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Abstract.  When children learn to add, they count on their fingers, beginning with the simple SuM strategy and 
gradually developing the more sophisticated and efficient MIN strategy. The shift from SUM to MIN provides an 
ideal domain for the study of naturally occurring discovery processes in cognitive skill acquisition. The SUM-to- 
MIN transition poses a number of challenges for machine-learning systems that would model the phenomenon. 
First, in addition to the SUM and MIN strategies, Siegler and Jenkins (1989) found that children exhibit two 
transitional strategies, but not a strategy proposed by an earlier model. Second, they found that children do not 
invent the MtN strategy in response to impasses, or gaps in their knowledge. Rather, MIN develops spontaneously 
and gradually replaces earlier strategies. Third, intricate structural differences between the SUM and MIN strategies 
make it difficult, if not impossible, for standard, symbol-level machine-learning algorithms to model the transition. 
We present a computer model, called GIPS, that meets these challenges. GIPS combines a relatively simple 
algorithm for problem solving with a probabilistic learning algorithm that performs symbol-level and knowledge- 
level learning, both in the presence and absence of impasses. In addition, GIPS makes psychologically plausible 
demands on local processing and memory. Most importantly, the system successfully models the shift from SUM 
to MIN, as well as the two transitional strategies found by Siegler and Jenkins. 

Keywords: cognitive simulation, impasse-free learning, probabilistic learning, induction, problem-solving 
strategies 

1. Introduction 

This research focuses on modeling naturally occurring discovery processes in cognitive 
skill acquisition. In particular, it provides an explanation of the well-known SUM-to-MIN 
transition that children exhibit when they are learning to add (Ashcraft, 1982, 1987; Groen 
& Parkman, 1972; Groen & Resnick, 1977; Kaye, Post, Hall, & Dineen, 1986; Siegler & 
Jenkins, 1989; Svenson, 1975). On the surface, this transition appears to be a case of symbol- 
level or speed-up learning (Dietterich, 1986). The SUM and MIN strategies are both correct 
and complete addition algorithms, but the MIN strategy is much faster. However, closer 
inspection reveals that the transition involves changes to the structure of the solution, which 
cannot be explained by conventional symbol-level learning methods. In addition, children 
appear to invent the MIN strategy spontaneously, rather than in response to any failures or 
impasses in problem solving. Thus, a successful model of the SUM-to-MIN transition must 
make dramatic changes in the strategies, and it must be able to do so without the benefit of 
impasses to drive learning. 
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Earlier work attests to the complexity of modeling this structurally intricate strategy shift. 
Neches (1987) was able to model the transition using a machine learner based on compiler 
optimization techniques, but the model required implausibly large amounts of extremely 
detailed information about both ongoing processes and related past experiences. Moreover, 
it predicted that subjects would briefly display certain strategies on their way to the MIN 
strategy, but these strategies were not observed in subsequent empirical work (Siegler & 
Jenkins, 1989). Other intermediate strategies were observed instead. 

The research problem is to find a learning method (or methods) that can make the SUM- 
to-MIN transition, use only plausible amounts of computation and memory, and explain the 
observed intermediate strategies. In this paper, we concentrate on explaining the results of a 
longitudinal study carried out by Siegler and Jenkins (1989). They found that children invent 
the MIN strategy and two intermediate strategies independently, without any instruction on 
the new strategies. More importantly, Siegler and Jenkins discovered that the invention of 
the MIN strategy does not appear to be driven by failures or impasses in solving problems. 
Finally, we argue that learning the MIN strategy requires a form of knowledge-level learning 
(Dietterich, 1986) that introduces new, more efficient behavior, rather than simply tuning 
or composing old knowledge. 

We describe a computational model, called GIPS (for General Inductive Problem Solver), 
that invents the MIN strategy as well as the correct transitional strategies. In addition, GIPS 
smoothly integrates a general problem-solving architecture with a simple, independently 
motivated learning algorithm. The learning algorithm applies a probabilistic concept learner 
to all of GIPS' major decision points, allowing it to combine impasse-driven, impasse-free, 
symbol-level, and knowledge-level learning in a single, uniform framework. Remarkably, 
the relatively simple problem-solving and learning algorithms interact so as to explain 
intricate strategy shifts that previous systems could not account for. 

In the following section, we describe the SUM-to-MIN transition, and explain its com- 
plexities in detail. Next, we present the GIPS system, its representation of the addition 
domain, and its account of the SUM-to-MIN shift. The last section discusses GIPs' account 
and compares it to those offered by other models. 

2. The SuM-to-MIN transition 

When young children first learn to add two small numbers, they use the so-called SUM 
strategy. They create sets of objects to represent each addend, then count the objects in the 
union of the two sets. For example, suppose a child is asked, "What is 2 plus 3?" In order 
to solve this problem, the child says, "1, 2"' while raising two fingers on the left hand; then 
"1, 2, 3," while raising three fingers on the right hand; then "1, 2, 3, 4, 5," while counting all 
the raised fingers. This is called the SUM strategy because its execution time is proportional 
to the sum of the two addends. Older children use a more efficient strategy, called the MIN 
strategy. In following this strategy, the child first announces the value of the larger addend, 
then counts onward from it. For instance, in order to solve 2 ÷ 3, the child would say, 
"3," then say, "4, 5," while raising two fingers on one hand. The execution time for the 
MIN strategy is proportional to the minimum of the two addends. Algorithms for the two 
strategies appear in Table 1. 
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Table 1. A comparison of the SUM and MIN strategies. 

13 

Initial SUM strategy MIN strategy 

i. Assign first addend 
to left hand; 

2. Assign second addend 
to right hand; 

3. Let Counter be 0; 
4. Loop 
5. Raise finger on left hand; 
6. Let Counter be Counter + i; 
7. Until Counter = 

left hand addend; 
• Let Counter be 0; 
• Loop 
• Raise finger on right hand; 
• Let Counter be Counter + i; 
• Until Counter = 

right hand addend; 
• Let Counter be 0; 
• Loop 
• Mark raised finger; 
• Let Counter be Counter + i; 
• Until number of marked fingers = 

number of raised fingers; 
• Let Answer be Counter; 

8 
9 

i0 
ii 
12 

13 
14 
15 
16 
17 

18 

Assign larger addend 
to left hand; 

Assign smaller addend 
to right hand; 

Let Counter be left hand addend; 

Loop 
Raise finger on right hand; 
Let Counter be Counter + i; 

Until number of raised fingers = 
right hand addend; 

Let Answer be Counter; 

Although the SUM strategy is taught in school, the MIN strategy appears to be invented 
by the children themselves. The best evidence for this comes from a longitudinal study by 
Siegler and Jenkins (1989)• They interviewed eight children weekly for 11 weeks, each time 
asking them to solve about 15 orally presented addition problems• After each problem, they 
asked the children how they got their answers. They also told each child whether the answer 
was correct, and gave the child a gold star if it was. Finally, they analyzed videotapes of the 
session and classified the child's behavior on each problem according to the strategy that the 
child used. As far as Siegler and Jenkins could determine, the only instruction that the sub- 
jects received during this period was their school's normal instruction on the SUM strategy. 
Nonetheless, seven of the eight children eventually began to use the MIN strategy. More- 
over, the children appear to have discovered this strategy during the video-taped sessions. 
The tapes make it clear that they received no help from the experimenter, so the MIN strategy 
appears to have been invented by the subjects themselves. In addition, Siegler and Jenkins 
found two transitional counting strategies that the subjects used while proceeding from SUM 
tO MIN. These are the SHORTCUT SUM strategy, in which a subject raises and counts fin- 
gers from one to the final sum across both hands, and the FIRST strategy, which is similar to 
MIN, except that the order for adding two addends is not determined by their relative sizes. 

