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Abstract. We propose a profile conditional likelihood approach to handle missing covariates in the general
semiparametric transformation regression model. The method estimates the marginal survival function by the
Kaplan-Meier estimator, and then estimates the parameters of the survival model and the covariate distribution
from a conditional likelihood, substituting the Kaplan-Meier estimator for the marginal survival function in the
conditional likelihood. This method is simpler than full maximum likelihood approaches, and yields consistent
and asymptotically normally distributed estimator of the regression parameter when censoring is independent of
the covariates. The estimator demonstrates very high relative efficiency in simulations. When compared with
complete-case analysis, the proposed estimator can be more efficient when the missing data are missing
completely at random and can correct bias when the missing data are missing at random. The potential application
of the proposed method to the generalized probit model with missing continuous covariates is also outlined.
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1. Introduction

In survival analysis, covariate adjustments are often conveniently modeled by the Cox
proportional-hazards model, which assumes that the hazard rate of a subject with covariate
Z is \(¢) exp(3"Z), where X is the baseline hazard rate and 3 is a vector of parameters of
interest and Z is a p-dimensional vector. The Cox model can also be interpreted in terms of
a linear regression model between the transformed survival time and the covariate.
Specifically, let 7 be the survival time. Then the Cox regression model can be equivalently
written as

log{A(T)} = —f"Z +¢, (1)

where A is the cumulative baseline hazard and € has the extreme value distribution with
density exp(e—e°), or equivalently log € is an exponential random variable with unit mean
(Bennett, 1983; Cheng, Wei, and Ying, 1995; Murphy, Rossini, and Van der Vaart, 1997).

Alternatives to the Cox model are of interest when it does not produce a good fit to the
data. One way of generating alternative models is to replace log{A(-)} by an unspecified
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monotonic transformation function of the survival time and consider error distributions
other than the extreme value distribution for € in Equation (1). For example, parallel to the
simple linear regression model, the choice of the standard normal distribution yields the
generalized probit model. Another choice is the family of Pareto distributions (Clayton and
Cuzick, 1985; Dabrowska and Doksum, 1988) with distribution function

F(e) = 1= (1 47¢) 7,7 >0,

which generates the proportional gamma odds model. This family of models has an
interesting interpretation, namely, the gamma odds defined as [1—{pr(T>t | Z)} ]/
{pr(T>t | Z)}" are proportional across subjects with the proportional rates depending on
covariates only. An alternative interpretation of this family of models is the Cox regression
model with heterogeneity modeled by including unobserved gamma-distributed random
variables with mean 1 and variance . The model reduces to the Cox regression model
when v tends to zero and to the proportional odds model when v equals 1.

It is well known that maximizing the Cox partial likelihood (Cox, 1972, 1975) in the
proportional-hazards regression model will produce efficient estimates of the regression
parameters (Andersen and Gill, 1982; Begun et al, 1983). For censored data with fully-
observed covariates, the analogous partial likelihood exists for the semiparametric trans-
formation regression model (Dabrowska and Doksum, 1988), but it is much more compli-
cated to analyze in general. Methods for estimation of the regression parameters include
Monte-Carlo simulation to maximize the partial likelihood (Dabrowska and Doksum, 1988),
methods based on marginal rank (Pettitt, 1984; Clayton and Cuzick, 1985; Cuzick, 1988), the
estimating equation method (Cheng, Wei, and Ying, 1995), and the nonparametric maximum
likelihood method (Bennett, 1983; Murphy, Rossini, and Van der Vaart, 1997). We consider a
modification of these methods when covariates are not fully observed.

For the special case of the Cox regression model, methods for handling incomplete
covariates have been proposed by Lin and Ying (1993), Robins, Rotnitzky, and Zhao
(1994), Zhou and Pepe (1995), Wang et al (1997), Paik and Tsai (1997) based on the
modification of the partial likelihood, and Lipsitz and Ibrahim (1998), Chen and Little
(1999) based on the nonparametric likelihood. Because no closed-form partial likelihood is
available for the general semiparametric transformation model, methods based on the direct
modification of the partial likelihood are not straightforward to generalize. Methods based
on the nonparametric likelihood can in principle be generalized to the semiparametric
transformation regression model. However, the asymptotic properties of the estimates have
not been established in the missing-data setting and no closed form of the variance estimate
of the regression parameter exists in general. We propose a new profile conditional
likelihood approach to incorporate cases with incomplete covariates into the analysis when
censoring is independent of the covariates. In handling the functional parameter in the
conditional likelihood, the approach uses a strategy similar to the pseudo-likelihood method
proposed by Gong and Samaniego (1981) for the elimination of nuisance parameters in a
parametric model. This approach yields consistent estimates of the regression parameters
when the missing data are missing at random in the sense of Rubin (1976), see also Little
and Rubin (1987). When data are complete, the proposed method involves loss of
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efficiency when compared with some known fully efficient methods. However, the
simulation study reported in §3 suggests that the loss of efficiency is often minor. When
there are missing covariates, the proposed method can be more efficient and less biased than
fully-efficient methods applied to the subset of complete cases, particularly when the
fraction of incomplete cases is large.

