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Abstract When children learn to add, they count on their fingers, beginning with the simple SUM strategy and
gradually developing the more sophisticated and efficient MIN strategy. The shift from SUM to MIN provides an
ideal domain for the study of naturally occurring discovery processes in cognitive skill acquisition. The SUM-to-
MIN transition poses a number of challenges for machine-learning systems that would model the phenomenon.
First, in addition to the SUM and MIN strategies, Siegler and Jenkins (1989) found that children exhibit two
transitional strategies, but not a strategy proposed by an earlier model. Second, they found that children do not
invent the Mm strategy in response to impasses, or gaps in their knowledge. Rather, MIN develops spontaneously
and gradually replaces earlier strategies. Third, intricate structural differences between the SUM and MIN strategies
make it difficult, if not impossible, for standard, symbol-level machine-learning algorithms to model the transition.
We present a computer model, called GIPS, that meets these challenges. GIPS combines a relatively simple
algorithm for problem solving with a probabilistic learning algorithm that performs symbol-level and knowledge-
level learning, both in the presence and absence of impasses. In addition, GIPS makes psychologically plausible
demands on local processing and memory. Most importantly, the system successfully models the shift from SUM
to MIN, as well as the two transitional strategies found by Siegler and Jenkins.

Keywords: cognitive simulation, impasse-free learning, probabilistic learning, induction, problem-solving
strategies

1. Introduction

This research focuses on modeling naturally occurring discovery processes in cognitive
skill acquisition. In particular, it provides an explanation of the well-known SUM-to-MIN
transition that children exhibit when they are learning to add (Ashcraft, 1982,1987; Groen
& Parkman, 1972; Groen & Resnick, 1977; Kaye, Post, Hall, & Dineen, 1986; Siegler &
Jenkins, 1989; Svenson, 1975). On the surface, this transition appears to be a case of symbol-
level or speed-up learning (Dietterich, 1986). The SUM and MIN strategies are both correct
and complete addition algorithms, but the MIN strategy is much faster. However, closer
inspection reveals that the transition involves changes to the structure of the solution, which
cannot be explained by conventional symbol-level learning methods. In addition, children
appear to invent the MIN strategy spontaneously, rather than in response to any failures or
impasses in problem solving. Thus, a successful model of the SUM-to-MIN transition must
make dramatic changes in the strategies, and it must be able to do so without the benefit of
impasses to drive learning.
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Earlier work attests to the complexity of modeling this structurally intricate strategy shift.
Neches (1987) was able to model the transition using a machine learner based on compiler
optimization techniques, but the model required implausibly large amounts of extremely
detailed information about both ongoing processes and related past experiences. Moreover,
it predicted that subjects would briefly display certain strategies on their way to the MIN
strategy, but these strategies were not observed in subsequent empirical work (Siegler &
Jenkins, 1989). Other intermediate strategies were observed instead.

The research problem is to find a learning method (or methods) that can make the SUM-
to-MlN transition, use only plausible amounts of computation and memory, and explain the
observed intermediate strategies. In this paper, we concentrate on explaining the results of a
longitudinal study carried out by Siegler and Jenkins (1989). They found that children invent
the MIN strategy and two intermediate strategies independently, without any instruction on
the new strategies. More importantly, Siegler and Jenkins discovered that the invention of
the MIN strategy does not appear to be driven by failures or impasses in solving problems.
Finally, we argue that learning the MIN strategy requires a form of knowledge-level learning
(Dietterich, 1986) that introduces new, more efficient behavior, rather than simply tuning
or composing old knowledge.

We describe a computational model, called GIPS (for General Inductive Problem Solver),
that invents the MIN strategy as well as the correct transitional strategies. In addition, GIPS
smoothly integrates a general problem-solving architecture with a simple, independently
motivated learning algorithm. The learning algorithm applies a probabilistic concept learner
to all of GIPS' major decision points, allowing it to combine impasse-driven, impasse-free,
symbol-level, and knowledge-level learning in a single, uniform framework. Remarkably,
the relatively simple problem-solving and learning algorithms interact so as to explain
intricate strategy shifts that previous systems could not account for.

In the following section, we describe the SUM-to-MIN transition, and explain its com-
plexities in detail. Next, we present the GIPS system, its representation of the addition
domain, and its account of the SUM-to-MIN shift. The last section discusses GIPS' account
and compares it to those offered by other models.

2. The SUM-to-MIN transition

When young children first learn to add two small numbers, they use the so-called SUM
strategy. They create sets of objects to represent each addend, then count the objects in the
union of the two sets. For example, suppose a child is asked, "What is 2 plus 3?" In order
to solve this problem, the child says, "1,2," while raising two fingers on the left hand; then
"1,2,3," while raising three fingers on the right hand; then "1,2,3,4,5," while counting all
the raised fingers. This is called the SUM strategy because its execution time is proportional
to the sum of the two addends. Older children use a more efficient strategy, called the MIN
strategy. In following this strategy, the child first announces the value of the larger addend,
then counts onward from it. For instance, in order to solve 2 + 3, the child would say,
"3," then say, "4, 5," while raising two fingers on one hand. The execution time for the
MIN strategy is proportional to the minimum of the two addends. Algorithms for the two
strategies appear in Table 1.
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Table I. A comparison of the SUM and MIN strategies.

Initial SUM strategy

1. Assign first addend
to left hand;

2 . Assign second addend
to right hand;

3. Let Counter be 0;
4 . Loop
5. Raise finger on left hand;
6 . Let Counter be Counter + 1 ;
7. Until Counter =

left hand addend;
8. Let Counter be 0;
9 . Loop
10. Raise finger on right hand;
11. Let Counter be Counter + 1;
12 . Until Counter =

right hand addend;
13. Let Counter be 0;
14 . Loop
15. Mark raised finger;
16. Let Counter be Counter + 1;
17 . Until number of marked fingers =

number of raised fingers;
18. Let Answer be Counter;

MIN strategy

Assign larger addend
to left hand;

Assign smaller addend
to right hand;

Let Counter be left hand addend;

Loop
Raise finger on right hand;
Let Counter be Counter + 1;

Until number of raised fingers =
right hand addend;

Let Answer be Counter;

Although the SUM strategy is taught in school, the MIN strategy appears to be invented
by the children themselves. The best evidence for this comes from a longitudinal study by
Siegler and Jenkins (1989). They interviewed eight children weekly for 11 weeks, each time
asking them to solve about 15 orally presented addition problems. After each problem, they
asked the children how they got their answers. They also told each child whether the answer
was correct, and gave the child a gold star if it was. Finally, they analyzed videotapes of the
session and classified the child's behavior on each problem according to the strategy that the
child used. As far as Siegler and Jenkins could determine, the only instruction that the sub-
jects received during this period was their school's normal instruction on the SUM strategy.
Nonetheless, seven of the eight children eventually began to use the MIN strategy. More-
over, the children appear to have discovered this strategy during the video-taped sessions.
The tapes make it clear that they received no help from the experimenter, so the MIN strategy
appears to have been invented by the subjects themselves. In addition, Siegler and Jenkins
found two transitional counting strategies that the subjects used while proceeding from SUM
to MIN. These are the SHORTCUT SUM strategy, in which a subject raises and counts fin-
gers from one to the final sum across both hands, and the FIRST strategy, which is similar to
MIN, except that the order for adding two addends is not determined by their relative sizes.

2.1. Impasse-free learning during strategy invention

A central issue for computational learning systems is deciding when to learn. A popular
method is to learn when an impasse occurs, suggesting a hole in the system's knowledge
base. The exact definition of "impasse" depends on the problem-solving architecture,
but roughly speaking, an impasse occurs for a problem solver when it comes across a
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goal that cannot be achieved by any operator that is believed to be relevant to the task at
hand. The essential idea of impasse-driven learning is to resolve the impasse somehow,
then store the resulting experience in such a way that future impasses will be avoided or
at least handled more efficiently. Many systems use impasse-driven learning, including
LPARSIFAL (Berwick, 1985), OCCAM (Pazzani, Dyer & Flowers, 1986), SWALE (Schank,
1986), SOAR (Newell, 1990), SIERRA (VanLehn, 1990), and CASCADE (VanLehn & Jones,
1993; VanLehn, Jones & Chi, 1992). SOAR is perhaps the best-known impasse-driven
learning system, but its definition of impasse is a bit idiosyncratic. It uses impasse-driven
learning for all changes to memory. Because people automatically store a dense record
of their on-going experiences (Tulving's episodic memory), a proper SOAR model must
have impasses very frequently, perhaps several per second. Unlike SOAR, other models
record their personal experiences with mechanisms that are separate from their impasse-
driven learning mechanism. For them, an impasse corresponds to the subjective experience
of getting stuck and knowing that you are stuck. In one detailed psychological study
(VanLehn, 1991), this occurred about once every half hour. In this paper, we use "impasse"
only for these higher level impasses.