2.1. Impasse-free learning during strategy invention 

A central issue for computational learning systems is deciding when to learn. A popular 
method is to learn when an impasse occurs, suggesting a hole in the system's knowledge 
base. The exact definition of "impasse" depends on the problem-solving architecture, 
but roughly speaking, an impasse occurs for a problem solver when it comes across a 



14 R.M. JONES AND K. VANLEHN 

goal that cannot be achieved by any operator that is believed to be relevant to the task at 
hand. The essential idea of impasse-driven learning is to resolve the impasse somehow, 
then store the resulting experience in such a way that future impasses will be avoided or 
at least handled more efficiently. Many systems use impasse-driven learning, including 
LPARSIFAL (Berwick, 1985), OCCAM (Pazzani, Dyer & Flowers, 1986), SWALE (Schank, 
1986), SOAR (Newell, 1990), SIERRA (VanLehn, 1990), and CASCADE (VanLehn & Jones, 
1993; VanLehn, Jones & Chi, 1992). SOAR is perhaps the best-known impasse-driven 
learning system, but its definition of impasse is a bit idiosyncratic. It uses impasse-driven 
learning for all changes to memory. Because people automatically store a dense record 
of their on-going experiences (Tulving's episodic memory), a proper SOAR model must 
have impasses very frequently, perhaps several per second. Unlike SOAR, other models 
record their personal experiences with mechanisms that are separate from their impasse- 
driven learning mechanism. For them, an impasse corresponds to the subjective experience 
of getting stuck and knowing that you are stuck. In one detailed psychological study 
(VanLehn, 1991), this occurred about once every half hour. In this paper, we use "impasse" 
only for these higher level impasses. 

Because of the importance of impasse-driven learning in current models of intelligence, 
Siegler and Jenkins looked specifically for signs of impasses in their study. In particular, 
they designed some of the problems to cause impasses by making one of the addends very 
large (e.g., 23 + 1). They found that "The specific problems on which the children first 
used the MIN strategy were 2 + 5, 4 + 1, 3 + 1, 1 + 24, 5 + 2, and 4 + 3. These problems 
did not deviate from the characteristics of the overall set in any notable way" (p. 67). In 
fact, some of the children had earlier successfully solved exactly the same problem that 
they were working on when they discovered the MIN strategy. Although the large-addend 
problems did cause subjects who had already invented the MIN strategy to start using it more 
frequently, the problems did not cause those who had not invented the strategy to do so. 

In addition, Siegler and Jenkins sought signs of impasses by examining solution times and 
errors in the vicinity of the discovery events. Solution times were longer than normal for 
the problems where the discovery occurred (a median of 17.8 seconds vs. overall median 
of 9.8 seconds) and for the problems immediately preceding the discovery trial (median 18 
seconds). This might suggest some kind of impasse. However, the specific problems being 
worked on at those points were not particularly difficult. On the discovery trial, 71% of the 
problems involved addends that were both 5 or less and thus could each be stored on a single 
hand. This rate is almost identical to the rate of 72% for the set as a whole. Moreover, 88% 
of the problems encountered in the session prior to the discovery did not include a large 
addend. Using error rates as a measure of difficulty yielded a similar finding. Siegler and 
Jenkins report, 

Prior to discovering the min strategy, children had answered correctly 12 of the 16 
problems that they had encountered within the session. This level of accuracy, 75%, 
was not substantially worse than the 85% correct answers that children generated 
across the entire practice set. Further, three of the four errors were generated by a 
single child; the other four children collectively made only one error on the 12 trials 
they encountered in the same session but before their discoveries. This, together 
with the fact that two other children used the min strategy for the first time on the 
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first trial of a session, indicated that incorrect answers are not necessary' to motivate 
discovery of a new strategy. However, the long solution times just prior to the 
discoveries do suggest a heightening of cognitive activity even witheut incorrect 
answers to motivate it. (p. 69) 

The absence of impasses near the critical learning events presents a challenge for current 
theories of learning. However, Siegler and Jenkins suggest a reconciliation between their 
findings and the impasse-driven learning theories: 

Two types of strategy changes can be distinguished: changes in which the main 
difference between the strategies is in the answers themselves, and changes in 
which the main differences are not in the answers that are generated but rather 
in the efficiency with which answers are generated and/or the aesthetic appeal of 
the procedures. The first type of strategy change may occur primarily as a result 
of encountering impasses, but the second may typically occur for other reasons. 
(p. 104) 

2.2. Symbol-level vs. knowledge-level learning 

Dieterrich (1986) defines symbol-level learning as learning that improves the performance 
of a system, but does not increase the deductive closure of the system's knowledge. In 
contrast, learning at the knowledge level involves actually changing the system's knowledge 
base or domain theory, thus changing what the system can possibly deduce (given enough 
time). Most current problem-solving systems learn at the symbol level, achieving better 
performance by improving their search through a problem space. In general, this type of 
learning has taken one of two forms: search tuning and macro-operator formation. Search 
tuning involves methods for decreasing the average branching factor of the search via 
search-control rules (Minton, 1988), selection conditions on operators (Anderson, 1983; 
Mitchell, Utgoff, & Banerji, 1983), numerical strengths on operators (Langley, 1985), or 
similar methods. In contrast, macro-operators decrease the average depth of the space 
by composing the conditions and actions of operator sequences into individual operators 
(Anderson, 1983; Iba, 1989; Korf, 1985). Both of these forms of learning can greatly 
improve the quality of a system's search for a solution to a problem, and sometimes they 
can also improve the quality of the solution itself. 

A close examination of the transition from SUM to MIN indicates that a model based 
strictly on symbol-level learning can explain some shifts, but has difficulties explaining 
others. Let us consider in turn the strategy differences that appear in Table 1. In lines 
1 and 2, subjects learn to assign addends to their hands based on the addends' relative 
sizes. Provided this type of feature is included in its representation language, a symbol- 
level learner can easily discover the feature's relevance, based on failures in generating 
correct answers. 

The procedure for representing an addend on the left hand (lines 4-7) in the SUM strategy 
is replaced by a single line in the MIN strategy, which simply asserts the output of the 
procedure. This shift could possibly be modeled with macro-operators, except that they 
would also force the appropriate number of fingers to be raised on the left hand. However, 
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children can generate the correct counter value without raising fingers. This indicates that 
they can determine which output of the procedure is relevant to the task at hand. Macro- 
operators could not model this, because incrementing the counter is always paired with 
raising a finger in the SUM strategy. As we shall see later, our model predicts that children 
can identify the relevant output of the procedure by learning new preconditions on the 
operator that terminates the procedure. 

The next difference between the two strategies appears in the procedure for representing 
the right-hand addend (lines 9-12). The only difference between the two procedures is the 
termination criterion for the loop. This is a somewhat simpler transition than the previous 
one, but it still causes problems for a symbol-level learner. The children appear to learn that 
recognizing the number of raised fingers on a hand is a better stopping criterion than using 
the value of the counter. This discovery occurs even though both criteria generate correct 
answers. However, recognizing the number of raised fingers serendipitously leads to a more 
efficient solution, because the counter no longer has to be zeroed in order to represent each 
addend (lines 8 and 9). This in turn makes the final loop (lines 14-17) unnecessary in the 
MIN strategy, because the correct answer is already available. 

Once again, it is difficult to see how a symbol-level learner could account for this repre- 
sentation shift. Our model determines that the number of fingers raised on a hand is highly 
correlated with the value of the addend being represented. It eventually replaces the counter 
value as the loop termination criterion because it allows the loop to terminate faster. This 
transition requires the system to change its preconditions for the operator that terminates the 
loop. Thus it involves knowledge-level adjustment of the domain representation and cannot 
be explained simply in terms of knowledge tuning or the formation of macro-operators. 

Our analysis of the differences between the SUM and MIN strategies, together with Siegler 
and Jenkins' findings, provide some strict criteria that a model of the SUM-to-MIN transition 
should meet. First, the model should proceed from usage of the SUM strategy to the MIN 
strategy without any outside instruction (other than feedback on the correctness of the 
answers). It should invent the same transitional strategies that Siegler and Jenkins found in 
their subjects. It also must account for the ability to invent new strategies even when there 
are no impasses to drive learning. Finally, the model must incorporate a mechanism for 
knowledge-level learning, so that it can adapt its representation of the task domain. GIPS, 
the model we describe in the next section, meets these criteria. 