The remainder of this paper is organized as follows. The basic idea of the maximum profile
conditional likelihood method is introduced in §2.1. The asymptotic theory of the proposed
estimator is established in §2.2. Extensive simulations of the efficiency of the proposed
methods are reported in §3. §4 discusses the special case of the normal transformation
regression model, which allows relatively easy handling of missing continuous covariates.

2. The Profile Conditional Likelihood Approach

Under the model (1), the survival time distribution conditional on the covariate can be
expressed as

pr(T >t | Z) =pr{e > logA(t) + B7Z | Z} = 1 — F{logA(t) + B'Z},

where F' is the distribution function of € and A is an unspecified monotonic transformation
function. The survival function depends on the unspecified monotonic transformation
function A, the regression parameter 3, and the error distribution function F known either
completely (e.g., in the Cox model) or up to a unknown parameter (e.g., in the gamma odds
model). For the remainder of this paper, we use 6 to denote 5 when F'is completely known
or both § and the unknown parameter associated with /' when F'is known up to an unknown
parameter. For notational simplicity, we rewrite the survival function in the following
general form.

pr(T >t | Z) = ${Z,0,A(1)}, (2)

where the functional form of ¢ is assumed known. It is easy to see that model (1) is a special
case of model (2). Theory development in the remainder of this section is directed to model
2).

Let C denote the censoring time whose distribution is denoted by G. Let X=min(7, C)
and 6 be the censoring indicator taking 1 when T'< C, 0 otherwise. We assume that the
distribution of C is independent of 7'and Z. Let (¢ denote the derivative of —¢ with respect
to the argument A. Suppose that the covariates Z follow a parametric distribution denoted
by H.(z), where y is a parameter of g-dimension. Covariates are subject to missing values.
Let e=(e', - -, e”) be any vector in R’ with components being 0 or 1. e also defines a
mapping from R” to subsets of R” in the following way,

e(Z)={z= (21, ",z,) :z; = Z; if & = 1; arbitrary if ¢’ = 0}

Let M denote the missing data indicator with the ith component taking the value 1 if the
corresponding component of Z is observed, 0 otherwise. Using the notation defined above,
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we can express the observed data in the form (M, Xj, 6,, M(Z,)), i=1,-- -, n. Letey," - -,
ex denote all possible missing data patterns. The likelihood for the observed data is

K n

H H{/ p(M =e; | Xi, 01, L = Z)p()(i, 6; | 7Z=1z20, A)dH,y(z)}l(Mi:ek)7
k=1 i=1 z€er(Z;)

where p(x, ¢ | z) is the density of the conditional distribution of (X, 8) given Z=z. Suppose
further that missing data are missing at random, which means that

P(M = € ‘)(héi?Zi) :p{M = € |)(i15i7ek(Zi)}a fOI‘ k = 17. . '7K'

As a result, the parts of likelihood describing the missing data mechanism and the
censoring mechanism can be dropped from the full likelihood. The remaining part can be
written as

K n

11 (/ (>[<P{Z,G,A(Xi)}]b"’[cb{z,9,A(Xz-)}]175"de(Z){dA(Xi)}é")”“f:““ (3)
1 Jzee(Z;

k=1 i=

For the proportional-hazards regression model, maximizing the likelihood (3) with respect
to (A, A) was proposed by Chen and Little (1999). We take a different approach here. The
basic idea is first to transform the parameters (@, v, A) into (6, v, R), where R denotes the
marginal survival function without covariate. The likelihood for the new set of parameters
can be expressed as the product of the conditional likelihood of e, (Z) given (X, ), which
contains all the information about (6, v) and a small amount of information about R, and
the marginal likelihood of (X, ), which contains most information about R. We then
estimate R by the Kaplan-Meier estimator based on the marginal survival data (X;, §;),
i=1,--, n, i.e., ignore the part of information about R contained in the conditional
likelihood, and estimate (#, ) by maximizing the conditional likelihood of ex(Z) given (X,
0) with R replaced by the Kaplan-Meier estimate. We call the latter procedure the profile
conditional likelihood method.