Because of the importance of impasse-driven learning in current models of intelligence,
Siegler and Jenkins looked specifically for signs of impasses in their study. In particular,
they designed some of the problems to cause impasses by making one of the addends very
large (e.g., 23 + 1). They found that "The specific problems on which the children first
used the MIN strategy were 2 + 5, 4 + 1, 3 +1,1 + 24, 5 + 2, and 4 + 3. These problems
did not deviate from the characteristics of the overall set in any notable way" (p. 67). In
fact, some of the children had earlier successfully solved exactly the same problem that
they were working on when they discovered the MIN strategy. Although the large-addend
problems did cause subjects who had already invented the MlN strategy to start using it more
frequently, the problems did not cause those who had not invented the strategy to do so.

In addition, Siegler and Jenkins sought signs of impasses by examining solution times and
errors in the vicinity of the discovery events. Solution times were longer than normal for
the problems where the discovery occurred (a median of 17.8 seconds vs. overall median
of 9.8 seconds) and for the problems immediately preceding the discovery trial (median 18
seconds). This might suggest some kind of impasse. However, the specific problems being
worked on at those points were not particularly difficult. On the discovery trial, 71 % of the
problems involved addends that were both 5 or less and thus could each be stored on a single
hand. This rate is almost identical to the rate of 72% for the set as a whole. Moreover, 88%
of the problems encountered in the session prior to the discovery did not include a large
addend. Using error rates as a measure of difficulty yielded a similar finding. Siegler and
Jenkins report,

Prior to discovering the min strategy, children had answered correctly 12 of the 16
problems that they had encountered within the session. This level of accuracy, 75%,
was not substantially worse than the 85% correct answers that children generated
across the entire practice set. Further, three of the four errors were generated by a
single child; the other four children collectively made only one error on the 12 trials
they encountered in the same session but before their discoveries. This, together
with the fact that two other children used the min strategy for the first time on the
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first trial of a session, indicated that incorrect answers are not necessary to motivate
discovery of a new strategy. However, the long solution times just prior to the
discoveries do suggest a heightening of cognitive activity even without incorrect
answers to motivate it. (p. 69)

The absence of impasses near the critical learning events presents a challenge for current
theories of learning. However, Siegler and Jenkins suggest a reconciliation between their
findings and the impasse-driven learning theories:

Two types of strategy changes can be distinguished: changes in which the main
difference between the strategies is in the answers themselves, and changes in
which the main differences are not in the answers that are generated but rather
in the efficiency with which answers are generated and/or the aesthetic appeal of
the procedures. The first type of strategy change may occur primarily as a result
of encountering impasses, but the second may typically occur for other reasons,
(p. 104)

2.2. Symbol-level vs. knowledge-level learning

Dieterrich (1986) defines symbol-level learning as learning that improves the performance
of a system, but does not increase the deductive closure of the system's knowledge. In
contrast, learning at the knowledge level involves actually changing the system's knowledge
base or domain theory, thus changing what the system can possibly deduce (given enough
time). Most current problem-solving systems learn at the symbol level, achieving better
performance by improving their search through a problem space. In general, this type of
learning has taken one of two forms: search tuning and macro-operator formation. Search
tuning involves methods for decreasing the average branching factor of the search via
search-control rules (Minton, 1988), selection conditions on operators (Anderson, 1983;
Mitchell, Utgoff, & Banerji, 1983), numerical strengths on operators (Langley, 1985), or
similar methods. In contrast, macro-operators decrease the average depth of the space
by composing the conditions and actions of operator sequences into individual operators
(Anderson, 1983; Iba, 1989; Korf, 1985). Both of these forms of learning can greatly
improve the quality of a system's search for a solution to a problem, and sometimes they
can also improve the quality of the solution itself.

A close examination of the transition from SUM to MIN indicates that a model based
strictly on symbol-level learning can explain some shifts, but has difficulties explaining
others. Let us consider in turn the strategy differences that appear in Table 1. In lines
1 and 2, subjects learn to assign addends to their hands based on the addends' relative
sizes. Provided this type of feature is included in its representation language, a symbol-
level learner can easily discover the feature's relevance, based on failures in generating
correct answers.

The procedure for representing an addend on the left hand (lines 4-7) in the SUM strategy
is replaced by a single line in the MIN strategy, which simply asserts the output of the
procedure. This shift could possibly be modeled with macro-operators, except that they
would also force the appropriate number of fingers to be raised on the left hand. However,
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children can generate the correct counter value without raising fingers. This indicates that
they can determine which output of the procedure is relevant to the task at hand. Macro-
operators could not model this, because incrementing the counter is always paired with
raising a finger in the SUM strategy. As we shall see later, our model predicts that children
can identify the relevant output of the procedure by learning new preconditions on the
operator that terminates the procedure.

The next difference between the two strategies appears in the procedure for representing
the right-hand addend (lines 9-12). The only difference between the two procedures is the
termination criterion for the loop. This is a somewhat simpler transition than the previous
one, but it still causes problems for a symbol-level learner. The children appear to learn that
recognizing the number of raised fingers on a hand is a better stopping criterion than using
the value of the counter. This discovery occurs even though both criteria generate correct
answers. However, recognizing the number of raised fingers serendipitously leads to a more
efficient solution, because the counter no longer has to be zeroed in order to represent each
addend (lines 8 and 9). This in turn makes the final loop (lines 14-17) unnecessary in the
MIN strategy, because the correct answer is already available.

Once again, it is difficult to see how a symbol-level learner could account for this repre-
sentation shift. Our model determines that the number of fingers raised on a hand is highly
correlated with the value of the addend being represented. It eventually replaces the counter
value as the loop termination criterion because it allows the loop to terminate faster. This
transition requires the system to change its preconditions for the operator that terminates the
loop. Thus it involves knowledge-level adjustment of the domain representation and cannot
be explained simply in terms of knowledge tuning or the formation of macro-operators.

Our analysis of the differences between the SUM and MIN strategies, together with Siegler
and Jenkins' findings, provide some strict criteria that a model of the SUM-to-MIN transition
should meet. First, the model should proceed from usage of the SUM strategy to the MIN
strategy without any outside instruction (other than feedback on the correctness of the
answers). It should invent the same transitional strategies that Siegler and Jenkins found in
their subjects. It also must account for the ability to invent new strategies even when there
are no impasses to drive learning. Finally, the model must incorporate a mechanism for
knowledge-level learning, so that it can adapt its representation of the task domain. GIPS,
the model we describe in the next section, meets these criteria.

3. The General Inductive Problem Solver

GIPS is a problem solver that uses flexible means-ends analysis as its performance mech-
anism (Jones, 1993; Langley & Allen, 1991). Its learning mechanism is based on Schlim-
mer's (1987; Schlimmer & Granger, 1986a, 1986b) STAGGER system, which uses a prob-
abilistic induction technique to learn concept descriptions from examples. GIPS uses its
induction algorithm to learn search-control knowledge for its operators, assigning credit and
blame in a manner similar to SAGE (Langley, 1985) and LEX (Mitchell, Utgoff, & Banerji,
1983). However, GI3PS also uses probabilistic induction to learn new preconditions on its
operators, thus modifying the descriptions of the operators themselves. Inductive modifi-
cation of preconditions (as opposed to inductive modification of search-control knowledge)
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Table 2. A GIPS operator to increment the value of a counter.

