.36 0.3 0.91 0.96 0.01 0.35 0.31 0.92 0.97

15 0.00 0.25 0.21 0.92 0.95 )0.01 0.24 0.21 0.91 0.96

1 5 )0.02 0.46 0.42 0.92 0.97 )0.01 0.47 0.43 0.93 0.97

15 )0.02 0.35 0.34 0.93 0.95 )0.01 0.34 0.33 0.93 0.95

4 5 )0.01 0.5 0.45 0.92 0.96 0.00 0.49 0.45 0.92 0.97

15 0.01 0.38 0.35 0.93 0.96 0.01 0.38 0.34 0.93 0.96

100 0 5 )0.01 0.25 0.24 0.94 0.95 0.01 0.24 0.22 0.94 0.94

15 )0.01 0.18 0.17 0.95 0.94 0.00 0.17 0.16 0.95 0.94

1 5 0.00 0.33 0.31 0.94 0.95 )0.01 0.33 0.32 0.95 0.95

15 0.01 0.25 0.24 0.95 0.94 )0.01 0.25 0.24 0.94 0.95

4 5 0.00 0.35 0.33 0.94 0.95 0.00 0.35 0.34 0.95 0.95

15 0.01 0.27 0.26 0.95 0.95 0.01 0.28 0.26 0.94 0.94

Note: Bias is the mean of the estimators of b0 minus b0; SE: the standard error of the estimators of b0;
SEE: the mean of the standard error estimate; CP: the coverage probability of the Wald 95% confidence

interval, and CP*: the coverage probability of the 95% confidence interval based on the empirical

distribution of b*. Independent censoring was generated using a uniform (0, s) random variable.
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this effect is estimated to be expð�0:64Þ ¼ 0:53, while the Gehan weight function
yields an estimated treatment effect of expð�0:79Þ ¼ 0:45. The interpretation of this
estimate is that use of rIFN-g is associated with a contraction in the time scale for
rate of infection by a factor of expð0:64Þ ¼ 1:9 or expð0:79Þ ¼ 2:2, depending on the
weight function used. By comparison, using the transformation model of Lin et al.
(2001) yields a treatment effect of �0:271, and the proportional means model gives a
treatment effect of �1:10 (Therneau and Hamilton, 1997). All of the estimated
treatment effects are significant. Both of these results suggest that treatment is
leading a decrease in mean occurrences of infections.
The analysis is now repeated using both treatment and age in the model. These

results are also given in Table 3. While age is a statistically significant predictor of the
rate of recurrences, it does not appear to be much of a confounder of the treatment
effect. We also tested for an interaction between treatment and age, but it was found
to be nonsignificant (P > 0:2).
The model checking techniques are now applied in order to assess the adequacy of

(1). We only show the analyses for the model with both covariates in the model.
Similar results hold for the two-sample comparison. The graphs of the cumulative
sum processes are given in Figures 1 and 2. Based on visual inspection, it does not
appear that there are any violations of the model with respect to treatment and age.
The p-values using Kolmogorov–Smirnov statistics for treatment and age, based on
10000 resamplings, are 0.475 and 0.543, respectively.

Table 2. Summary of recurrent infection experiences in CGD study, stratified by treatment arm.

No. of recurrent infections

Treatment 0 1 2 �3 Total

Placebo 35 19 4 7 55

rIFN-g 49 9 4 1 20

Table 3. Summary of regression analyses of recurrent infection data for subjects with chronic

granulomatous disease.