Specifically, consider the following parameter transformation from (6, 7, A) to (6, 5, R)
such that

R(t) = [ ¢{z,0,A(1)}dH,(z)

Under weak conditions, the inverse transformation

A(t) = v{6,% R(1)}
exists and we have

0= [z oamam .
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Rewriting the likelihood (3) under the new set of parameters (with ~ dropped from the
transformed parameters for notational simplicity):

L(ea e R) = Ll (01 Y, R)L2 (R)

WhereLl (95 s R) = Hf:] H?:] Ln{ek(zi) | )(i7 6!'7 v 07 R}] I{M[:e/(} andp{ek (Zl) | )(h 6i7 v, 07 R}
is

fzeek(Z;) SO[Z, 07 v{9, 7; R()(i)}]dH’Y(Z))(S,-(‘/;eek(Zf) ¢[Za 07 V{ev ’77 R()(t)}]dH’y(Z)

=6
[ 12,0.v{0, 7, RCG) ., @) RCY) "

(

and

L(R) = [ R (X){dR(X)}".
i=1

The likelihood L consists of two parts. The first part L, is the conditional likelihood of
observed covariates given the follow-up time and the censoring indicator. The second part
L, is the marginal likelihood of R given (X, §). Maximizing this second part with respect to
R gives us the Kaplan-Meier estimator R based on data (X, &). The properties of the
Kaplan-Meier estimator have been extensively studied. We will concentrate on studying
the estimate of (6, +) obtained by maximizing L; (6, 7, R).

Maximizing L; with respect to (6, y) is a routine calculation. In particular, the EM algorithm
(Dempster, Laird, and Rubin, 1977) can be applied to simplify the computations. Note that

K n
lOg L, (9773R) = Z 2 I{M;:ek}(E {lng (Zl |)(i76ia 93VvR)‘ek(Zi)v)(iv61"9*77*)R*}
k=1i=1

_E[logp {Zi|ek(Zi))X}76ia 6: ’YaR}lek(Zi)’)(i: 61”9*:7*513*}])'

Given 6* and *, by fixing both R and R* at R, we can iteratively maximize the first part of
the right-hand side of the equation to obtain the maximum profile conditional likelihood
estimator. In order to actually carry out the maximization, we need to find (a) the conditional
likelihood score equations for (6, v, A) under full data and their expectations conditional on
the observed data, (b) the derivatives of v(@, ~y, R) with respect to (6, ). For (a), analytical
integration is preferred when it is possible. Otherwise, numerical integration can be used.
For (b), we can obtain the derivatives analytically by the chain rule for an implicit function.
v in the derivative expression can then be replaced by the closed-form solution when it
exists; see next section for an example. When no closed-form solution is available, we can
solve for v from the transformation expression with (6, ) fixed at current estimates.

The large sample behavior of the proposed estimator can be characterized in the
following theorems. To avoid technical complications in the discussion of the asymptotic
properties of the estimator, we maximize

K n
TTTTiplec2)] X616, RY) veoms
k=1 i=1
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instead of L(6, 7, R), where 1> Ro(a)> Ro(b)> 0. R, is the true marginal survival function
of T. Because of the conditional likelihood we use, this modification represents little
change of the profile conditional likelihood. Proofs of the theorems are postponed to the
appendix.

Theorem 1 Under conditions specified in the appendix, the maximum profile conditional
likelihood estimate & of o= (0, ~) is strongly consistent and asymptotically normally
distributed, that is,

Vn(a— ap) — N(0,%)
where v is the true parameter and
Y=A4"'447"'B47",

where

2

K
A= _E{Z l{aSXSb,M:ek} %log p(ek(Z) | X7 67 O[(),R())},
k=1
T 1 T - _
B= /0 {m / w(X, 6)Ro(X)dP(X, 6)}**G (u)dRo (1),

82
w(X,8) =E[Y Vosxsom-e} 555108 Pled(Z) [ X, 6, 00, Ro} | X, 8],
= aOR
P(x, 8) is the distribution function of (X, 6). T > b such that pr(X>1)> 0.
Theorem 2 The asymptotic variance of the maximum profile likelihood estimate can be
consistently estimated by A~ '+ A~ 'BA !, where
2

K n
. 1 0 -
4=~ ;;Zl 1{a§)(,-§b‘M,-:ek} Wlog P{ek(Zi) | Xi, 6i, &, R}
=

and

with

K
) 1 5 0 -
k(u) = Z; . l{Xlzu}R()(l) AR 1Og p{ek(Zi) | Xvivéha >R1}{Mi:ek,a§)(,§b}'
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3. Simulation Study of the Properties of the Proposed Estimator