3. The General Inductive Problem Solver 

GIPS is a problem solver that uses flexible means-ends analysis as its performance mech- 
anism (Jones, 1993; Langley & Allen, 1991). Its learning mechanism is based on Schlim- 
mer's (1987; Schlimmer & Granger, 1986a, 1986b) STAGGER system, which uses a prob- 
abilistic induction technique to learn concept descriptions from examples. GIPS uses its 
induction algorithm to learn search-control knowledge for its operators, assigning credit and 
blame in a manner similar to SAGE (Langley, 1985) and LEX (Mitchell, Utgoff, & Banerji, 
1983). However, GIPS also uses probabilistic induction to learn new preconditions on its 
operators, thus modifying the descriptions of the operators themselves. Inductive modifi- 
cation of preconditions (as opposed to inductive modification of search-control knowledge) 
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Table 2. A GIPS operator to increment the value of a counter. 

COUNT(?Hand, ?Initvalue, ?Finalvalue) 
Preconditions: 

Hand(?Hand) 
Just-raised(?Hand) 
Counter-value(?Initvalue) 

Add conditions: 
Counter-value(?Finalvalue) 

Delete conditions: 
Counter-value(?Initvalue) 
Just-raised(?Hand) 

Constraints: 
?Finalvalue is ?Initvalue + 1 

appears to be a new machine-learning technique. Although it could be risky, in that it seems 
capable of destroying the correctness of the operator set, we show that when properly con- 
trolled, it can produce correctness-preserving speed increases that standard techniques have 
not been able to produce. From a cognitive-modeling perspective, both learning about 
search control and learning new operator representations play crucial roles in the SUM-to- 
MIN transition. 

3.1. Representation of the addition domain 

In this section, we describe GIPS' representation of the task domain. GIPS describes the 
world as a set of relations between objects. In the domain of addition, these objects and 
relations include the numbers that are part of the problem, the state of the problem solver's 
"hands" while it is adding, and the value of a counter that the problem solver keeps "in its 
head." In addition, GIPS represents possible actions in the domain with operators that are 
similar in representation to those used by STRIPS (Fikes & Nilsson, 1971). Each includes 
a set of preconditions, add conditions, delete conditions, and possibly a set of constraints 
on the variable bindings. 

As an example, consider the operator in Table 2, which increments the value of the counter. 
This operator has three variable parameters, ?Hand, ?Initvalue, and ?Final- 
v a l u e  (throughout this paper, an atom beginning with "?" represents a variable). The 
preconditions for the operator check the current value of the counter and make sure that 
the system has just raised a finger that needs to be counted. The constraint generates a 
final value for the counter by incrementing the initial value. GIPS' constraint mechanism 
allows constraints to propagate forwards or backwards, so this constraint can also compute 
the necessary initial value if it is given the final value as a goal. Finally, When the operator 
executes, it will delete the initial value of the counter and record the final value. In addition, 
it will delete the "just-raised" condition so that the finger will not be counted twice. 

GIPS represents the addition domain with the 16 operators presented in Table 3. There 
are two particular operators, which we refer to as the ADDEND-REPRESENTED operators, 
that are involved in most of the strategy shifts. For future reference, the series of precon- 



18 R.M. JONES AND K. VANLEHN 

Table 3. Operators for the addition domain. 

SELECT-HAND: Select an addend to be counted on each hand. The left hand is 
always counted first. 

COUNT-OUT-LEFTHAND: Represent or count the left-hand addend. 
COUNT-OUT-KIGHTHAND: Represent or count the right-hand addend. 
START-COUNT: Keep track of the counter value while raising fingers. 
START-RAISE: Begin raising fingers in order to represent an addend. 
RAISE-FINGER: Raise a finger. 
COUNT: Count the last raised finger by incrementing the counter value. 
LEFT-ADDEND-REPRESENTED: Stop counting and raising fingers on the 

left hand. 
RIGHT-ADDEND-KEPRESENTED: Stop counting and raising fingers on the 

right hand. 
CLOBBER-COUNTER: Set the counter value to zero. 
COUNT-UP-BOTH-ADDENDS: Make sum both addends have been counted together. 
START-MARK-COUNT: Keep a running count while marking raised fingers. 
MARK-FINGER,: Mark a finger that has already been raised. 
~V[ARK-COUNT: Count the last marked finger by incrementing the counter value. 
END-MARK-COUNT: Stop marking fingers on a hand. 
DETERMINE-ANSWER: Announce the answer. 

Table 4. A series of preconditions for LEFT-ADDEND-REPR/~SENTED. 

SoMstrategy(~: 
Raising(LeftHand) 
Assigned(LeftHand,?Value) 
Counter-value(?Value) 

SL~s~ategy ~): 
Raising(LeftHand) 
Assigned(LeftHand,?Value) 
Counter-value(?Value) 
Raised-fingers(LeftHand,?Value) 

SHOR~ StrMs~at~y(c): 
Raising(LeftHand) 
Assigned(LeftHand,?Value) 
Raised-fingers(LeftHand,?Value) 

M i N s U ~ y ( d ) :  
Raising(LeftHand) 
Assigned(LeftHand,?Value) 

ditions that the LEFT-ADDEND-REPRESENTED operator acquires in going from SUM to 
MIN appears in Table 4. For our study, we initialized GIPS' search-control and precon- 
dition knowledge for the 16 operators such that the system generates the SUM strategy on 
addition problems. We will discuss this initialization in more detail after presenting Gins '  
performance algorithm and low-level knowledge representation. 

3.2. Performance algorithm 

As mentioned above, GIPS' problem-solving algorithm (see Table 5) is a form of flexible 
means-ends analysis, borrowed from the EUREKA system (Jones, 1993). As with standard 
means-ends analysis, the algorithm is based on trying to achieve a state change. The 
desired change is represented by a T R A N S F O R M ,  which is simply a pair consisting of 
the current state and some goals (an example appears in Table 6). In order to achieve 
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Table 5. GrPS' algorithm for solving problems. 

TRANSFORM(CurState,Goals): Returns NewState 
If CurState satisfies Goals 

Then Return NewState as CurState 
Else Let OpSet be the ordered set of selected 

operator instantiations; 
Let FailedOps be Nil; 
Loop for Operator in OpSet 

Let TempState be APPLY(CurState,Operator); 
If TempState is "Failed State" 

Then push Operator onto FailedOps and continue loop; 
Let TempState be TRANSFORM(TempState,Goals); 
If TempState is "Failed State" 

Then push Operator onto FailedOps and continue loop; 
Store (CurState,Goals) as a positive example for the 

selection concept of Operator; 
Store (CurState,Goals) as a negative example for the 

selection concept of each operator in FailedOps; 
Return NewState as Tempstate 

End loop; 
Return NewState as "Failed State"; 

APPLY(CurState,Op): Returns NewState 
Let P be PRECONDITIONS(Op); 
If CurState satisfies the execution concept of Op 

Then If the user says Op is executable 
Then Store CurState as a positive example for the 

execution concept of Op; 
Return NewState as EXECUTE(CurState,Op) 

Else Store CurState as a negative example for the 
execution concept of Op; 

Let TempState be TRANSFORM(CurState,P); 
If TempState is "Failed State" 

Then Return NewState as "Failed State" 
Else Return NewState as APPLY(TempState,Op); 

this transformation, GIPS selects an operator and attempts to apply it. If the operator's 
preconditions are met, GIPS executes it and the current state changes. If some of the 
preconditions are not met, a new TRANSFORM is created with the preconditions as the 
new goals. When this TRANSFORM is achieved, GIPS returns to the old TRANSFORM 
and attempts again to apply the operator. So far, this is simply a description of standard 
means-ends analysis. 

The difference between standard and flexible means-ends analysis occurs in the selection 
of an operator to apply. Standard means-ends analysis requires that the actions of any 
selected operator directly address the goals of the TRANSFORM. In flexible means-ends 
analysis, operator selection is determined by a selection algorithm that can use any criteria 
to choose an operator. In order for the selection algorithm to be useful, it is usually under 
the direct control of the system's learning mechanism. In GIPS, operator selection is de- 
termined by selection concepts. Each operator is associated with an explicit concept that 
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Table 6. An example of a Tt~ANSFORM for the addition domain. 