COUNT (?Hand, ?Initvalue, ?Finalvalue)
Preconditions:

Hand(?Hand)
Just-raised ( ?Hand)
Counter-value (?Initvalue)

Add conditions:
Counter-value ( ?Finalvalue )

Delete conditions:
Counter-value ( ?Initvalue )
Just-raised (?Hand)

Constraints :
?Finalvalue is ?Initvalue + 1

appears to be a new machine-learning technique. Although it could be risky, in that it seems
capable of destroying the correctness of the operator set, we show that when properly con-
trolled, it can produce correctness-preserving speed increases that standard techniques have
not been able to produce. From a cognitive-modeling perspective, both learning about
search control and learning new operator representations play crucial roles in the SUM-to-
MlN transition.

3.1. Representation of the addition domain

In this section, we describe GIPS' representation of the task domain. GIPS describes the
world as a set of relations between objects. In the domain of addition, these objects and
relations include the numbers that are part of the problem, the state of the problem solver's
"hands" while it is adding, and the value of a counter that the problem solver keeps "in its
head." In addition, GIPS represents possible actions in the domain with operators that are
similar in representation to those used by STRIPS (Fikes & Nilsson, 1971). Each includes
a set of preconditions, add conditions, delete conditions, and possibly a set of constraints
on the variable bindings.

As an example, consider the operator in Table 2, which increments the value of the counter.
This operator has three variable parameters, ?Hand, Initvalue, and ?Final-
value (throughout this paper, an atom beginning with "?" represents a variable). The
preconditions for the operator check the current value of the counter and make sure that
the system has just raised a finger that needs to be counted. The constraint generates a
final value for the counter by incrementing the initial value. GIPS' constraint mechanism
allows constraints to propagate forwards or backwards, so this constraint can also compute
the necessary initial value if it is given the final value as a goal. Finally, when the operator
executes, it will delete the initial value of the counter and record the final value. In addition,
it will delete the "just-raised" condition so that the finger will not be counted twice.

GIPS represents the addition domain with the 16 operators presented in Table 3. There
are two particular operators, which we refer to as the ADDEND-REPRESENTED operators,
that are involved in most of the strategy shifts. For future reference, the series of precon-
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Table 3. Operators for the addition domain.

SELECT-HAND: Select an addend to be counted on each hand. The left hand is
always counted first.

COUNT-OUT-LEFTHAND: Represent or count the left-hand addend.
COUNT-OUT-RIGHTHAND: Represent or count the right-hand addend.
START-COUNT: Keep track of the counter value while raising fingers.
START-RAISE: Begin raising fingers in order to represent an addend.
RAISE-FINGER: Raise a finger.
COUNT: Count the last raised finger by incrementing the counter value.
LEFT-ADDEND-REPRESENTED: Stop counting and raising fingers on the

left hand.
RIGHT-ADDEND-REPRESENTED: Stop counting and raising fingers on the

right hand.
CLOBBER-COUNTER: Set the counter value to zero.
COUNT-UP- BOTH- ADDENDS: Make sure both addends have been counted together.
START-MARK-COUNT: Keep a running count while marking raised fingers.
MARK-FINGER: Mark a finger that has already been raised.
MARK-COUNT: Count the last marked finger by incrementing the counter value.
END-MARK-COUNT: Stop marking fingers on a hand.
DETERMINE-ANSWER: Announce the answer.

Table 4. A series of preconditions for LEFT-ADDEND-REPRESENTED.

SUM strategy (a):
Raising (LeftHand)
Assigned (LeftHand, ?Value)
Counter-value ( ?Value )

SHORTCUT SUM strategy (c):
Raising (LeftHand)
Assigned (LeftHand, ?Value)
Raised-fingers (LeftHand, ?Value)

SUM strategy (b):
Raising (LeftHand)
Assigned (LeftHand, ?Value)
Counter-value ( ?Value)
Raised-fingers (LeftHand, ?Value)

MIN strategy (d):
Raising (LeftHand)
Assigned (LeftHand, ?Value)

ditions that the LEFT-ADDEND-REPRESENTED operator acquires in going from SUM to
MIN appears in Table 4. For our study, we initialized GIPS' search-control and precon-
dition knowledge for the 16 operators such that the system generates the SUM strategy on
addition problems. We will discuss this initialization in more detail after presenting GIPS'
performance algorithm and low-level knowledge representation.

3.2. Performance algorithm

As mentioned above, GIPS' problem-solving algorithm (see Table 5) is a form of flexible
means-ends analysis, borrowed from the EUREKA system (Jones, 1993). As with standard
means-ends analysis, the algorithm is based on trying to achieve a state change. The
desired change is represented by a TRANSFORM, which is simply a pair consisting of
the current state and some goals (an example appears in Table 6). In order to achieve



CHILDREN'S ADDITION STRATEGIES 19

Table 5, GIPS' algorithm for solving problems.

TRANSFORM (CurState, Goals) : Returns NewState
If CurState satisfies Goals

Then Return NewState as CurState
Else Let OpSet be the ordered set of selected

operator instantiations;
Let FailedOps be Nil;
Loop for Operator in OpSet

Let TempState be APPLY (CurState, Operator );
If TempState is "Failed State"

Then push Operator onto FailedOps and continue loop;
Let TempState be TRANSFORM (TempState, Goals );
If TempState is "Failed State"

Then push Operator onto FailedOps and continue loop;
Store (CurState, Goals) as a positive example for the
selection concept of Operator;

Store (CurState, Goals) as a negative example for the
selection concept of each operator in FailedOps;

Return NewState as Tempstate
End loop;
Return NewState as "Failed State";

APPLY(CurState,Op) : Returns NewState
Let P be PRECONDITIONS (Op);
If CurState satisfies the execution concept of Op

Then If the user says Op is executable
Then Store CurState as a positive example for the

execution concept of Op;
Return NewState as EXECUTE (CurState, Op)

Else Store CurState as a negative example for the
execution concept of Op;

Let TempState be TRANSFORM ( CurState, P) ;
If TempState is "Failed State"

Then Return NewState as "Failed State"
Else Return NewState as APPLY (TempState, Op) ;

this transformation, GIPS selects an operator and attempts to apply it. If the operator's
preconditions are met, GIPS executes it and the current state changes. If some of the
preconditions are not met, a new TRANSFORM is created with the preconditions as the
new goals. When this TRANSFORM is achieved, GIPS returns to the old TRANSFORM
and attempts again to apply the operator. So far, this is simply a description of standard
means-ends analysis.

The difference between standard and flexible means-ends analysis occurs in the selection
of an operator to apply. Standard means-ends analysis requires that the actions of any
selected operator directly address the goals of the TRANSFORM. In flexible means-ends
analysis, operator selection is determined by a selection algorithm that can use any criteria
to choose an operator. In order for the selection algorithm to be useful, it is usually under
the direct control of the system's learning mechanism. In GIPS, operator selection is de-
termined by selection concepts. Each operator is associated with an explicit concept that
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Table 6. An example of a TRANSFORM for the addition domain.

Current State:
On-Paper (First , Two )
On- Paper (Second, Three)
Assigned ( LeftHand , Three )
Counter-Value ( Zero )
Raised-Fingers (Lef tHand, Zero)

Goals:
Raising (LeftHand )
Assigned (Lef tHand, ?Value)
Counter-Value ( ?Value )

indicates when it should be selected. If the concept depends mostly on the current state of the
TRANSFORM, then the operator will act like a forward-chaining inference rule and execute
whenever the state is appropriate, regardless of the current goals. If the concept depends
mostly on the goals of the TRANSFORM, then it will act like a backward-chaining infer-
ence rule. Typically, forward and backward operators intermingle during problem solving,
yielding a psychologically plausible blend of goal-directed and opportunistic behavior.

In GIPS, each operator has a selection concept. The representation of a selection concept
is similar to the representation of a TRANSFORM, consisting of a set of literals (predicates
that may or may not be negated) describing the current state and goals. In addition, however,
each literal in a selection concept has two numerical values associated with it: sufficiency
and necessity. In order to evaluate the selection value of an operator, GIPS matches the
literals against the current TRANSFORM. It determines the subset of literals that match
(M) and fail to match (F), then calculates

where Odds(C) is the prior odds that the concept's operator is worth selecting, SL is the
sufficiency of the literal, L, with respect to the concept, and NL is the necessity of L
with respect to the concept. A sufficiency score that is much greater than 1 indicates that
a literal is very sufficient for the selection concept. That is, if SL is a high value, then
the selection value will be high if the literal, L, appears in the current TRANSFORM. In
contrast, a literal is very necessary if the necessity value is much less than 1. In other words,
if NL is low, it means that the selection value will likely be low unless L appears in the
current TRANSFORM.