Note that the proposed estimator is in general not fully efficient for estimating (a, R) since
information about R in L(«, R) is not used when estimating R. However, we expect the loss
of efficiency to be limited because the parameter estimation for « is based on the
conditional likelihood L; which would generate the efficient estimating score for estimating
« had we used an efficient estimate of R when we profile R out in the conditional likelihood.
The structure of the variance of the proposed estimate gives a lower bound of the relative
efficiency of the proposed estimator to the fully efficient estimator. To see this, note that the
variance of the proposed estimate divides into two pieces. The first piece corresponds to the
variance of the efficient estimate when the monotonic transformation is assumed to be
known. Therefore, the variance of the efficient estimate in the semiparametric trans-
formation regression model cannot be smaller than that. If the second piece turns out to be
very small compared with the first piece, we can conclude that the proposed estimator
should be close to fully efficient. However, it is worth noting that even when the second
piece is large compared with the first piece, it is still possible that the proposed estimator
does not involve a substantial loss of efficiency, since the monotonic transformation is not
assumed to be known, and the regression parameter cannot be estimated as well as when the
transformation is known. This bound can serve as a crude measure of magnitude of the loss
of efficiency when no fully-efficient estimator is available for comparison.

Our study of the efficiency of the proposed estimator involves two parts. The first part is the
efficiency loss of the proposed estimator compared with available fully-efficient estimators
such as the Cox partial likelihood method in the Cox model and the nonparametric maximum
likelihood method in the proportional-odds model, when covariates are fully observed. The
second part is the efficiency gain of the proposed method over complete-case analysis when
covariates are missing. In the simulation study, we consider primarily two semiparametric
transformation models, namely, the Cox regression model and the proportional-odds model.
Two independent binary covariates, with respective success probabilities 0.3 and 0.5, are
used in this study. All the simulation results are based on 1000 repetitions of a sample size
200 except for the first set of simulations, which has sample size 100.

The first set of simulations was designed to examine the loss of efficiency of the
proposed method when covariates are fully observed. The censoring distribution is
uniform U (0, a). Different values of @ are used to obtain approximately 0%, 40% , and
80% of censoring in each problem. Table 1 lists the ratios of mean squared errors between
the efficient estimates and the maximum conditional profile estimates. In most of the
simulated situations, the efficiency loss of the proposed estimate is less than 5%.

To investigate the potential gain of efficiency of the proposed method using all the
observed data over the efficient estimate using only complete cases when the covariates
have missing values, both the Cox regression model and the proportional odds model are
simulated. The basic models are the same as in the first set of simulations except that half
of the second covariate values are missing. Two missing data mechanisms are simulated.
The first missing-data mechanism is a missing completely at random mechanism in which
the second covariate values are randomly deleted. The second missing-data mechanism is
a missing at random mechanism in which the second covariate value of a subject with
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Table 1. Mean squared error comparison between the efficient
estimate and the proposed profile conditional likelihood estimate
when covariates are fully observed.

Censoring(%) £1=0 5,=0 Bi=1 Br=1
Cox regression model. Sample size= 100
0 105 105 99 100
40 100 100 100 101
80 98 98 98 98
Proportional odds model. Sample size= 100
0 98 97 97 97
40 97 96 96 96
80 95 95 95 95

Table 2. Comparison of parameter estimates between the complete case analysis using efficient estimates and the
proposed method using all the observed data. 50% of the second covariate values are randomly deleted.

Complete Case Analysis Profile Conditional Likelihood

True Censoring B B B2 B2 B B B2 B2
B1, B2) (%) bias var bias var bias var bias var
Cox regression model

(0,0) 0 0.00  0.0458 0.01  0.0541 0.00 0.0214 0.01 0.0543

40 —0.02  0.0708 0.01  0.0861 —0.01 0.0338 0.01 0.0848
80 —0.02 02408 —0.05 02995 —0.00 0.1096 —0.05 0.2970
(1,1) 0 0.02  0.0568 0.03  0.0613 0.00 0.0306 0.03 0.0573
40 0.02  0.0877 0.02  0.0810 0.02 0.0456 0.02 0.0765
80 0.04 0.2671 0.04  0.2305 0.04 0.1369 0.04 0.2226
Proportional odds model
(0,0) 0 0.00  0.1207 —0.01  0.1475 0.00 0.05750 —0.01 0.1496
40 0.01  0.1725 0.01 0.1625 —0.01 0.0707 0.01 0.1610
80 0.01 0.3069  —0.02  0.2959 0.01 0.1335 —0.02 0.3008
(1,1) 0 —0.01  0.1366 0.08  0.1621 0.02 0.0674 0.09 0.1687
40 0.02  0.1476 0.02  0.1822 0.03 0.0799 0.03 0.1824
80 0.07 02816 —0.04 0.3248 0.05 0.1429 —0.03 0.3368

follow-up time greater than the median follow-up time is not observed. When missing data
are missing completely at random, simulation results in Table 2 suggest that by including
the incomplete cases in the analysis, the regression coefficient estimate of the completely-
observed covariate has a substantial gain of efficiency over the maximum likelihood
estimator applied to the complete cases. A nearly 50% reduction in variance is achieved in
all the simulated situations. The relative precision of the two estimates of the coefficient of
the incompletely observed covariate is not significantly different. When missing data are
missing at random, complete-case estimates are seriously biased. As indicated in the
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Table 3. Comparison of parameter estimates between the complete case analysis using efficient estimates and the
proposed method using all the observed data. Subjects with follow-up times greater than median follow-up time
are missing their second covariate values.