Current State: 
On-Paper(First,Two) 
On-Paper(Second,Three) 
Assigned(LeftHand,Three) 
Counter-Value(Zero) 
Raised-Fingers(LeftHand, Zero) 

Goals: 
Raising(LeftHand) 
Assigned(LeftHand,?Value) 
Counter-Value(?Value) 

indicates when it should be selected. If the concept depends mostly on the current state of the 
TRANSFORM, then the operator will act like a forward-chaining inference rule and execute 
whenever the state is appropriate, regardless of the current goals. If the concept depends 
mostly on the goals of the TRANSFORM, then it will act like a backward-chaining infer- 
ence rule. Typically, forward and backward operators intermingle during problem solving, 
yielding a psychologically plausible blend of goal-directed and opportunistic behavior. 

In (lips, each operator has a selection concept. The representation of a selection concept 
is similar to the representation of a TRANSFORM, consisting of a set of literals (predicates 
that may or may not be negated) describing the current state and goals. In addition, however, 
each literal in a selection concept has two numerical values associated with it: sufficiency 
and necessity. In order to evaluate the selection value of an operator, QIps matches the 
literals against the current TRANSFORM. It determines the subset of literals that match 
(M) and fail to match (F), then calculates 

Selection Value = Odds(C) I I  SL I I  NL, 
L E M  L E F  

where Odds(C) is the prior odds that the concept's operator is worth selecting, SL is the 
sufficiency of the literal, L, with respect to the concept, and NL is the necessity of L 
with respect to the concept. A sufficiency score that is much greater than 1 indicates that 
a literal is very sufficient for the selection concept. That is, if SL is a high value, then 
the selection value will be high if the literal, L, appears in the current TRANSFORM. In 
contrast, a literal is very necessary if the necessity value is much less than 1. In other words, 
if NL is low, it means that the selection value will likely be low unless L appears in the 
cur ren t  TRANSFORM. 

The above formula is used by STACGER, Schlimmer's (1987) concept formation system, 
to estimate the odds that a given object is an instance of a particular concept. However, 
a major difference between STAGGER and GIPS is that STAGGER worked exclusively 
with propositional knowledge representations. In contrast, the literals in GIPS' concepts 
are general predicates that can also contain variables. This means that the relations in a 
given TRANSFORM will generally only partially match the relations in a concept, and the 
TRANSFORM m a y  in fact match the concept in more than one way. In these cases, GIPS  

finds a number of partial matches and calculates a selection value for each one. Each of these 
matches in turn represents a different instantiation of the operator attached to the selection 
concept. Thus, the selection procedure typically returns a number of different instantiations 
of a number of different operators. When all the operator instantiations have been found 
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Table 7. The initial selection and execution concepts for LEFT-ADDEND-REPRESENTED. 

Sele~Mn 
CURR~TSTA~ S N GOALS 
Raising(LeftHand) 1.03 0.98 
Assigned(LeftHand,?Value4) 1.03 0.98 
Counter-Value(?Value4) 1.03 0.98 Counter-Value(?Value4) 
Raised(LeftHand) 0.01 1.01 Raised(LeftHand) 
Counted(LeftHand) 0.71 1.01 Counted(LeftHand) 

Execution 
CURR~TSTA~ S N 
Assigned(LeftHand,?Value4) 2.71 0.05 
Raising(LeftHand) 2.71 0.05 
Counter-Value(?Value4) 2.71 0.05 

S N 

1.00 1.00 
I0.00 0.91 
i0.00 0.91 

and their selection values have been calculated, GIPS throws out all the instantiations with 
a selection value less than 1. The remaining instantiations are ordered according to their 
selection values. 

GIPS differs from standard means-ends systems in one more important way. In standard 
problem-solving systems, each operator has a set of preconditions, which are used in two 
ways. First, they determine when the operator can execute. Second, they dictate which 
subgoals should be set up via means-ends analysis when an operator is not yet executable. 
GIPS uses the preconditions to set up subgoals, but it does not use them to determine the 
executability of the operators. Rather, each operator has an associated execution concept 
that dictates when the system will try to execute it. GIPS' execution concepts are similar in 
form to selection concepts, except they contain literals describing the current state but not 
the current goals. 

As mentioned previously, GIPS' initial selection and execution concepts were set up to 
generate the SUM strategy for addition. The literals of each operator's selection concept 
were set to the preconditions and the goals that the operator could satisfy. The necessity and 
sufficiency of these literals were set so that they would be retrieved in either a backward- 
chaining or forward-chaining fashion, depending on the role of the operator in the domain. 
For example, pure backward-chaining operators had each of their goal literals set with high 
sufficiency. Forward-chaining operators had each of their current state literals set with 
high necessity. Finally, each operator had an initial set of preconditions, and the execution 
concept for each operator was initialized to the literals occurring in the preconditions, each 
with high necessity. 

As an example, the initial preconditions for LEFT-ADDEND-REPRESENTED appear in 
Table 4(a), with its initial selection and execution concepts in Table 7. An examination of 
Table 7 shows that LEFT-ADDEND-REPRESENTED is likely to be selected when the current 
TRANSFORM'S goals include Raised ( L e f t H a n d )  or Counted ( L e f t H a n d )  
(high S value), unless these literals also appear in the TRANSFORM'S current state (low S 
value). The operator is set to execute only when all three of As s i gned (Le f tHand, 
?Value4), Raising (LeftHand), and Counter-Value (?Value4) are 
matched by literals in the current TRANSFORM's state description (medium S value and 
low N value). 
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From our description of GIPS' general problem-solving algorithm, it is clear that there are 
exactly two types of choice that the system has to make while solving problems: the choice 
of which operator to apply next, and the choice of whether to execute an operator or subgoal 
on its preconditions. It is appealing to apply a uniform learning and decision mechanism 
in a system's performance algorithm, so GIPS uses its probabilistic concept-matching and 
learning mechanism for both of these decision points. Other problem solvers include 
additional types of decisions. For example, PRODIGY (Minton, 1988) makes an explicit 
decision for which subgoal to work on next, whereas that decision is implicit in (liPS' 
operator-selection decision. Our experiences indicate that a STACGER-like algorithm can 
be used at any type of decision point, providing the same kinds of learning benefits to each. 
Thus, if we decided to have GIPS make an explicit choice about which subgoal to work on 
next, we would also use the concept-matching algorithm for that, enabling the system to 
learn and improve its behavior for choosing subgoals as well. In the following section, we 
discuss how execution and selection concepts change with experience. More importantly, 
we explain how changes in the execution concepts directly lead to representation changes 
in the operator preconditions. 

3.3. Learning in GIPS 

GIPS adjusts its selection concepts on the basis of its successes and failures while solving 
problems. When a TRANSFORM is finally solved, GIFS adjusts the sufficiency and necessity 
values of the successful operator so that the operator will be rated even higher the next time 
a similar TRANSFORM occurs. For each operator that initiated a failure path (i.e., it took the 
first step offa TRANSFORM's solution path), GIFS adjusts the values in its selection concept 
so that it will receive a lower value next time. Note that GIPS considers every TRANSFORM 
to be a "problem," so it can learn about any particular TRANSFORM even if it doesn't lie 
on the solution path to some global problem. In order to do this kind of learning, GIPS 
must store the current solution path and every operator that led off it. However, as soon as 
each individual TRANSFORM in a problem is finished, and the updating is completed, that 
portion of the solution path is discarded. 

This method of assignment for credit and blame is similar to the method used by other 
problem-solving systems that include concept-learning mechanisms (Langley, 1985; 
Mitchell, Utgoff, & Banerji, 1983). These systems (and GIPS) can easily assign credit 
and blame, because they backtrack until they find a solution to the current problem. Then, 
each decision that leads off the final solution path is classified as a bad decision (a nega- 
tive example), and each decision that lies on the final solution path is classified as a good 
decision (a positive example). 

However, GIPS differs from these previous systems in the details of its concept-learning 
algorithm. GIFS computes the sufficiency and necessity scores for literals in a concept (SL 
and NL) with the following equations: 

SL = P(L matches I I I C C) 
P(L matches I ] I ¢~ C) '  
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NL -- P(L does not match I I I E C) 
P(L does not match I I I ¢ C) '  

where I E C means that TRANSFORM instance, I,  is a positive example of the concept, 
C, and "L matches I "  means that literal, L, of the concept is matched by some literal 
in I. Thus, sufficiency and necessity for each literal are determined by four conditional 
probabilities. 