The above formula is used by STAGGER, Schlimmer's (1987) concept formation system,
to estimate the odds that a given object is an instance of a particular concept. However,
a major difference between STAGGER and GIPS is that STAGGER worked exclusively
with propositional knowledge representations. In contrast, the literals in GIPS' concepts
are general predicates that can also contain variables. This means that the relations in a
given TRANSFORM will generally only partially match the relations in a concept, and the
TRANSFORM may in fact match the concept in more than one way. In these cases, GIPS
finds a number of partial matches and calculates a selection value for each one. Each of these
matches in turn represents a different instantiation of the operator attached to the selection
concept. Thus, the selection procedure typically returns a number of different instantiations
of a number of different operators. When all the operator instantiations have been found
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Table 7. The initial selection and execution concepts for LEFT-ADDEND-REPRESENTED.

Selection
CURRENT STATE
Raising (LeftHand)
Assigned (LeftHand, ?Value4)
Counter-Value ( ?Value4 )
Raised (LeftHand)
Counted (LeftHand)

Execution
CURRENT STATE
Assigned (LeftHand, ?Value4)
Raising (LeftHand)
Counter-Value ( ?Value4 )

1
1
1
0
0

2
2
2

S
.03
.03
.03
.01
.71

S
.71
.71
.71

0
0
0
1
1

0
0
0

N
.98
.98
.98
.01
.01

N
.05
.05
.05

GOALS S N

Counter-Value ( ?Value4 ) 1.00 1.00
Raised (LeftHand)
Counted (LeftHand)

10.00 0.91
10.00 0.91

and their selection values have been calculated, GIPS throws out all the instantiations with
a selection value less than 1. The remaining instantiations are ordered according to their
selection values.

GIPS differs from standard means-ends systems in one more important way. In standard
problem-solving systems, each operator has a set of preconditions, which are used in two
ways. First, they determine when the operator can execute. Second, they dictate which
subgoals should be set up via means-ends analysis when an operator is not yet executable.
GIPS uses the preconditions to set up subgoals, but it does not use them to determine the
executability of the operators. Rather, each operator has an associated execution concept
that dictates when the system will try to execute it. GIPS' execution concepts are similar in
form to selection concepts, except they contain literals describing the current state but not
the current goals.

As mentioned previously, GIPS' initial selection and execution concepts were set up to
generate the SUM strategy for addition. The literals of each operator's selection concept
were set to the preconditions and the goals that the operator could satisfy. The necessity and
sufficiency of these literals were set so that they would be retrieved in either a backward-
chaining or forward-chaining fashion, depending on the role of the operator in the domain.
For example, pure backward-chaining operators had each of their goal literals set with high
sufficiency. Forward-chaining operators had each of their current state literals set with
high necessity. Finally, each operator had an initial set of preconditions, and the execution
concept for each operator was initialized to the literals occurring in the preconditions, each
with high necessity.

As an example, the initial preconditions for LEFT-ADDEND-REPRESENTED appear in
Table 4(a), with its initial selection and execution concepts in Table 7. An examination of
Table 7 shows that LEFT-ADDEND-REPRESENTED is likely to be selected when the current
TRANSFORM'S goals include Raised (LeftHand) or Counted (LeftHand)
(high S value), unless these literals also appear in the TRANSFORM'S current state (low S
value). The operator is set to execute only when all three of Assigned (LeftHand,
?Value4), Raising (LeftHand), and Counter-Value (?Value4) are
matched by literals in the current TRANSFORM'S state description (medium S value and
low N value).
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From our description of GIPS' general problem-solving algorithm, it is clear that there are
exactly two types of choice that the system has to make while solving problems: the choice
of which operator to apply next, and the choice of whether to execute an operator or subgoal
on its preconditions. It is appealing to apply a uniform learning and decision mechanism
in a system's performance algorithm, so GIPS uses its probabilistic concept-matching and
learning mechanism for both of these decision points. Other problem solvers include
additional types of decisions. For example, PRODIGY (Minton, 1988) makes an explicit
decision for which subgoal to work on next, whereas that decision is implicit in GIPS'
operator-selection decision. Our experiences indicate that a STAGGER-like algorithm can
be used at any type of decision point, providing the same kinds of learning benefits to each.
Thus, if we decided to have GIPS make an explicit choice about which subgoal to work on
next, we would also use the concept-matching algorithm for that, enabling the system to
learn and improve its behavior for choosing subgoals as well. In the following section, we
discuss how execution and selection concepts change with experience. More importantly,
we explain how changes in the execution concepts directly lead to representation changes
in the operator preconditions.

3.3. Learning in GIPS

GIPS adjusts its selection concepts on the basis of its successes and failures while solving
problems. When a TRANSFORM is finally solved, GIPS adjusts the sufficiency and necessity
values of the successful operator so that the operator will be rated even higher the next time
a similar TRANSFORM occurs. For each operator that initiated a failure path (i.e., it took the
first step off a TRANSFORM'S solution path), GIPS adjusts the values in its selection concept
so that it will receive a lower value next time. Note that GIPS considers every TRANSFORM
to be a "problem," so it can learn about any particular TRANSFORM even if it doesn't lie
on the solution path to some global problem. In order to do this kind of learning, GIPS
must store the current solution path and every operator that led off it. However, as soon as
each individual TRANSFORM in a problem is finished, and the updating is completed, that
portion of the solution path is discarded.

This method of assignment for credit and blame is similar to the method used by other
problem-solving systems that include concept-learning mechanisms (Langley, 1985;
Mitchell, Utgoff, & Banerji, 1983). These systems (and GIPS) can easily assign credit
and blame, because they backtrack until they find a solution to the current problem. Then,
each decision that leads off the final solution path is classified as a bad decision (a nega-
tive example), and each decision that lies on the final solution path is classified as a good
decision (a positive example).

However, GIPS differs from these previous systems in the details of its concept-learning
algorithm. GIPS computes the sufficiency and necessity scores for literals in a concept (SL

and NL) with the following equations:
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where / € C means that TRANSFORM instance, /, is a positive example of the concept,
C, and "L matches I" means that literal, L, of the concept is matched by some literal
in /. Thus, sufficiency and necessity for each literal are determined by four conditional
probabilities.

GIPS learns by updating its estimates of these conditional probabilities. For each literal
in a selection concept, GIPS records four values: t, the total number of examples (pos-
itive and negative) that the system has stored into this selection concept; p, the number
of those that were positive examples; /, the total number of times this literal has been
matched by any (positive or negative) example; and c, the number of times the literal has
been matched in a positive example. In precise form, the conditional probabilities are
estimated by

As indicated in the algorithm in Table 5, GIPS learns by storing an instance (the literals
describing the state and goals of the current TRANSFORM) as a positive or negative example
of an operator's selection concept (depending on whether the operator led to a solution
or a failed search path). Every time the system stores a TRANSFORM as a positive or
negative example, it matches the literals in the TRANSFORM to the literals in the selection
concept. If there are any literals in the new instance that do not already appear in the
selection concept, they are added into the selection concept's representation. Finally, GIPS
increments the appropriate counts for each literal: always incrementing t, incrementing p
if the instance is a positive example, incrementing l if the literal is matched by a literal
in the instance, and incrementing c if the instance is a positive example and the literal
is matched. For the interested reader, Schlimmer (1987; Schlimmer & Granger, 1986a,
1986b) provides excellent, detailed descriptions of the learning algorithm and its behavior
in classification tasks.

We have so far described how GIPS updates its selection concepts. These concepts
determine when operators are selected to achieve a TRANSFORM, so they represent search-
control knowledge. As we have mentioned, the system also must adapt its execution con-
cepts. The conditional probabilities are updated identically to selection concepts. However,
the assignment of credit and blame is a bit different.