Complete Case Analysis Profile Conditional Likelihood
rue Censoring B B B2 B2 B B B2 B2
B1, B2) (%) bias var bias var bias var bias var
Cox regression model
(0,0) 0 0.00  0.0435 0.01  0.0544 —0.00 0.0248 —0.09 0.8684
40 0.00  0.0650 0.00 0.0793 —0.01 0.0344 0.00 0.2196
80 —-0.01  0.1757 —0.07  0.1942 0.01 0.1038 —0.07 0.2437
(1,1) 0 —0.75 0.0491 —0.71 0.0496 —0.01 0.0355 —0.03 0.2628
40 —-0.54 0.0760 —0.55  0.0680 0.01 0.0494 —0.00 0.1823
80 —0.17 02085 —0.23  0.1690 0.07 0.1413 0.03 0.2439
Proportional odds model
(0,0) 0 0.00 0.1255 —0.01 0.1516 —0.01 0.0672 —0.06 0.5812
40 —-0.01 0.1308 —0.02 0.1716 —0.01 0.0729 —0.01 0.3099
80 0.01 02132 —-0.02 0.2779 0.01 0.1249 —0.02 0.2797
(1,1) 0 —042  0.1671 —0.40  0.1432 0.03 0.0800 0.02 0.3379
40 —-033  0.1553 —-0.32  0.1538 0.02 0.0730 0.03 0.2651
80 —0.08 02440 —0.14 0.2204 0.04 0.1348 0.04 0.2600

Table 4. Bias of the estimator under covariate dependent censoring distribution U(0,
a(l+bzy)). a is selected to obtain approximate 50% censoring in each situation.
Parameters (51, 5,)=(1,1).

B B B B2 B2 B2

b bias var est var bias var est var

Cox regression model

0.5 —0.02 0.0445 0.0437 —0.03 0.0461 0.0419
1.0 —0.03 0.0408 0.0419 —0.07 0.0429 0.0406
2.0 —0.02 0.0476 0.0467 —0.17 0.0366 0.0465
10.0 —0.05 0.0417 0.0429 —0.27 0.0294 0.0430

proportional odds model

0.5 —0.01 0.0861 0.0833 0.010 0.0903 0.0899
1.0 0.00 0.0780 0.0816 —0.03 0.0798 0.0875
2.0 0.00 0.0981 0.0846 —0.02 0.0936 0.0886
10.0 —0.02 0.0830 0.0820 —0.08 0.0764 0.0857

simulation results in Table 3, the conditional profile-likelihood estimate corrects bias at the
cost of increase variance of the estimates.

The proposed method assumes that the censoring is independent of the covariates. We
also did some simulations to evaluate the robustness of the proposed estimator when this
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assumption is violated. Complete data are generated with censoring distribution uniform
U(0,a(1+b2,)), where b=0.5, 1, 2 and 10. a is adjusted to obtain approximately 50%
censoring cases. Results are listed in Table 4. As expected, the estimates are biased when
censoring depends on covariates. For small to moderate association between the censoring
variable and covariates, the bias is not large in the simulated scenarios.

4. Some Applications

In this section, we discuss some specific applications of the proposed method.

4.1. The Generalized Probit Model with Missing Continuous Covariates

The proposed method can in principle handle both discrete and continuous covariates.
However, when continuous covariates are involved, the application of this method, like
other likelihood-based methods, needs to resolve the problem of the possibly intractable
integrals. With the generalized probit model, however, the computation can be substan-

tially simplified when the continuous covariates are normally distributed with mean p and
variance Y. Denote the normal density by N(Z| u, ). The joint density of (7, Z) is

N{A() | B7Z,1IN(Z | p, 32),

which can be rewritten as

N{Z | Zo(1), (57" + B887) " IN{AQ) | 7, 1 + 6756,
where Zy(1)=p+{A(?) — 3"} 5/(1+57S6). Hence, the inverse transformation for A, as a

function of 3, 1 and R, can be obtained explicitly from ®[{A()— B u}/(1 +5755)"?]
=1—R(¢) as

A(e) = BTp+ (1+ 67E8) 2071 {1 - R(1)},

where @ denotes the standard normal distribution function. Hence, given the survival
time ¢, the covariate distribution is

23  Sep'E
(1+4T8) 277 14875

N[Z|p+ d {1 — R(1)}

Given that the survival time is greater than ¢, the distribution of the covariates is

O[3 (1 —Z) + (1 + 5728) /2D {1 — R()}IN (ZIp, £)/R(1).
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Table 5. Analysis of the mouse leukemia data.