(liPS learns by updating its estimates of these conditional probabilities. For each literal 
in a selection concept, GIPS records four values: t, the total number of examples (pos- 
itive and negative) that the system has stored into this selection concept; p, the number 
of those that were positive examples; l, the total number of times this literal has been 
matched by any (positive or negative) example; and c, the number of times the literal has 
been matched in a positive example. In precise form, the conditional probabilities are 
estimated by 

c 
P(L matches I I I E C) -- - ,  

P 

1 - c  
P(L matches I I I ¢ C) - t - p '  

P(L does not match I I I C C )  - p - c ,  
P 

P(L does not match I I I ¢ C) - 
t + c - p - 1  

t - p  

As indicated in the algorithm in Table 5, GIPS learns by storing an instance (the literals 
describing the state and goals of the current TRANSFORM) as a positive or negative example 
of an operator's selection concept (depending on whether the operator led to a solution 
or a failed search path). Every time the system stores a TRANSFORM as a positive or 
negative example, it matches the literals in the TRANSFORM to the literals in the selection 
concept. If there are any literals in the new instance that do not already appear in the 
selection concept, they are added into the selection concept's representation. Finally, GIPS 
increments the appropriate counts for each literal: always incrementing t, incrementing p 
if the instance is  a positive example, incrementing l if the literal is matched by a literal 
in the instance, and incrementing c if the instance is a positive example and the literal 
is matched. For the interested reader, Schlimmer (1987; Schlimmer & Granger, 1986a, 
1986b) provides excellent, detailed descriptions of the learning algorithm and its behavior 
in classification tasks. 

We have so far described how GIPS updates its selection concepts. These concepts 
determine when operators are selected to achieve a TRANSFORM, SO they represent search- 
control knowledge. As we have mentioned, the system also must adapt its execution con- 
cepts. The conditional probabilities are updated identically to selection concepts. However, 
the assignment of credit and blame is a bit different. 

Assignment of credit and blame for execution concepts can be computed in a manner 
similar to credit and blame for selection concepts. When GIPS thinks that a particular 
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operator should execute, it blindly carries on and eventually generates an answer. However, 
it is possible that the answer will be wrong, indicating that the operator should not have 
executed (i.e., GIPS' execution concept for that operator is wrong). If GIPS is allowed to 
backtrack until it eventually generates the correct answer, it can precisely determine which 
situations should be stored as negative and positive instances of the execution concept, just 
as with selection concepts. We discovered that in some instances, when GIPS unfortunately 
generated multiple "bad" execution concepts, backtracking could take quite a while before 
the system would generate a correct answer and do the appropriate learning. We finessed 
this problem by giving the system immediate feedback on whether it would generate a 
correct answer when it attempted to execute operators. 

Unfortunately, this does not tell the whole story on credit and blame assignment. In 
Siegler and Jenkins' study, they awarded each subject a gold star after the subject gave a 
correct answer, but they did not force the subjects to keep working on the problems until 
they could give a correct answer, as we do with GIPS. For a strict model of this experiment, 
we would give GIPS feedback after it generates a complete solution, and not force the 
system to backtrack. However, if GIPS is not allowed to backtrack, it must incorporate an 
incremental credit-assignment algorithm, such as the bucket-brigade algorithm (Holland, 
Holyoak, Nisbett, & Thagard, 1986). In our study, we were more concerned with the 
order of acquired strategies than the speed of acquisition, so we did not implement such 
an algorithm in the current version of GIPS. We are convinced that a more realistic credit- 
assignment algorithm would slow down learning, but would not disturb the order of strategy 
acquisition. However, future research with GIPS should certainly address this issue. 

The final aspect of learning in Gins involves changing the preconditions on operators. 
When GIPS successfully predicts that an operator should execute, but the probabilistic 
execution concept does not agree with the current preconditions of the operator, the system 
changes the preconditions appropriately. Operator preconditions in Gins contain only the 
literals from the execution concept that GIPS has decided are very necessary. This symbolic 
representation is used to post subgoals when the system wants to apply an operator that it 
believes cannot yet be executed. Recall that a TRANSFORM includes literals representing 
the current goals, and these are matched against selection concepts for the operators. Thus, 
changing operator preconditions can lead directly to subsequent changes in the selection of 
operators while solving problems. 

Logically, GIPS should include in its preconditions for an operator exactly the literals that 
are highly necessary (i.e., have very low values for NL). In problem-solving terms, all the 
literals in the preconditions of an operator should be true (or matched) for the operator to be 
executable. Thus, it should add literals from the execution concept that have low NL values 
to the preconditions, and it should drop literals that do not have low NL values from the 
preconditions. However, in order to speed up GIPS' learning, we have adopted a heuristic 
approach for each of these cases. 

First, consider the criterion for adding a new literal to the preconditions of an operator. 
Again, GIPS should ideally consider this action for any literal with a low value for NL. An 
examination of the equation for NL shows that it decreases as P(L does not match I I [ 
C) increases. Learning about necessity poses some difficulties, because GIPS can increase 
its estimate of P(L does not match I I I ~ C) only when it predicts that the operator 
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associated with C should execute, but the user tells the system that it made an incorrect 
prediction (an error of commission). However, GIPS is generally conservative in attempting 
to execute operators, so this type of event is relatively rare. Thus, GIPS takes a long time 
to learn that any new literal is necessary for execution. To overcome this difficulty, we 
allow GIPS to use a different criterion for adding preconditions. Rather than looking for 
literals that are very necessary, it looks for literals that are somewhat sufficient (i.e., have 
relatively high values for S¢). Mathematically speaking, sufficiency is not a valid predictor 
of new preconditions, but it does have some heuristic value, because literals that are very 
necessary are also always somewhat sufficient (if not very sufficient). This heuristic can 
encourage GIPS to make errors of commission, and thus learn whether the new literal really 
is necessary to the execution concept. 

Now let us consider the case of dropping a literal from the preconditions of an operator 
when its value for NL becomes too big. Again looking at the equation for NL, we see that 
NL increases as P(L does not match I I I E C) increases. This corresponds to the case 
where GleS correctly predicts that the operator associated with C should execute, but L 
does not appear. Intuitively, this means that L is not necessary for the operator to execute, 
so we have some evidence that it should be removed from the preconditions. As far as the 
system is concerned, it is learning that there is no reason to subgoal on a literal if it is not 
actually a necessary precondition for the operator. 

A "proper" implementation of the STAGGER algorithm for this case would increment the 
estimate for P(L does not match I I I E C) slightly every time the operator successfully 
executes "early?' Thus, it would slowly gather evidence that L is not necessary, and it 
would eventually delete L from the preconditions of the operator. The algorithm requires 
substantial evidence before it will do this, because it must learn that L really is unneces- 
sary and that the system has not simply encountered a noisy instance. In order to speed 
up GIPS' learning of preconditions, we assume that the feedback on operator execution 
from the user is always correct (i.e., not noisy). This allows us to bias GIPS to increase 
P(L does not match I I [ E C) by a large value for this type of instance rather than just by 
a small increment. Thus, GIPS can drop a literal, L, from its preconditions for an operator 
thefirst time it successfully executes that operator without the presence of L, rather than 
waiting for a large number of confirming experiences. 

4. Strategy acquisition in the addition domain 

This section presents GIPS' behavior through a series of different strategies for adding 
numbers. These strategy shifts arise from the learning algorithm incorporated into the 
system, and they correspond well with the shifts observed by Siegler and Jenkins. Siegler 
and Jenkins classified their subjects' behavior into eight strategies, of which four were based 
on counting (the others involved various kinds of recognition and guessing, which GIPS 
does not model). In this section, we describe each of the four counting strategies in the 
order in which they generally appear. However, it is important to note that children always 
intermingle their strategies, sometimes even on a trial-by-trial basis. We will discuss the 
issue of strategy variability in the following section. 
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4.1. The SVM strategy 

GIPS' initial strategy for addition is the SUM strategy. To better follow GIPS' behavior, 
we have provided a trace of the sum strategy for the problem 2 + 3 in Table 8. In this 
trace, we have omitted calls to the T r a n s  f o r m  function, only listing when operators 
are selected to apply and when they actually execute. The first thing the system does 
is assign an addend to each hand. For example, when adding 2 and 3, the system may 
assign the number 2 to the left hand and the number 3 to the right hand. However, in this 
strategy the order of the addends does not make a difference, so it could just as easily have 
switched them. 