95% Confidence Intervals

Weight function Covariate Coefficient SE Resampling Wald

Gehan Treatment only )0.79 0.36 ()1.99, )0.21) ()1.49, )0.08)
Treatment )0.80 0.28 ()1.82, 0.30) ()1.34, )0.25)
Age )0.024 0.001 ()0.026, )0.021) ()0.026, )0.021)

Log-rank Treatment only )0.64 0.33 ()1.91, )0.17) ()1.28, 0.01)
Treatment )0.64 0.26 ()1.63, )0.26) ()1.14, )0.13)
Age )0.018 0.001 ()0.022, )0.017) ()0.019, )0.016)

Note: treatment is coded for placebo and 1 for rIFN-g. SE: standard error computed from empirical

distribution of b*; resampling: 95% confidence interval is the 95% confidence interval based on the

empirical distribution of b* (10,000 resamplings).
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5. Remarks

We have assumed throughout the paper that the covariates Z are time-invariant. In
some applications, it might be of interest to use time-varying covariates in the model.
An obvious extension of (1) in this case would be

dlftjZðtÞg ¼ dl0feg
T
0
ZðtÞg; ð7Þ

where dlftjZðtÞg ¼ EfdN�ðtÞjZðsÞ : 0 � s � tg. However, the estimation procedure
described in the paper cannot be extended in a straightforward manner to incor-
porate time-varying covariates. Thus, it would be of interest to develop estimation
procedures for model (7).
It should be noted that while much of the estimation is related to that suggested by

Lin et al. (1998), our model is fundamentally different from theirs, as explained in
Section 2. We are positing a regression model for the derivative of the quantity
suggested by Lin et al. (1998).
Another assumption that has been made here is that the only censoring present is

independent, i.e., due to random loss to followup or end of the study. However, it is
quite plausible that in medical studies involving serious recurrent events, there may
be dependent censoring due to patient withdrawal or death. It would be of interest to
extend procedures for the accelerated rates model to handle these problems.
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Figure 1. Standardized score process for assesing goodness of fit of the treatment covariate in regression

model (1) with treatment and age as covariates. The solid line represents the observed process, while the

dotted line represents 20 simulated realizations from the null distribution.
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The resampling method for constructing confidence intervals and goodness of fit
method can be computationally intensive for simulation purposes, but for a given
analysis, the computation requirements are relatively moderate. Recently, Jin et al.
(2003) have developed some fast computing algorithms for the AFT model with
univariate survival data. It should be possible to adapt their algorithms to our model
as well.
The issue of efficiency has only been touched on briefly. While the form of the

estimating equations is similar to those for the univariate accelerated failure time
model (Prentice, 1978; Wei et al., 1990), there has been no formal study done here
examining potential efficiency loss. In addition, it is of interest to determine situa-
tions in which use of the Gehan weight function would lead to greater efficiency
relative to the log-rank weight function, and vice versa. It would also be useful to
derive other types of weight functions.
Finally, the times of the recurrences were assumed to be known exactly if they are

observed. However, there are situations in which the recurrent events are not exactly
observed. What is known is the number of recurrences since the subject’s last visit;
this type of data is known as panel count data (Lawless and Zhan, 1998; Sun and
Wei, 2000). It would be desirable to extend the accelerated rates model to handle
panel count data.
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Figure 2. Standardized score process for assesing goodness of fit of the age covariate in regression model

(1) with treatment and age as covariates. The solid line represents the observed process, while the dotted

line represents 20 simulated realizations from the null distribution.
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Appendix A: Kernel Estimation of the Rate Function dl0(�)

Let us first consider the one-sample estimation problem of lðtÞ ¼ EfN�ðtÞg. A well-
known estimator of lðtÞ is given by the Nelson–Aalen estimator:

blðtÞ ¼Xn
i¼1

Z t

0

dNiðuÞPn
j¼1 YjðuÞ

;

where NiðtÞ ¼ Niðt; 0Þ and YiðtÞ ¼ Yiðt; 0Þ ði ¼ 1; . . . ; nÞ. Then using arguments
similar to those in Ramlau-Hansen (1983), an estimator for the one-sample rate
function mðtÞ ¼ dlðtÞ is given by

bmðtÞ ¼ h�1

Z 1

0

K
t� u

h

� �
dblðuÞ; ð9Þ

where h is the bandwidth and KðzÞ is a kernel function. The estimator of dl0ðtÞ in
model (1) follows by replacing blðtÞ in (9) by bl0ðt; bbÞ.
Appendix B: Proofs of Asymptotic Results

B.1. Asymptotic Normality of bb and U(b0) and Consistency of V(bb)
We first impose the following regularity conditions

(i) For i ¼ 1; . . . ; n, Ni and Zi are bounded;
(ii) ðN�

i ;Ci;ZiÞ ði ¼ 1; . . . ; nÞ are independent and identically distributed random
vectors;

(iii)W has bounded variation and converges almost surely to a continuous func-
tion w;

(iv) For i ¼ 1; . . . ; n, Ciðb0Þ has a bounded density and l0 has a bounded second
derivative;

(v) l0ð�Þ is not constant on ½0;1Þ.