Assignment of credit and blame for execution concepts can be computed in a manner
similar to credit and blame for selection concepts. When GIPS thinks that a particular
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operator should execute, it blindly carries on and eventually generates an answer. However,
it is possible that the answer will be wrong, indicating that the operator should not have
executed (i.e., GIPS' execution concept for that operator is wrong). If GIPS is allowed to
backtrack until it eventually generates the correct answer, it can precisely determine which
situations should be stored as negative and positive instances of the execution concept, just
as with selection concepts. We discovered that in some instances, when GIPS unfortunately
generated multiple "bad" execution concepts, backtracking could take quite a while before
the system would generate a correct answer and do the appropriate learning. We finessed
this problem by giving the system immediate feedback on whether it would generate a
correct answer when it attempted to execute operators.

Unfortunately, this does not tell the whole story on credit and blame assignment. In
Siegler and Jenkins' study, they awarded each subject a gold star after the subject gave a
correct answer, but they did not force the subjects to keep working on the problems until
they could give a correct answer, as we do with GIPS. For a strict model of this experiment,
we would give GIPS feedback after it generates a complete solution, and not force the
system to backtrack. However, if GIPS is not allowed to backtrack, it must incorporate an
incremental credit-assignment algorithm, such as the bucket-brigade algorithm (Holland,
Holyoak, Nisbett, & Thagard, 1986). In our study, we were more concerned with the
order of acquired strategies than the speed of acquisition, so we did not implement such
an algorithm in the current version of GIPS. We are convinced that a more realistic credit-
assignment algorithm would slow down learning, but would not disturb the order of strategy
acquisition. However, future research with GIPS should certainly address this issue.

The final aspect of learning in GIPS involves changing the preconditions on operators.
When GIPS successfully predicts that an operator should execute, but the probabilistic
execution concept does not agree with the current preconditions of the operator, the system
changes the preconditions appropriately. Operator preconditions in GIPS contain only the
literals from the execution concept that GIPS has decided are very necessary. This symbolic
representation is used to post subgoals when the system wants to apply an operator that it
believes cannot yet be executed. Recall that a TRANSFORM includes literals representing
the current goals, and these are matched against selection concepts for the operators. Thus,
changing operator preconditions can lead directly to subsequent changes in the selection of
operators while solving problems.

Logically, GIPS should include in its preconditions for an operator exactly the literals that
are highly necessary (i.e., have very low values for NL). In problem-solving terms, all the
literals in the preconditions of an operator should be true (or matched) for the operator to be
executable. Thus, it should add literals from the execution concept that have low NL values
to the preconditions, and it should drop literals that do not have low NL values from the
preconditions. However, in order to speed up GIPS' learning, we have adopted a heuristic
approach for each of these cases.

First, consider the criterion for adding a new literal to the preconditions of an operator.
Again, GIPS should ideally consider this action for any literal with a low value for NL. An
examination of the equation for NL shows that it decreases as P(L does not match I | I E
C) increases. Learning about necessity poses some difficulties, because GIPS can increase
its estimate of P(L does not match I \ I g C) only when it predicts that the operator
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associated with C should execute, but the user tells the system that it made an incorrect
prediction (an error of commission). However, GIPS is generally conservative in attempting
to execute operators, so this type of event is relatively rare. Thus, GIPS takes a long time
to learn that any new literal is necessary for execution. To overcome this difficulty, we
allow GIPS to use a different criterion for adding preconditions. Rather than looking for
literals that are very necessary, it looks for literals that are somewhat sufficient (i.e., have
relatively high values for SL). Mathematically speaking, sufficiency is not a valid predictor
of new preconditions, but it does have some heuristic value, because literals that are very
necessary are also always somewhat sufficient (if not very sufficient). This heuristic can
encourage GIPS to make errors of commission, and thus learn whether the new literal really
is necessary to the execution concept.

Now let us consider the case of dropping a literal from the preconditions of an operator
when its value for NL becomes too big. Again looking at the equation for NL, we see that
NL increases as P(L does not match / | / 6 C) increases. This corresponds to the case
where GIPS correctly predicts that the operator associated with C should execute, but L
does not appear. Intuitively, this means that L is not necessary for the operator to execute,
so we have some evidence that it should be removed from the preconditions. As far as the
system is concerned, it is learning that there is no reason to subgoal on a literal if it is not
actually a necessary precondition for the operator.

A "proper" implementation of the STAGGER algorithm for this case would increment the
estimate for P(L does not match I \ I e C) slightly every time the operator successfully
executes "early." Thus, it would slowly gather evidence that L is not necessary, and it
would eventually delete L from the preconditions of the operator. The algorithm requires
substantial evidence before it will do this, because it must learn that L really is unneces-
sary and that the system has not simply encountered a noisy instance. In order to speed
up GIPS' learning of preconditions, we assume that the feedback on operator execution
from the user is always correct (i.e., not noisy). This allows us to bias GIPS to increase
P(L does not match / | / € C) by a large value for this type of instance rather than just by
a small increment. Thus, GIPS can drop a literal, L, from its preconditions for an operator
the first time it successfully executes that operator without the presence of L, rather than
waiting for a large number of confirming experiences.

4. Strategy acquisition in the addition domain

This section presents GIPS' behavior through a series of different strategies for adding
numbers. These strategy shifts arise from the learning algorithm incorporated into the
system, and they correspond well with the shifts observed by Siegler and Jenkins. Siegler
and Jenkins classified their subjects' behavior into eight strategies, of which four were based
on counting (the others involved various kinds of recognition and guessing, which GIPS
does not model). In this section, we describe each of the four counting strategies in the
order in which they generally appear. However, it is important to note that children always
intermingle their strategies, sometimes even on a trial-by-trial basis. We will discuss the
issue of strategy variability in the following section.
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4.1. The SUM strategy

GIPS' initial strategy for addition is the SUM strategy. To better follow GIPS' behavior,
we have provided a trace of the sum strategy for the problem 2 + 3 in Table 8. In this
trace, we have omitted calls to the Transform function, only listing when operators
are selected to apply and when they actually execute. The first thing the system does
is assign an addend to each hand. For example, when adding 2 and 3, the system may
assign the number 2 to the left hand and the number 3 to the right hand. However, in this
strategy the order of the addends does not make a difference, so it could just as easily have
switched them.

Next, the system begins its procedure of raising and counting a set of fingers on each
hand. To accomplish this task, the ADDEND-REPRESENTED operators use a counter to
determine when an addend is finished being represented on each hand (see Table 4(a)). For
example, the preconditions of LEFT-ADDEND-REPRESENTED demand that the system be
raising fingers on the left hand, and that the value of the counter be equal to the value of
the left-hand addend. These preconditions are set up as subgoals, causing the selection
of the START-RAISE and START-COUNT operators, which initialize the forward-chaining
procedure of raising and counting fingers one at a time. These operators execute alternately
until LEFT-ADDEND-REPRESENTED can execute, when the correct number of fingers have
been counted on the left hand.

After the left hand has been counted, the CLOBBER-COUNTER operator immediately
executes. This operator executes when all the fingers of a hand have been raised along with
a running count. Its effects are to zero the value of the counter to prepare it for the next
hand, and to mark the current hand as uncounted, because the counter's value has been
changed. This entire procedure then repeats with the right hand.

After both hands have been counted, DETERMINE-ANSWER checks whether it can exe-
cute. It can only execute if both hands are marked as counted, but CLOBBER-COUNTER
has caused this to be false. Therefore, the system again attempts to count up fingers on each
hand, this time marking fingers that are already raised. For this procedure, no CLOBBER-
COUNTER is necessary, because the number of raised fingers (rather than the value of the
counter) is used to terminate the count for each hand. Finally, after each hand has been
counted for the second time, GIPS announces the answer.

As the system repeatedly solves addition problems, it continuously updates the execu-
tion concepts for the two ADDEND-REPRESENTED operators. After a while, these two
concepts encode several regularities that are always true when these operators execute.
For example, there are always two addends in the problem description, and the number
of "marked" fingers is always zero. Most importantly, however, the concepts encode the
number of raised fingers as always equal to the counter value (which in turn is equal to
the goal value for counting an addend). Literals representing this fact eventually get added
into the preconditions for the ADDEND-REPRESENTED operators (see Table 4(b)). This
action alone does not change the system's outward behavior, but it proves important for
later strategies.
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Table 8. GIPS' initial SUM strategy for addition.