Complete case Proposed NPMLE
Bi B2 B B2 B B2
Proportional odds model
—1.44 1.44 —1.59 1.68 —1.49 1.67
0.3598 0.2096 0.3984 0.2601 0.3481 0.1879
0.2096 0.5194 0.2601 0.3943 0.1879 0.2981

Proportional odds model

—1.61 1.65 —1.94 2.19
0.3562 0.1933 0.6009 0.3502
0.1933 0.5062 0.3502 0.5265

The first entry is parameter estimates, the next two entries are covariance
estimates.

When no covariate is missing, the profile conditional likelihood,

x4 _ z88"S |
(1+875p)2 7 1+4788

(N[Zlp +®~{1 — R(1)} )’

X (PFT(u—Z) + (1 + 6786)*07 {1 — ROYN(Z|u, )",

can be maximized directly except that evaluations of the univariate normal distribution
function and its inverse are needed. When some of the covariates are missing, the EM type
algorithms can be applied. One additional complication is the need to evaluate an integral
involving the ratio ofnormal density to its distribution function. The computation ofthe M-step
can be simplified by using an ECM algorithm (Meng and Rubin, 1993).

4.2. An Example with Missing Discrete Covariates

The data (Kalbfleisch and Prentice, 1980, Appendix 1) were collected from the study
examining the viral and genetic effects on the incidence of spontaneous mouse leukemia.
Several covariates were recorded in the original dataset. Preliminary exploration of the data
suggested that the viral level and the phenotype of the gene Gpd-1 were the two important
covariates. For simplicity, as in Chen and Little (1999), we include only these two
covariates in the regression model and dichotomize the viral level according to whether
it is greater than 10* or not. One problem with this dataset is that the Gpd-1 phenotype is
subject to heavy missing values. Among 204 mice included in the study, only 100 of the
mice have the Gpd-1 phenotype information. The other covariate also has missing values.

We fit a Cox regression model to this dataset, using our proposed method and the
nonparametric maximum likelihood method in Chen and Little (1999). Estimates given by
the two methods in Table 5 are very close. As expected, the nonparametric maximum
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likelihood method is more efficient and gives a smaller variance estimate. The use of Cox
regression model in this example is largely based on the convenience and availability of
methods of estimation. We also fit a proportional-odds model to the dataset by the
proposed method. The difference between the complete-case estimate and the proposed
estimate is larger than the corresponding comparison when a Cox model is fitted. This
suggests that including incomplete cases into the analysis helps correct bias when the
proportional-odds model is fitted to the data in the example.

5. Discussion

We have proposed a method of estimating the regression parameter in the general
semiparametric regression model with incomplete covariate information. Although it is
not fully efficient, theory suggests and simulations show that the proposed estimator has
very high relative efficiency. The method does have the limitation that it requires
censoring independent of the covariates, whereas the nonparametric maximum likelihood
method only requires censoring to be independent of the covariates that have missing
values. When compared with the full likelihood method, the proposed method has at least
two advantages. First, the estimate of the infinite dimensional parameter R has closed-form
expression and iterations are needed only in solving for (6, ). Generally, the additional
computation in solving for v with (0, +) fixed is much simpler and stabler than in
maximizing the likelihood with respect to A with (6, ~) fixed even when no closed-form
solution for v is available. This is because the latter requires solving a system of N
nonlinear equations simultaneously while the former requires solving N independent
nonlinear equations which can be solved separately, where N is the number of observed
events. In addition, the proposed method also gives an explicit expression for the variance
estimate of the regression parameter without involving high dimension matrix operations.
Second, the proposed method can be easily adapted to incorporate additional information
about the marginal survival function R from other sources. This can often happen in
practice. In the extreme case where R is known a priori, we need only to maximize
likelihood L, for (6, ).

Appendix A. Proofs

Let h.(z) denote the density function of H.(z). The following lemmas are needed in
checking the conditions of the theorem or proving the theorems.

Lemma 1 (Existence of the inverse transformation): Suppose that,
1. for any 0, v, and v € (v, vu), | ¢(6, z, v)JAH.(z) is continuous and strictly monotonic

nv,

2. lim,_.,, [ $(0,zv)dH (z)=1 and lim,_., [$(6,z,v)dH. (z)=0.
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Then for any ue (0,1), [ ¢ (8, z, v)JdH.(z) = u has a unique solution v=v (0, y, u) € (v, vy)
which is strictly monotonic and continuous with respect to u.
Proof: The existence and uniqueness are easy to see. To prove the continuity of v with

respect to u, let u, u+Auc (0,1),

u+Au= /gi)(@, z,v+ Av)dH,(z) and u = /gi)(@, z,v)dH,(z).