Conditions (i)–(iv) are the same as those made in the appendix of Lin et al.
(1998). Condition (v) is needed here in order to ensure that b0 will be well-
defined. These regularity conditions will be assumed throughout the rest of the
Appendix.
Before proving the asymptotic normality of the estimated regression coefficient, we

first prove the weak convergence of n�1=2Uðb0Þ. Define
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n�1=2Uðb0; tÞ :¼ n�1=2
Xn
i¼1

Z t

0

Wðs; b0ÞfZi � �Zðs; b0Þgeb
T
0Zi d ~Niðs; b0Þ:

Using arguments similar to those in the proof of Theorem 1 of Lin et al. (1998), we
can show that n�1=2Uðb0; �Þ converges weakly to a Gaussian process with mean zero
and covariance function

Vðt1; t2Þ ¼ E

Z t1

0

wðsÞfZ1 � �zðsÞgeb
T
0Z1dM1ðs; b0Þ

Z t2

0

wðsÞfZ1 � �zðsÞgT
�
	eb

T
0Z1dM1ðs; b0Þ

i
:

Note that V ¼ Vð1;1Þ. As an intermediate result, we have that
n�1=2Uðb0Þ :¼ n�1=2Uðb0;1Þ converges in distribution to a normal random variable
with mean zero vector and covariance matrix V.
It then follows from the arguments in Ying (1993) that under conditions (i)–(v),

sup
kb�b0k�dn

fkUðbÞ �Uðb0Þ þ Anðb� b0Þk=ðn1=2 þ nkb� b0kÞg ¼ oPð1Þ; ðA1Þ

almost surely for any sequence dn ! 0.
Let uðbÞ denote the limit of n�1UðbÞ, and let CR � CRðb0Þ be a compact neigh-

borhood of b0. It is easy to show that n�1UðbÞ converges uniformly to uðbÞ on CR. If
uðbÞ 6¼ 0 for all b 2 CRnfb0g, then by arguments in the proof of Theorem 4 of Ying

(1993), bb ! b0 almost surely. In addition, if A is nonsingular, then by definition of bb
and two applications of ðA1Þ,

n1=2ðbb� b0Þ ¼ A�1n�1=2Uðb0Þ þ oPð1Þ: ðA2Þ
This implies the asymptotic normality of bb and proves the weak convergence of
n1=2ðbb� b0Þ.
Using arguments similar to those in the proof of Theorem 3 of Lin et al. (1998), we

can show that if conditions (i)–(v) hold, then for any byn that converges to b0,
Vðbyn Þ ! V. This implies the consistency of VðbbÞ.
B.2. Weak Convergence of bl0(t)
By arguments analogous to those in Appendix B.1., we can derive an expression
resembling ðA1Þ for bl0, i.e.,

sup
kb�b0k�dn;t2½0;s�

kn1=2fbl0ðt; bÞ � bl0ðt; b0Þg � cTðtÞn1=2ðkb� b0kÞk ¼ oPð1Þ; ðA3Þ

for all dn ! 0 and for s such that lim n�1
Pn

i¼1 Yiðs; b0Þ > 0. Combining ðA1Þ and
ðA3Þ yields that

n1=2fbl0ðt; bbÞ � l0ðtÞg ¼ n1=2fbl0ðt; b0Þ � l0ðtÞg þ cTðtÞA�1n�1=2Uðb0Þ þ oPð1Þ;
ðA4Þ
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uniformly in ½0; s�. Using techniques as those in Appendix B.1., we can write