Apply SELECT-HAND
(LeftHand, Two, RightHand, Three)

Execute SELECT-HAND
(LeftHand, Two, RightHand, Three)

Apply DETERMINE- ANSWER (?Answer)
Apply COUNT-OUT-LEFTHAND (?Value70)

Apply LEFT-ADDEND-REPRESENTED
(?Value70)

Apply START-RAISE (LeftHand)
Execute START-RAISE (LeftHand)
Apply START-COUNT (LeftHand)
Execute START-COUNT (LeftHand)
Apply RAISE-FINGER (LeftHand, 1)
Execute RAISE-FINGER (LeftHand, 1)
Apply COUNT (1)
Execute COUNT (1)
Apply RAISE-FINGER (LeftHand, 2)
Execute RAISE-FINGER (LeftHand, 2)
Apply COUNT (2)
Execute COUNT (2)

Execute LEFT-ADDEND-REPRESENTED (2)
Execute COUNT-OUT-LEFTHAND (2)
Apply CLOBBER-COUNTER
Execute CLOBBER-COUNTER
Apply COUNT-OUT-RIGHTHAND (?Valuel20)

Apply RIGHT-ADDEND-REPRESENTED
(?Valuel20)

Apply START-RAISE (RightHand)
Execute START-RAISE (RightHand)
Apply START-COUNT (RightHand)
Execute START-COUNT (RightHand)
Apply RAISE-FINGER (RightHand, 1)
Execute RAISE-FINGER (RightHand, 1)
Apply COUNT (1)
Execute COUNT (1)
Apply RAISE-FINGER (RightHand, 2)
Execute RAISE-FINGER (RightHand, 2)
Apply COUNT (2)
Execute COUNT (2)
Apply RAISE-FINGER (RightHand, 3)
Execute RAISE-FINGER (RightHand, 3)
Apply COUNT (3)
Execute COUNT (3)

Execute RIGHT-ADDEND-REPRESENTED (3)
Execute COUNT-OUT-RIGHTHAND (3)

Apply COUNT-UP-BOTH- ADDENDS (?Answer)
Apply CLOBBER-COUNTER
Execute CLOBBER-COUNTER
Apply COUNT-OUT-LEFTHAND (?Valuel58)

Apply END-MARK-COUNT
(LeftHand, ?Valuel58)

Apply START-MARK-COUNT (LeftHand)
Execute START-MARK-COUNT (LeftHand)
Apply MARK-FINGER (LeftHand, 1)
Execute MARK-FINGER (LeftHand, 1)
Apply MARK-COUNT (1)
Execute MARK-COUNT (1)
Apply MARK-FINGER (LeftHand, 2)
Execute MARK-FINGER (LeftHand, 2)
Apply MARK-COUNT (2)
Execute MARK-COUNT (2)

Execute END-MARK-COUNT (LeftHand, 2)
Execute COUNT-OUT-LEFTHAND (2)
Apply COUNT-OUT-RIGHTHAND (?Value208)

Apply END-MARK-COUNT
(RightHand, ?Value208)

Apply START-MARK-COUNT (RightHand)
Execute START-MARK-COUNT (RightHand)
Apply MARK-FINGER (RightHand, 1)
Execute MARK-FINGER (RightHand, 1)
Apply MARK-COUNT (3)
Execute MARK-COUNT (3)
Apply MARK-FINGER (RightHand, 2)
Execute MARK-FINGER (RightHand, 2)
Apply MARK-COUNT (4)
Execute MARK-COUNT (4)
Apply MARK-FINGER (RightHand, 3)
Execute MARK-FINGER (RightHand, 3)
Apply MARK-COUNT (5)
Execute MARK-COUNT (5)

Execute END-MARK-COUNT (RightHand, 5)
Execute COUNT-OUT-RIGHTHAND

(RightHand, 5)
Execute COUNT-UP-BOTH -ADDENDS (5)

Execute DETERMINE-ANSWER (5)
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Table 9. GIPS' SHORTCUT SUM strategy.

Apply SELECT-HAND
(LeftHand, Two, RightHand, Three)
Execute SELECT-HAND
(LeftHand, Two, RightHand, Three)
Apply DETERMINE-ANSWER (?Answer)

Apply COUNT-OUT-LEFTHAND ( ?Value9 8 8 )
Apply LEFT-ADDEND-REPRESENTED

(?Value988)
Apply START-RAISE (LeftHand)
Execute START-RAISE (LeftHand)
Apply RAISE-FINGER (LeftHand, 1)
Execute RAISE-FINGER (LeftHand, 1)
Apply COUNT (1)
Execute COUNT (1)
Apply RAISE-FINGER (LeftHand, 2)
Execute RAISE-FINGER (LeftHand, 2)
Apply COUNT (2)
Execute COUNT (2)

Execute LEFT-ADDEND-REPRESENTED (2)
Execute COUNT-OUT-LEFTHAND (2)
Apply COUNT-OUT-RIGHTHAND (?Valuel022)

Apply RIGHT-ADDEND-REPRESENTED
(?Valuel022)

Apply START-RAISE (RightHand)
Execute START-RAISE (RightHand)
Apply RAISE-FINGER (RightHand, 1)
Execute RAISE-FINGER (RightHand, 1)
Apply COUNT (3)
Execute COUNT ( 3 )
Apply RAISE-FINGER (RightHand, 2)
Execute RAISE-FINGER (RightHand, 2)
Apply COUNT (4)
Execute COUNT (4)
Apply RAISE-FINGER (RightHand, 3)
Execute RAISE-FINGER (RightHand, 3)
Apply COUNT ( 5 )
Execute COUNT (5)

Execute RIOHT-ADDEND-REPRESENTED ( 3 )
Execute COUNT-OUT-RIGHTHAND ( 3 )
Apply COUNT-UP-BOTH-ADDENDS (?Answer)
Execute COUNT-UP-BOTH-ADDENDS (5)

Execute DETERMINE-ANSWER ( 5 )

4.2. The SHORTCUT SUM strategy

After the new preconditions have been added and a number of addition problems have been
solved, the new literals in GIPS' execution concepts for LEFT-ADDEND-REPRESENTED
and RIGHT-ADDEND-REPRESENTED become so strong that GIPS decides that the opera-
tors should execute when the number of fingers raised on a hand is equal to the goal value
even though the system has not yet incremented its count for the last finger. It turns out
that the system can successfully solve the addition problem even if it executes this operator
prematurely, so it deletes the condition that the current counter value must be equal to the
goal value in the preconditions of the ADDEND-REPRESENTED operators (see Table 4(c)).

This change has a direct effect on GIPS' behavior (see Table 9). When attempting to
apply LEFT-ADDEND-REPRESENTED, the value of the counter no longer appears in the
preconditions, so it is not posted as a subgoal. This means that the START-COUNT operator
is no longer selected. Thus, a running count is still kept while raising fingers, but the
counter is not marked for use as the termination criterion. This means that CLOBBER-
COUNTER will not execute, and that leads to two changes in strategy. First, the counter is
not reset to zero after counting the left hand, and counting continues from the left hand's
final value. Second, the hands are not marked as uncounted, so there is no need to count
up the raised fingers again after the two hands have initially been counted. This behavior
corresponds to the SHORTCUT SUM strategy, which was invented by all eight of Siegler
and Jenkins' subjects.

This representation assumes that the student can determine without counting when the
number of raised fingers on either hand is equal to the goal value. For example, in adding
2 + 3, just after saying, "five," and raising a third finger on the right hand, the subject
must see that the number of fingers on the right hand is equal to 3, the number of fingers
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that they intended to raise. Before they began their study, Siegler and Jenkins tested their
subjects' ability to recognize small numbers of objects without counting, and all the subjects
could perform the skill adequately. Thus, we represent it in GIPS as a primitive skill, or a
simple literal.

4.3. The SHORTCUT MIN strategy

The next shift leads to an intermediate strategy between SHORTCUT SUM and MIN, which
we call SHORTCUT MIN. Although Siegler and Jenkins do not classify SHORTCUT MIN
as a distinct strategy from SHORTCUT SUM, they do note (p. 119) that some of their subjects
begin to switch addends during SHORTCUT SUM so that they start counting with the larger
addend on the left hand, rather than just picking whichever addend appears first in the
problem. GIPS also accounts for this behavior.