If lima, . ¢ Av=0 does not hold, then there is a subsequence Av, such that lim, _, o
Av,=v*#£0 and v+v*e [v;, vy]. As Au goes to zero, we have

0—/¢0zv+v*dH /¢0zvdH z)

which contradicts the strict monotonicity assumption.

Lemma 2 Suppose that c<i, d<i+j+k and c+d=i+j+ k and that

1. & kb0, 2, v)/0 0°0v? and Bkhv(z)/avk exist and are continuous,

itjrk=1 &'og h
2 / o9 Toehy @) | i1 () < 400 (4)
|

sup |W(9’Z v)| sup | o

! !
v—v |<e,|0—0 |<e \<s

for any 6, v, and some € > 0;
3. [ o0.zv)dH (z)>0;

then &7 % 1/00'00/ 8’yk exist and are continuous with respect to 0, vy, u

Proof: We first show that v is continuous with respect to (6, ~, u).
Au:/¢(0+A0,z,v+AV)d iy (Z /gb@zvdH()
= /{¢(9 +A0,z,v+ Av) — ¢(8,z,v+ Av) }dH o, (2)
+ [ 06,2+ 89) 1, (2) — I 2)) o

+ /{qﬁ(@, z,v+ Av) — ¢(0,z,v)}dH,(z)



220 CHEN AND LITTLE

Hence, we have

| (00,24 89) = 600,20t a)|
<8+ [ 00,2+ 8) | hyoss )~ i (2) | da
+/ | (0 + A0,z,v + Av) — ¢(0,z,v + Av) | dH 1A, (2)

As Au, Af, A~ go to zero, The right side of the above inequality goes to zero. The second
term goes to zero because of 0 < ¢ <1 and Sheffé’s theorem, and the third term goes to
zero due to assumption 2. Therefore,

AMM%/(;SGZv—i—AvdH /¢92vdH()

By the same argument as in Lemma 1, we have the continuity of v.
As an illustration, we prove the existence of derivatives 0v/00.

@0+ Ab,z,v+ Av) — ¢(0 + AD, z,v) Av
Av dH,(z )AH

/qb 0+ Ab,z,v) — ¢(0,z,v)

dH.,(z)

Since we have

@0+ A0, z,v+ Av) — p(0+ Ab,z,v) 0O¢ 190
——2(8 <2 — (0
| Av ov ( % V) |_ \979/\2_1\8,/\« | ov ( b V) |

By the dominant convergence theorem, we have dv/0f exists and equals

f 0¢(0,2,v)/00dH,(z)
[o(0.2,v)dI,(z)

Let R be the Kaplan-Meier estimator of the marginal survival distribution based on the
marginal survival times (¢, 6). Let Ry(¢) be the true marginal survival distribution. Let 7>0
such that Ry(7) G(7)>0. We assume that Ry, is continuous. The following result is adapted
from Lo and Singh (1986).

Lemma 3 (Uniform convergence of Kaplan-Meier estimator) suppose that censoring is
independent of covariates. Then

B0 S (0 1= 04 (0m*) s

i=1

sup | R(r) — Ro(t) +

<r
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where

nA(t) 5il{xi§t} B /min(t,x,) ﬂ
| ) o {Ro(

" Ro(x)G (xi— W) YG (u—)

From now on, we will denote (6, v) by « and DD’ by D®?} for any matrix D. Let oy be the
true parameter. Let

Wk{ek(z) ‘x’ 6,0&,/7} = l{aSXSb} Su/p p{ek(z) |x7§aalaR0}7 for k = 17' : '7K'

|a—a’ |<p

The following assumptions are used in the proof of the consistency of the maximum
profile conditional likelihood estimates of a.

A 1 (Compactification): The parameter space o€} is compact under the same metric

used in defining w. For simplicity we assume ) is a closed bounded subset of a
Euclidean space.

A 2 (Continuity): For k=1, -, K,
limy Wiex(2) | .8, p} = pecs) | 5,6, Ko gy <y
A 3 (Identifiability): If a# «y, then
E[kZK:/ | plew(z) | X,6,a,Ro} — plen(z) | X, 6,0, Ro} | dz 1{a<x<pm=e;}] 7 O
=1
A 4 (measurability): Foreachk, Wi{e,(z)| x, 6, o, p}is ameasurable function of (e, (z), x, 6).