Next, the system begins its procedure of raising and counting a set of fingers on each 
hand. To accomplish this task, the ADDEND-REPRESENTED operators use a counter to 
determine when an addend is finished being represented on each hand (see Table 4(a)). For 
example, the preconditions of LEFT-ADDEND-REPRESENTED demand that the system be 
raising fingers on the left hand, and that the value of the counter be equal to the value of 
the left-hand addend. These preconditions are set up as subgoals, causing the selection 
of the START-RAISE and START-COUNT operators, which initialize the forward-chaining 
procedure of raising and counting fingers one at a time. These operators execute alternately 
until LEFT-ADDEND-REPRESENTED can execute, when the correct number of fingers have 
been counted on the left hand. 

After the left hand has been counted, the CLOBBER-COUNTER operator immediately 
executes. This operator executes when all the fingers of a hand have been raised along with 
a running count. Its effects are to zero the value of the counter to prepare it for the next 
hand, and to mark the current hand as uncounted, because the counter's value has been 
changed. This entire procedure then repeats with the right hand. 

After both hands have been counted, DETERMINE-ANSWER checks whether it can exe- 
cute. It can only execute if both hands are marked as counted, but CLOBBER-COUNTER 
has caused this to be false. Therefore, the system again attempts to count up fingers on each 
hand, this time marking fingers that are already raised. For this procedure, no CLOBBER- 
COUNTER is necessary, because the number of raised fingers (rather than the value of the 
counter) is used to terminate the count for each hand. Finally, after each hand has been 
counted for the second time, GIPS announces the answer. 

As the system repeatedly solves addition problems, it continuously updates the execu- 
tion concepts for the two ADDEND-REPRESENTED operators. After a while, these two 
concepts encode several regularities that are always true when these operators execute. 
For example, there are always two addends in the problem description, and the number 
of "marked" fingers is always zero. Most importantly, however, the concepts encode the 
number of raised fingers as always equal to the counter value (which in turn is equal to 
the goal value for counting an addend). Literals representing this fact eventually get added 
into the preconditions for the ADDEND-REPRESENTED operators (see Table 4(b)). This 
action alone does not change the system's outward behavior, but it proves important for 
later strategies. 
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Table 8. GIPS' initial SUM strategy for addition. 

Apply SELECT-HAND 
(LeftHand, Two, RightHand, Three) 

Execute SELECT-HAND 
(LeftHand, Two, RightHand, Three) 

Apply DETERMINE-ANSWER (?Answer) 
Apply COUNT-OUT-LEFTHAND (?Value70) 
Apply LEFT-ADDEND-REPRESENTED 

(?Value70) 
Apply START-RAISE (LeftHarld) 
Execute START-RAISE (LeftHand) 
Apply START-COUNT (LeftHand) 
Execute START-COUNT (LeftHand) 
Apply RAISE-FINGER (LeftHand, l) 
Execute RAISE-FINGER (LeftHand, l) 
Apply COUNT (l) 
Execute COUNT (1) 
Apply RAISE-FINGER (LeftHand, 2) 
Execute RAISE-FINGER (LeftHand, 2) 
Apply COUNT (2) 
Execute COUNT (2) 

Execute LEFT-ADDEND-REPRESENTED (2) 
Execute COUNT-OUT-LEFTHAND (2) 
Apply CLOBBER-COUNTER 
Execute CLOBBER-COUNTER 
Apply COUNT-OUT-RIGHTHAND (?Valuel20) 

Apply RIGHT-ADDEND-REPRESENTED 
(?Value120) 

Apply START-RAISE (RightHand) 
Execute START-PAISE (RightHand) 
Apply START-COUNT (RightHand) 
Execute START-COUNT (RightHand) 
Apply RAISE-FINGER (RightHand, 1) 
Execute RAISE-FINGER (RightHand, 1) 
Apply COUNT (1) 
Execute COUNT (1) 
Apply RAISE-FINGER (RightHand, 2) 
Execute RAISE-FINGER (RightHand, 2) 
Apply COUNT (2) 
Execute COUNT (2) 
Apply RAISE-FINGER (RightHand, 3) 
Execute RAISE-FINGER (RightHand, 3) 
Apply COUNT (3) 
Execute COUNT (3) 

Execute RIGHT-ADDEND-REPRESENTED (3) 
Execute COUNT-OUT-RIGHTHAND (3) 

Apply COUNT-UP-BOTH-ADDENDS (?Answer) 
Apply CLOBBER-COUNTER 
Execute CLOBBER-COUNTER 
Apply COUNT-OUT-LEFTHAND (?ValueI58) 

Apply END-MARK-COUNT 
(LeftHand, ?Value158) 

Apply START-MARK-COUNT (LeftHand) 
Execute START-MARK-COUNT (LeftHand) 
Apply MARK-FINGER (LeftHand, 1) 
Execute MARK-FINGER (LeftHand, 1) 
Apply MARK-COUNT (1) 
Execute MARK-COUNT (1) 
Apply MARK-FINGER (LeftHand, 2) 
Execute MARK-FINGER (LeftHand, 2) 
Apply MARK-COUNT (2) 
Execute MARK-COUNT (2) 
Execute END-MARK-COUNT (LeftHand, 2) 

Execute COUNT-OUT-LEFTHAND (2) 
Apply COUNT-OUT-RIGHTHAND (?Value208) 

Apply END-MARK-COUNT 
(RightHand, ?Value208) 

Apply START-MARK-COUNT (RightHand) 
Execute START-MARK-COUNT (RightHand) 
Apply MARK-FINGER (RightHand, 1) 
Execute MARK-FINGER (RightHand, 1) 
Apply MARK-COUNT (3) 
Execute MARK-COUNT (3) 
Apply MARK-FINGER (RightHand, 2) 
Execute MARK-FINGER (RightHand, 2) 
Apply MARK-COUNT (4) 
Execute MARK-COUNT (4) 
Apply MARK-FINGER (RightHand, 3) 
Execute MARK-FINGER (RightHand, 3) 
Apply MARK-COUNT (5) 
Execute MARK-COUNT (5) 
Execute END-MAP, K-COUNT (RightHand, 5) 

Execute COUNT-OUT-RIGHTHAND 
(RightHand, 5) 

Execute COUNT-UP-BOTH -ADDENDS (5) 
Execute DETERMINE-ANSWER (5) 
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Table 9. GIPS' SHOI%TCUT SUM strategy. 

Apply SELECt-HAND 
(LeftHand, Two, RightHand, Three) 
Execute SELECT-RAND 
(LeftHand, Two, RightHand, Three) 
Apply DEa~hM~NE-ANSWER (?Answer) 

Apply COUNT OUT-LEFmAND ( ?Value988 ) 
Apply LEFT-ADDEND-REPRESENTED 

( ?Value 988 ) 
Apply START-RA*SE (LeftHand) 
Execute START-RArsE (LeftHand) 
Apply RmSE-~GER (LeftHand, i) 
Execute RASE-F~OER (LeftHand, i) 
Apply COUNT (i) 
Execute COUNT (i) 
Apply RAISE-FINGER (LeftHand, 2) 
Execute RAISE-~NOER (LeftHand, 2) 
Apply COUNT ( 2 ) 
Execute COUNT (2) 

Execute LF2r-ADDEND-REP~SmCmD (2) 
Execute COUNT-OUT-LEFII{AND (2) 
Apply COUNT-OUT-RIOHTHAND ( ?Value1022 ) 

Apply PdGHT-ADDEND-Rm,~ENTED 
( ?Value1022 ) 

Apply START-RAISE (RightHand) 
Execute START-~SE (RightHand) 
Apply RASE-~GER (RightHand, i) 
Execute RAtSDnNGER (RightHand, i) 
Apply COUNT ( 3 ) 
Execute COUNT (3) 
Apply RAtSE-~NGER (RightHand, 2) 
Execute RASm~NOER (RightHand, 2) 
Apply COUNT (4) 
Execute COUNT (4) 
Apply RmSE-~NGEN (RightHand, 3 ) 
Execute RAISmF~GEN (RightHand, 3) 
Apply COUNT (5) 
Execute COUNT (5) 

Execute RIGHT-ADDEND-REPRBSENTED ( 3 ) 
Execute COUNT-OUT-RIGHYHAND (3) 
Apply COUNT-UP-BOTH-ADDENDS (?Answer) 
Execute COUNT-UP-BOTH-ADDENDS ( 5 ) 

Execute DmmRM~E-ANSWER ( 5 ) 

4.2. The SHoRrcvr SvM strategy 

After the new preconditions have been added and a number of addition problems have been 
solved, the new literals in GIPS' execution concepts for LEFT-ADDEND-REPRESENTED 
and RIGHT-ADDEND-REPRESENTED become so strong that GIPS decides that the opera- 
tors should execute when the number of fingers raised on a hand is equal to the goal value 
even though the system has not yet incremented its count for the last finger. It turns out 
that the system can successfully solve the addition problem even if it executes this operator 
prematurely, so it deletes the condition that the current counter value must be equal to the 
goal value in the preconditions of the ADDEND-REPRESENTED operators (see Table 4(c)). 