An important feature of the SHORTCUT SUM strategy is that the problem solver's counter
value is not equal to the number of fingers being raised on the right hand (i.e., the second
hand). We hypothesize that this causes interference and subsequent failure. Such inter-
ference would not occur with the left hand, because the number of raised fingers in the
SHORTCUT SUM strategy is always equal to the value of the counter for that hand. Unfor-
tunately, interference is a phenomenon that GIPS does not yet model, so we were forced
to simulate its effects. We assumed that interference between the value of the counter and
the number of fingers raised on the right hand would cause a child to become confused
and fail to solve the current problem. This behavior is confirmed by Siegler and Jenkins:
"when children used the shortcut-sum approach, they were considerably more accurate on
problems where the first addend was larger than on ones where the second addend was"
(p. 71).

We simulated this process by causing GIPS to fail sometimes during the SHORTCUT
SUM strategy when it decided to count the larger addend on its right hand. These failures
caused the system to update its selection concept for the SELECT-HAND operator. Thus,
GlPS learned to prefer assigning the larger of the two addends to its left hand (information
on the relative sizes of the addends was explicitly included in the state representation). Note
that the learning algorithm does not require a model of interference to make this strategy
shift. It simply records the fact that failure is somewhat correlated with assigning a larger
addend to the right hand.

4.4. The MIN strategy

The final strategy shift occurs in a similar manner to the shift from SUM to SHORTCUT
SUM. At this point, GIPS has attempted to execute the ADDEND-REPRESENTED operators
at various times and has been given feedback each time as to whether it would be able to
solve the current problem if it executed the operator at that time. Thus, it is slowly learning
a "good" concept for when the ADDEND-REPRESENTED operators are executable. One of
the things that proves to be true every time these operators execute is that the goal value for
counting out a hand is equal to the addend assigned to that hand.
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Table 10. GIFS' MIN strategy.

Apply SELECT-HAND
(LeftHand, Three,

RightHand, Two)
Execute SELECT-HAND

(LeftHand, Three,
RightHand, Two)

Apply DETERMINE-ANSWER (?Answer)
Apply COUNT-OUT-LEFTHAND

(?Valuel498)
Apply LEFT-ADDEND-REPRESENTED

(?Valuel498)
Apply START-RAISE

(LeftHand)
Execute START-RAISE

(LeftHand)
Execute LEFT-ADDEND-REPRESENTED ( 3 )
Execute COUNT-OUT-LEFTHAND (3)
Apply COUNT-OUT-RIGHTHAND

(?Valuel516)
Apply RIGHT-ADDEND-REPRESENTED

(?Valuel516)

Apply START-RAISE (RightHand)
Execute START-RAISE (RightHand)
Apply RAISE-FINGER

(RightHand, 1)
Execute RAISE-FINGER

(RightHand, 1)
Apply COUNT (4)
Execute COUNT (4)
Apply RAISE-FINGER

(RightHand, 2)
Execute RAISE-FINGER

(RightHand, 2)
Apply COUNT (5)
Execute COUNT (5)

Execute RIGHT-ADDEND-REPRESENTED ( 3 )
Execute COUNT-OUT-RIGHTHAND ( 3 )
Apply COUNT-UP-BOTH-ADDENDS

( ?Answer)
Execute COUNT-UP-BOTH-ADDENDS (5)

Execute DETERMINE-ANSWER (5)

Eventually, the system attempts to execute the LEFT-ADDEND-REPRESENTED operator
without having raised any fingers at all (see Table 10). When it succeeds in doing this, it
deletes the precondition that the number of fingers raised on the hand be equal to the goal
value (see Table 4(d)). The system has learned that it can simply start counting from the
goal value for the left hand rather than starting from zero. Note that this behavior could not
be generated directly from the initial SUM strategy, because it requires the counter to be
used for counting the total sum, so it cannot aid in representing the right-hand addend. As
with LEFT-ADDEND-REPRESENTED, GIPS also attempts to execute the RIGHT-ADDEND-
REPRESENTED operator early, but this leads to failure. Thus, the system begins to exhibit
the MIN strategy, in which the largest number (the left-hand number) is simply announced
and used to continue counting the smaller number as in the SHORTCUT MIN strategy.

4.5. The FIRST strategy

The only other counting strategy identified by Siegler and Jenkins is the FIRST strategy. It
was used on only six trials, all by the same subject. FIRST is similar to the MIN strategy,
except that it does not assign the larger addend to the left hand. Rather, it starts with
whichever addend is presented first, and continues counting with the second. In GIPS, this
strategy follows from the SHORTCUT SUM strategy when the system does not encounter
interference, and thus does not learn about ordering the addends. While using the FIRST
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strategy, the system can still eventually generate the MIN strategy through the same type
of failure-driven learning that leads from SHORTCUT SUM to SHORTCUT MIN.

5. Summary and analysis

Both the SUM strategy and the MIN strategy have three main subgoals: to represent the
first addend, to represent the second addend, and to count the union of the representations.
The SUM-to-MIN transition involves three independent modifications to the SUM strategy:

1. The process of representing the addends is run in parallel with counting up the union.
In the SUM strategy, representing the two addends must be completed before counting
up the union begins.

2. The order of addends is made conditional on their sizes so that the larger addend is
represented by the easier process. That is, any interference that occurs with the second
addend is more likely to occur if the addend is large. Clearly, this strategy change
must take place after the first one, because there is no interference when representing
an addend and counting the union take place separately.

3. The subgoal of representing one addend changes from explicitly constructing a set of
objects to simply saying the addend.

The GIPS account for each of these transitions is as follows. The first transition is caused
by a combination of correlational learning of preconditions and search-control learning.
Initially, GIPS represents an addend on a hand by raising fingers and counting until the
counter's value is equal to the addend value. In two steps, the system learns that recognizing
the number of fingers raised on a hand is a better stopping criterion than the value of the
counter. When the value of the counter disappears as a subgoal of representing an addend,
it is still free to be used to count the union of objects.

Because the counter is no longer required for representing addends, the question arises
of why the system should continue to count as it raises fingers on each hand. This is an
example of impasse-free search-control learning. The COUNT operator is responsible for
incrementing the oral counter. Initially, it is selected only when the subgoal of counting up
an addend is present. Eventually, correlated relations that are present in the current state
(e.g., that a finger has just been raised) come to dominate the selection concept, and the op-
erator becomes a forward-chaining operator. Basically, people have developed the habit of
counting whenever they raise a finger even if that count doesn' t serve any direct purpose. The
combination of this habit with learning of new preconditions causes GIPS serendipitously
to achieve the goal of counting the union as it deliberately represents the second addend.

Although GIPS can learn this habit, we gave COUNT a forward-chaining selection concept
in this experiment because there is no direct evidence that the subjects did not learn this
behavior even before they learned the SUM strategy (e.g., when they learned to count on
their hands). However, GIPS predicts that subjects that do not have this habit could generate
a fifth strategy, which we call the LAYOUT SUM strategy. In this strategy (which GIPS
successfully generates), we would expect to see subjects silently represent an addend on
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each hand and then count up the union of fingers aloud. Siegler and Jenkins did not explicitly
report observing this strategy, but it is possible that they included this behavior as a form
of the SUM strategy.

The second transition from SUM to MIN is caused by failure-driven, search-control learn-
ing. Given two apparently equivalent methods, persistent errors in one of them causes the
other one eventually to dominate. Because the errors are correlated with the relative sizes
of the addends, GIPS learns that this is the relevant attribute upon which to base its decision
of which hands to represent addends on.

The third transition once again involves impasse-free correlational learning at the knowl-
edge level. GIPS keeps track of which literals in the situation are correlated with the final
achievement of the goal of representing the first addend. Eventually, it considers these cor-
related literals to be just as essential as the originally specified preconditions. It eventually
discovers that the originally specified preconditions can be ignored as long as the correlated
literals are achieved. This summary makes clear that impasse-free, correlational learning
of operator preconditions is crucial to the GIPS account for the first and third transitions.
Ordinary symbol-level learning can handle the second.