A 5 (integrability):

Wile(Z) | X, 0,0, p}
pie(Z) | X,6,a0,Ro}

K
E(Z La<x <pM=e;y [log ]7) <+ o0
k=1

A6

K n >
. 1 P{ek(Zi) |X},6[,OZ,R}
1 — 1 el =0 a.s.
nirfoo kz:; n ; {a<X <bM;=e;} ng{ek<Zi | X, 5,‘,04,R()} a.s

uniformly in a.

A7

K n 2
. 1 0 .
hm Z;Z I{GSX, Sb,Mi:ek} Wlogp{ek(z,) | le', 6,', OZ,R}
k=1

n—+00 -
i=1



222 CHEN AND LITTLE

K 2
g
= E) Hasxsbm=ea) 57 l0gp{ec(Z) | X, 6,0, Ro}] as.
pa

uniformly in a neighborhood of o, and the right-hand side is a negative definite matrix.

A 8 (equicontinuity) For k=1, - - -, K,
En:[l o og plen(Z:) | X;, 6, 0, R}
2 st o 8 ey (2,) | X, b 0, Ro

i=1

0. ple(Z) | X,8,0,R} f
_El -~ —1 ) ) ) ] —
e 50 e ) 1 X o Ry )

A9 E[Zle l{agxghyM:ek}%logp{ek(Z) | X,6,a0,R} | X =x,6] is compact differ-
entiable at R, and the derivative is a bounded linear operator in L*(P).

Conditions A1-A6 are used to prove the consistency in addition to conditionsfor
Lemma 3. Conditions A1—AS5 are analogous to those of Kiefer and Wolfowitz (1956).
Conditions A7—A09 are needed for establishing normality of the estimator of «. Conditions
A1-AS can be checked for specific examples. Conditions A6—A8 are generally more
difficult to check. However, when ¢ are continuous differentiable with respect to (6, v) and
have bounded derivatives up to the fifth order, 4., has continuous and bounded derivatives
up to the third order, and Z is bounded, A6— A9 are true (see Theorem 2.7.5 on page 159 and
Theorem 2.10.6 on page 192, Van der Vaart and Wellner, 1996).

Proof of Theorem 1: The consistency follows from Wald (1996) and Kiefer and
Wolfowitz (1956) arguments. To prove the normality, expanding the likelihood scores
around (ay, R) and applying conditions A6—AS8, we have

K n 2
. 1 0 _
Va(d—ag) = *[Z;Z l{agX,-gb,M,:ek}@logp{ek(zi) | Xi, 6, 0, Ro} + 0,(1)]
=1 "o
(i ! znjl 8log {ex(Z;) | Xi, 6 Ro}
— a<X;<bM;=e;} 7 08P\ €L iy Oiy (0, £X0
=V o= “ 9a

© .
0 p{ek(Z) |X7(57a07R}
+\/EE[Z,€:1 Hosxsomee) 5108 0 701 X,6, a0, Rop) 1)

We have

K n 2

1 0
D =D lesx<bM—e) Haz logrien(Zi) | Xi, b, a0, Ro} + 0p(1) — 4
=1 "= «

n

K
1 0
Z%Z l{agX,»gb,M,-:ek}%logp{ek(zi) | Xi, 61, 0, Ro} — N(0,4)
k=1 i=1
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By assumption A9, the second term in the expansion without the o,(1) term is
J Va<x<pmw(x, §)/n(R—Ro)(x)dP(x, §), where

K

82
w(x, 6) = E[Z l{aSXSb,M:ek}mlogp{ek(Z) | X,6,c0,Ro) | X = x,6}].
pas

Since /n(R — Ry)(t) converges weakly to a Gaussian process on ¢ € [a, b] with
covariance function

dR ()(u)
Ro(u)zé (u—)

)

min(z,s)
v(t,s) = Ro(t)Ro(s)/O

by the continuous mapping theorem, the second term in the Taylor expansion converges in
distribution to a normal random variable with variance

/ / w(t, 81)w(s, 62)v(t,s)dp(t, 61)dp(s, ).

Separate the expression in two terms with regard to £>s and ¢ < s, interchange the order of
the integral. It is then easy to see the above expression is the same as B.

Note that the first term is asymptotically independent of the second term in the
expansion. Hence, the asymptotic result about « follows.

Proof of Theorem 2: Note that

A ! () 22, I
B:/ i d=) b6ilx<,
0 {%Zizl I{szu}} n Z R

i=1

Applying the uniform law of large numbers, we have

l n T
;Zéil{XiSu} — pl‘(6 = 1) +/ G(S)dR()(S)
i=1 u
k() — k(u)
1 n _
2 Lz = G @)Ro(w)
i=1
uniformly on [0, 7]. The result follows.
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