This change has a direct effect on GIPS' behavior (see Table 9). When attempting to 
apply LEFT-ADDEND-REPRESENTED, the value of the counter no longer appears in the 
preconditions, so it is not posted as a subgoal. This means that the START-COUNT operator 
is no longer selected. Thus, a running count is still kept while raising fingers, but the 
counter is not marked for use as the termination criterion. This means that CLOBBEK- 
COUNTER will not execute, and that leads to two changes in strategy. First, the counter is 
not reset to zero after counting the left hand, and counting continues from the left hand's 
final value. Second, the hands are not marked as uncounted, so there is no need to count 
up the raised fingers again after the two hands have initially been counted. This behavior 
corresponds to the SHORTCUT SUM strategy, which was invented by all eight of Siegler 
and Jenkins' subjects. 

This representation assumes that the student can determine without counting when the 
number of raised fingers on either hand is equal to the goal value. For example, in adding 
2 + 3, just after saying, "five," and raising a third finger on the right hand, the subject 
must see that the number of fingers on the right hand is equal to 3, the number of fingers 



CHILDREN'S ADDITION STRATEGIES 29 

that they intended to raise. Before they began their study, Siegler and Jenkins tested their 
subjects' ability to recognize small numbers of objects without counting, and all the subjects 
could perform the skill adequately. Thus, we represent it in GIPS as a primitive skill, or a 
simple literal. 

4.3. The SHORTCUT MIN strategy 

The next shift leads to an intermediate strategy between SHORTCUT SUM and MIN, which 
we call SHORTCUT MIN. Although Siegler and Jenkins do not classify SHORTCUT MIN 
as a distinct strategy from SHORTCUT SUM, they do note (p. 119) that some of their subjects 
begin to switch addends during SHORTCUT SUM So that they start counting with the larger 
addend on the left hand, rather than just picking whichever addend appears first in the 
problem. GIPS also accounts for this behavior. 

An important feature of the SHORTCUT SUM strategy is that the problem solver's counter 
value is not equal to the number of fingers being raised on the right hand (i.e., the second 
hand). We hypothesize that this causes interference and subsequent failure. Such inter- 
ference would not occur with the left hand, because the number of raised fingers in the 
SHORTCUT SUM strategy is always equal to the value of the counter for that hand. Unfor- 
tunately, interference is a phenomenon that GIPS does not yet model, so we were forced 
to simulate its effects. We assumed that interference between the value of the counter and 
the number of fingers raised on the right hand would cause a child to become confused 
and fail to solve the current problem. This behavior is confirmed by Siegler and Jenkins: 
"when children used the shortcut-sum approach, they were considerably more accurate on 
problems where the first addend was larger than on ones where the second addend was" 
(p. 71). 

We simulated this process by causing GIPS to fail sometimes during the SHORTCUT 
SUM strategy when it decided to count the larger addend on its right hand. These failures 
caused the system to update its selection concept for the SELECT-HAND operator. Thus, 
GIPS learned to prefer assigning the larger of the two addends to its left hand (information 
on the relative sizes of the addends was explicitly included in the state representation). Note 
that the learning algorithm does not require a model of interference to make this strategy 
shift. It simply records the fact that failure is somewhat correlated with assigning a larger 
addend to the right hand. 

4.4. The MIN strategy 

The final strategy shift occurs in a similar manner to the shift from SUM to SHORTCUT 
SUM. At this point, GIPS has attempted to execute the ADDEND-REPRESENTED operators 
at various times and has been given feedback each time as to whether it would be able to 
solve the current problem if it executed the operator at that time. Thus, it is slowly learning 
a "good" concept for when the ADDEND-REPRESENTED operators are executable. One of 
the things that proves to be true every time these operators execute is that the goal value for 
counting out a hand is equal to the addend assigned to that hand. 
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Table 10. GIPS' MIN strategy. 

Apply SELECT-HAND 
(LeftHand, Three, 

RightHand, Two) 
Execute SELECT-HAND 

(Lef tHand, Three, 
RightHand, Two) 

Apply DETERMINE-ANSWER (?Answer) 
Apply COUNT-OUT-LEFTHAND 

( ?Value1498 ) 
Apply LEFT-ADDEND-REPRESENTED 

( ?Value 1498 ) 
Apply START-RAISE 

(LeftHand) 
Execute START-RAISE 

(LeftHand) 
Execute LEFT-ADDEND-REPRESENTED ( 3 ) 
Execute COUNT-OUT-LEFTHAND (3) 
Apply COUNT-OUT-RIGHTHAND 

( ?Value 1516 ) 
Apply RIGHT-ADDEND-REPRESENTED 

( ?Valuel 516 ) 

Apply START-RAISE (RightHand) 
Execute START-RAISE (RightHand) 
Apply RAISE-FINGER 

(RightHand, i) 
Execute RAISE-FINGER 

(RightHand, i) 
Apply COUNT (4) 
Execute COUNT (4) 
Apply RAISE-FINGER 

(RightHand, 2) 
Execute RAISE-FINGER 

(RightHand, 2) 
Apply COUNT (5) 
Execute COUNT (5) 

Execute RIGHT-ADDEND-REPRESENTED (3) 
Execute COUNT-OUT-RIGHTHAND (3) 
Apply COUNT-UP-BOTH-ADDENDS 

(?Answer) 
Execute COUNT-UP-BOTH-ADDENDS (5) 

Execute DETERMINE-ANSWER (5) 

Eventually, the system attempts to execute the LEFT-ADDEND-REPRESENTED operator 
without having raised any fingers at all (see Table 10). When it succeeds in doing this, it 
deletes the precondition that the number of fingers raised on the hand be equal to the goal 
value (see Table 4(d)). The system has learned that it can simply start counting from the 
goal value for the left hand rather than starting from zero. Note that this behavior could not 
be generated directly from the initial SUM strategy, because it requires the counter to be 
used for counting the total sum, so it cannot aid in representing the right-hand addend. As 
with LEFT-ADDEND-REPRESENTED, GIPS also attempts to execute the RIGHT-ADDEND- 
REPRESENTED operator early, but this leads to failure. Thus, the system begins to exhibit 
the MIN strategy, in which the largest number (the left-hand number) is simply announced 
and used to continue counting the smaller number as in the SHORTCUT MIN strategy. 

4.5. The FIRst strategy 

The only other counting strategy identified by Siegler and Jenkins is the FIRST strategy. It 
was used on only six trials, all by the same subject. FIRST is similar to the MIN strategy, 
except that it does not assign the larger addend to the left hand. Rather, it starts with 
whichever addend is presented first, and continues counting with the second. In GIPS, this 
strategy follows from the SHORTCUT SUM strategy when the system does not encounter 
interference, and thus does not learn about ordering the addends. While using the FIRST 
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strategy, the system can still eventually generate the MIN strategy through the same type 
of failure-driven learning that leads from SHORTCUT SUM to SHORTCUT MIN. 

5. Summary and analysis 

Both the SUM strategy and the MIN strategy have three main subgoals: to represent the 
first addend, to represent the second addend, and to count the union of the representations. 
The SUM-to-MIN transition involves three independent modifications to the' SUM strategy: 

1. The process of representing the addends is run in parallel with counting up the union. 
In the SUM strategy, representing the two addends must be completed before counting 
up the union begins. 