6. Discussion

The GIPS analysis helps clarify several important, general issues about strategy change.
Siegler and Jenkins observe that, "Not one child adopted a strategy that could be classified
as indicating a lack of understanding of the goals of addition" (p. 107). In this respect, the
subjects are similar to those of Gelman and Gallistel (1978), who found that very young
children would invent correct strategies for counting a set of objects even when unusual
constraints were placed on them to thwart their normal strategy. Gelman and Gallistel
explain this remarkable competence by hypothesizing that children possess innate (or at
least predetermined) principles of numerousity. Although linguists had earlier proposed the
existence of innate constraints on language development, Gelman and Gallistel provided
the first empirical evidence of innate constraints on non-linguistic development. This set
off a heated debate in the developmental community. Siegler and Jenkins (p. 115) suggest
that such constraints may exist on the development of addition strategies, but they do not
give a specific list.

The initial knowledge given to GIPS does not involve any explicit principles of addition
or counting. It is merely a set of operators and selection preferences that happen to generate
the correct answers. It is able to avoid developing bad strategies because of the feedback
it receives while solving problems. GIPS occasionally attempts to execute an operator in
situations that would produce a wrong answer. If it were not told that the execution was
wrong, it would develop wrong strategies. Thus, GIPS suggests one possible account for
learning without the hypothesized innate constraints.

However, as we have discussed, the feedback we provided to GIPS did not correspond
exactly to the type of feedback that children usually receive. In the Siegler and Jenkins
study, students were told after each trial whether they got the problem right, and then
presented with a new problem. GIPS assumes that it can precisely assign blame to bad
operators by receiving early feedback from the user or by searching until a correct solution
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can be found. A more proper model of Siegler and Jenkins' feedback would require the
incorporation of an incremental credit-assignment algorithm. On the other hand, if GIPS
were supplied with knowledge about constraints on numbers and arithmetic, it would be
able to assign credit and blame as it solved problems (Ohlsson & Rees, 1991), rather than
after receiving its "gold star" for each problem. Such constraints would generate behavior
similar to GIPS' current implementation, providing the same type of immediate feedback
that the user provided when GIPS attempted to execute operators inappropriately.

A common misconception about discovery is that the newly discovered strategy, concept,
or idea instantly and totally supplants its predecessor. In all protocol-based studies of
discovery (e.g., Kuhn, Amsel, & O'Laughlin, 1988; Siegler & Jenkins, 1989; VanLehn,
1991), the transition between the old strategy and the new one is gradual. For instance,
Siegler and Jenkins (p. 73) report, "In the first five sessions after children discovered the
min strategy, they used the strategy on only 12% of the trials in which they used any of
the three counting strategies." We have not tried to model the gradual transition to the
use of the MIN strategy with GIPS because doing it right would require implementing
several memory-based strategies. However, it is clear that the probabilistic nature of GIPS'
selection and execution concepts would tend to predict a gradual transition.

Starting in the eighth week of the study, Siegler and Jenkins began including "impasse
problems," such as 2 + 23. They had hoped that these would encourage discovery of the
MIN strategy, but they did not, for only one child first used the MIN strategy on an impasse
problem. However, children who had already discovered the MIN strategy began to use it
much more frequently on the impasse problems and even on the non-impasse problems that
followed the eighth week. GIPS would tend to do the same thing if it were given impasse
problems. The larger addend would invite errors during the SHORTCUT, SUM and FIRST
strategies, which would lower the values of their selection concepts. The inclusion of
impasse problems would not affect the error rate of the MIN strategy, so it would gradually
become the preferred strategy for all counting trials.

Siegler and Jenkins noticed that some children seemed consciously aware that they had
invented a new strategy in that they could explain it on the first trial where they used it, and
some even recognized that it was a "smart answer," in the words of one child. Other children
denied using the MIN strategy even when the videotape showed that they had used it. For
instance, one child said, "I never counted ... I knew i t . . . I just blobbed around." Siegler
and Jenkins divided children into those who seemed conscious of the strategy and those
who did not, and measured the frequency of their subsequent usage of the MIN strategy.
The high awareness group used the MIN strategy on about 60% of the trials where they
used any counting strategy. The low awareness group used the MIN strategy on less than
10% of the trials. This suggests that being aware of a newly discovered strategy facilitates
subsequent usage of it.

This finding cannot be modeled by GIPS because GIPS has no way to distinguish a
strategy that can be explained from one that is inaccessible to consciousness. However, the
finding could probably be modeled by combining GIPS with a system that uses an analytical
learning algorithm. The basic idea is simple. GIPS would discover a new strategy just as
it does now, and a trace of the strategy's actions would remain in memory. This trace
would be used as an example that is explained by the analytical system. (Siegler and
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Jenkins asked subjects after each problem to explain how they got their answer—a sort of
mandatory reflection.) If enough of the trace can be recalled for the explanation to succeed,
it annotates the steps in the trace and perhaps the operators whose executions produced the
steps. These elaborations make it easier to retrieve the modified operators from memory,
and they may help in assigning credit and blame, thus speeding the adjustment of the
preconditions, selection, and execution concepts. These influences increase the usage of
the new strategy on subsequent problems.

To conclude our discussion, we address a competing model of the SUM-to-MIN transi-
tion. Neches' (1987) HPM is designed to effect strategy changes whenever it detects an
opportunity for improving the efficiency of a procedure. To achieve this, HPM stores a
complete trace of its processing, and constantly monitors this memory with heuristics, such
as "If a sub-procedure produces an output, but no other sub-procedure receives that result by
the time the overall procedure finishes, then modify the overall procedure to eliminate the
superfluous computation." Neches demonstrated that this heuristic and two others sufficed
for changing the SUM strategy into the MIN strategy.

HPM had to produce two transitional strategies before it could get to MIN. Siegler and
Jenkins sought evidence for these transitional strategies in their data. One of the strategies
(the FIRST strategy) occurred six times, all in the protocol of one subject. Moreover, all of
these instances occurred after the subject invented the MIN strategy, whereas HPM must
invent it before it can get to MIN. The second transitional strategy predicted by Neches did
not appear at all. These unfulfilled predictions cast doubt on the HPM model.

Another problem with HPM's account is that it requires the storage of an entire search
tree over several problem-solving attempts. In contrast, GIPS only stores the trace of
the current solution attempt and discards it after learning. As mentioned previously, it
may be useful to explore the use of a different credit-assignment method in GIPS, such
as the bucket-brigade algorithm (Holland et al., 1986). Such an algorithm could allow
the system to avoid storing any of the solution path. As Neches noted, the HPM model
"assumes the relative accessibility of extremely detailed information about both ongoing
process and related past experiences. How can this be reconciled with known limita-
tions on the ability to report this information?" (p. 213). Although HPM is computa-
tionally sufficient to produce the SUM-to-MIN transition, it makes dubious empirical and
mnemonic assumptions.

To summarize, GIPS achieves its main research objective, providing a computational
account of the several strategy shifts observed during the SUM-to-MIN transition. It
uses plausible local processes, rather than the global optimization processes of Neches'
HPM. In addition, GIPS uses modest amounts of storage, in contrast to HPM, which stores
complete solution traces for indefinite periods. Most importantly, GIPS produces all and
only the transitional strategies observed in the Siegler and Jenkins study. It predicts an
additional possible strategy, but does not require it to occur before the invention of the
MIN strategy.

The GIPS analysis solves a number of puzzles raised by Siegler and Jenkins' study. These
include the source of the various strategies that appear in the SUM-to-MIN transition and
their order of appearance, as well as the ability to make significant strategy shifts without
impasse-driven learning, GIPS also suggests a role for innate knowledge of the principles of
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addition in the ability to avoid inventing bad strategies, although this depends on the specific
type of feedback given to the system. Thus, GIPS provides a plausible, computationally
sufficient account of the discovery of the MIN strategy. However, Siegler and Jenkins
produced a second set of findings on the gradual increase in usage of the newly discovered
strategy. We have not yet tried to model these findings, but GIPS seems to provide an
appropriate framework for doing so.

Finally, the SUM-to-MIN transition does not appear to be explainable by conventional,
symbol-level learning mechanisms. Rather, some of the important shifts require changes to
the representation of the domain. GIPS models these changes by altering preconditions on
some of its operators. Adjusting operator preconditions is somewhat dangerous, because it
can allow the system to corrupt a previously correct domain theory, but GIPS demonstrates
that such a mechanism can generate useful behavior shifts when controlled by feedback on
its decisions.
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