n1=2fbl0ðt; b0Þ � l0ðtÞg ¼ n�1=2
Xn
i¼1

Z t

0

eb
T
0Zi dMiðu; b0Þ
EfY1ðu; b0Þg

þ oPð1Þ: ðA5Þ

Plugging ðA5Þ into ðA4Þ yields a representation of n1=2fbl0ðt; bbÞ � l0ðtÞg as a nor-
malized average of mean-zero iid terms. To be precise,

n1=2fbl0ðt; bbÞ � l0ðtÞg ¼ n�1=2
Xn
i¼1

WiðtÞ þ oð1Þ;

where

WiðtÞ ¼
Z t

0

eb
T
0Zi dMiðu; b0Þ
EfY1ðu; b0Þg

þ cTðtÞA�1

Z 1

0

wðuÞfZi � �zðuÞgeb
T
0Zi dMiðu; b0Þ:

The finite-dimensional convergence follows easily from the multivariate central limit
theorem. Since Wi ði ¼ 1; . . . ; nÞ are composed of monotone functions, the weak
convergence of n1=2fbl0ðt; bbÞ � l0ðtÞg for t 2 ½0; s� can be shown using results from
empirical process theory (Pollard, 1990; Van der Vaart and Wellner, 1996). Finally,
we can drop the tail restriction to s using arguments similar to those in Ying (1993).

B.3. Asymptotic Equivalence of n1=2 (bb� b0) and of n1=2 (bb� � bb)
Note that n�1=2Uðb�Þ ¼ �n�1=2

Pn
i¼1 QiðbbÞGi. We can use arguments similar to those

in the previous paragraphs to show that

n1=2ðbb� � bbÞ ¼ �A�1n�1=2
Xn
i¼1

QiðbbÞGi þ oPð1Þ:

It is easy to see that conditional distribution of the random vector n�1=2
Pn

i¼1 QiðbbÞGi

is normal with mean zero and covariance matrix VðbbÞ. Since VðbbÞ converges almost
surely to V, the conditional distribution of n1=2ðbb� � bbÞ is asymptotically equivalent
to the unconditional distribution of n1=2ðbb� b0Þ.

B.4. Asymptotic Equivalence of n�1=2U�
o(t) and n�1=2Uo(t; bb)

For i ¼ 1; . . . ; n, define Hiðt; bÞ ¼ eb
TZiMiðt; bÞ and bHiðt; bÞ ¼ eb

TZi bMiðt; bÞ. Taking a
Taylor series expansion about b0 and using arguments similar to those in the pre-
vious section, we can write n�1=2Uoðt; bbÞ as

n�1=2Uoðt; bbÞ ¼ n�1=2Uoðt; b0Þ � AðtÞA�1n�1=2Uðb0Þ þ oPð1Þ;

¼ n�1=2
Xn
i¼1

Z t

0

fZi � �zðuÞgdHiðu; b0Þ

� AðtÞA�1n�1=2
Xn
i¼1

Z 1

0

fZi � �zðuÞgdHiðu; b0Þ þ oPð1Þ;
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where AðtÞ is a deterministic matrix with Að1Þ ¼ A. Similarly, we can write
n�1=2U�

0ðtÞ as

n�1=2U�
oðtÞ ¼ n�1=2

Xn
i¼1

Z t

0

fZi � �zðuÞgGidHiðu; bbÞ
� AðtÞA�1n�1=2

Xn
i¼1

Z 1

0

fZi � �zðuÞgGidHiðu; bbÞ þ oPð1Þ:

Since we have expressed n�1=2Uoðt; bbÞ and n�1=2U�
oðtÞ as normalized averages of

independent and identically distributed terms, they both converge in finite dimension
to Gaussian processes with mean zero. The weak convergence of these processes
follows from results in empirical process theory. Using arguments similar to those in
Appendix 2 of Lin et al. (2000), we can show that the conditional distribution of
n�1=2U�

oðtÞ and the unconditional distribution of n�1=2Uoðt; bbÞ are the same.
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