2. The order of addends is made conditional on their sizes so that the larger addend is 
represented by the easier process. That is, any interference that occurs with the second 
addend is more likely to occur if the addend is large. Clearly, this strategy change 
must take place after the first one, because there is no interference when representing 
an addend and counting the union take place separately. 

3. The subgoal of representing one addend changes from explicitly constructing a set of 
objects to simply saying the addend. 

The GIPS account for each of these transitions is as follows. The first transition is caused 
by a combination of correlational learning of preconditions and search-control learning. 
Initially, GIPS represents an addend on a hand by raising fingers and counting until the 
counter's value is equal to the addend value. In two steps, the system learns that recognizing 
the number of fingers raised on a hand is a better stopping criterion than the value of the 
counter. When the value of the counter disappears as a subgoal of representing an addend, 
it is still free to be used to count the union of objects. 

Because the counter is no longer required for representing addends, the question arises 
of why the system should continue to count as it raises fingers on each hand. This is an 
example of impasse-free search-control learning. The COUNT operator is responsible for 
incrementing the oral counter. Initially, it is selected only when the subgoal of counting up 
an addend is present. Eventually, correlated relations that are present in the current state 
(e.g., that a finger has just been raised) come to dominate the selection concept, and the op- 
erator becomes a forward-chaining operator. Basically, people have developed the habit of 
counting whenever they raise a finger even if that count doesn't serve any direct purpose. The 
combination of this habit with learning of new preconditions causes GIPS serendipitously 
to achieve the goal of counting the union as it deliberately represents the second addend. 

Although GIPS can learn this habit, we gave COUNT a forward-chaining selection concept 
in this experiment because there is no direct evidence that the subjects did not learn this 
behavior even before they learned the SUM strategy (e.g., when they learned to count on 
their hands). However, GIPS predicts that subjects that do not have this habit could generate 
a fifth strategy, which we call the LAYOUT SUM strategy. In this strategy (which GTPS 
successfully generates), we would expect to see subjects silently represent an addend on 
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each hand and then count up the union of fingers aloud. Siegler and Jenkins did not explicitly 
report observing this strategy, but it is possible that they included this behavior as a form 
of the SUM strategy. 

The second transition from SUM to MIN is caused by failure-driven, search-control learn- 
ing. Given two apparently equivalent methods, persistent errors in one of them causes the 
other one eventually to dominate. Because the errors are correlated with the relative sizes 
of the addends, GIPS learns that this is the relevant attribute upon which to base its decision 
of which hands to represent addends on. 

The third transition once again involves impasse-free correlational learning at the knowl- 
edge level. GIPS keeps track of which literals in the situation are correlated with the final 
achievement of the goal of representing the first addend. Eventually, it considers these cor- 
related literals to be just as essential as the originally specified preconditions. It eventually 
discovers that the originally specified preconditions can be ignored as long as the correlated 
literals are achieved. This summary makes clear that impasse-free, correlational learning 
of operator preconditions is crucial to the GIPS account for the first and third transitions. 
Ordinary symbol-level learning can handle the second. 

6. Discussion 

The GIPS analysis helps clarify several important, general issues about strategy change. 
Siegler and Jenkins observe that, "Not one child adopted a strategy that could be classified 
as indicating a lack of understanding of the goals of addition" (p. 107). In this respect, the 
subjects are similar to those of Gelman and Gallistel (1978), who found that very young 
children would invent correct strategies for counting a set of objects even when unusual 
constraints were placed on them to thwart their normal strategy. Gelman and Gallistel 
explain this remarkable competence by hypothesizing that children possess innate (or at 
least predetermined) principles of numerousity. Although linguists had earlier proposed the 
existence of innate constraints on language development, Gelman and Gallistel provided 
the first empirical evidence of innate constraints on non-linguistic development. This set 
off a heated debate in the developmental community. Siegler and Jenkins (p. 115) suggest 
that such constraints may exist on the development of addition strategies, but they do not 
give a specific list. 

The initial knowledge given to GIPS does not involve any explicit principles of addition 
or counting. It is merely a set of operators and selection preferences that happen to generate 
the correct answers. It is able to avoid developing bad strategies because of the feedback 
it receives while solving problems. GIPS occasionally attempts to execute an operator in 
situations that would produce a wrong answer. If it were not told that the execution was 
wrong, it would develop wrong strategies. Thus, GIPS suggests one possible account for 
learning without the hypothesized innate constraints. 

However, as we have discussed, the feedback we provided to GIPS did not correspond 
exactly to the type of feedback that children usually receive. In the Siegler and Jenkins 
study, students were told after each trial whether they got the problem right, and then 
presented with a new problem. GIPS assumes that it can precisely assign blame to bad 
operators by receiving early feedback from the user or by searching until a correct solution 
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can be found. A more proper model of Siegler and Jenkins' feedback would require the 
incorporation of an incremental credit-assignment algorithm. On the other hand, if GIPS 
w e r e  supplied with knowledge about constraints on numbers and arithmetic, it would be 
able to assign credit and blame as it solved problems (Ohlsson & Rees, 1991), rather than 
after receiving its "gold star" for each problem. Such constraints would generate behavior 
similar to GIPS' current implementation, providing the same type of immediate feedback 
that the user provided when GIPS attempted to execute operators inappropriately. 

A common misconception about discovery is that the newly discovered strategy, concept, 
or idea instantly and totally supplants its predecessor. In all protocol-based studies of 
discovery (e.g., Kuhn, Amsel, & O'Laughlin, 1988; Siegler & Jenkins, 1989; VanLehn, 
1991), the transition between the old strategy and the new one is gradual. For instance, 
Siegler and Jenkins (p. 73) report, "In the first five sessions after children discovered the 
min strategy, they used the strategy on only 12% of the trials in which they used any of 
the three counting strategies." We have not tried to model the gradual transition to the 
use of the MIN strategy with GIPS because doing it right would require implementing 
several memory-based strategies. However, it is clear that the probabilistic nature of GIPS' 
selection and execution concepts would tend to predict a gradual transition. 

Starting in the eighth week of the study, Siegler and Jenkins began including "impasse 
problems," such as 2 + 23. They had hoped that these would encourage discovery of the 
MIN strategy, but they did not, for only one child first used the MIN strategy on an impasse 
problem. However, children who had already discovered the MIN strategy began to use it 
much more frequently on the impasse problems and even on the non-impasse problems that 
followed the eighth week. Glps would tend to do the same thing if it were given impasse 
problems. The larger addend would invite errors during the SHORTCUT, SUM and FIRST 
strategies, which would lower the values of their selection concepts. The inclusion of 
impasse problems would not affect the error rate of the MIN strategy, so it would gradually 
become the preferred strategy for all counting trials. 

Siegler and Jenkins noticed that some children seemed consciously aware that they had 
invented a new strategy in that they could explain it on the first trial where they used it, and 
some even recognized that it was a "smart answer," in the words of one child. Other children 
denied using the MIN strategy even when the videotape showed that they had used it. For 
instance, one child said, "I never counted. . .  I knew i t . . .  I just blobbed around." Siegler 
and Jenkins divided children into those who seemed conscious of the strategy and those 
who did not, and measured the frequency of their subsequent usage of the MIN strategy. 
The high awareness group used the MIN strategy on about 60% of the trials where they 
used any counting strategy. The low awareness group used the MIN strategy on less than 
10% of the trials. This suggests that being aware of a newly discovered strategy facilitates 
subsequent usage of it. 

This finding cannot be modeled by GIPS because Gins has no way to distinguish a 
strategy that can be explained from one that is inaccessible to consciousness. However, the 
finding could probably be modeled by combining Gins with a system that uses an analytical 
learning algorithm. The basic idea is simple. GtPS would discover a new strategy just as 
it does now, and a trace of the strategy's actions would remain in memory. This trace 
would be used as an example that is explained by the analytical system. (Siegler and 
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Jenkins asked subjects after each problem to explain how they got their answer--a sort of 
mandatory reflection.) If enough of the trace can be recalled for the explanation to succeed, 
it annotates the steps in the trace and perhaps the operators whose executions produced the 
steps. These elaborations make it easier to retrieve the modified operators from memory, 
and they may help in assigning credit and blame, thus speeding the adjustment of the 
preconditions, selection, and execution concepts. These influences increase the usage of 
the new strategy on subsequent problems. 

To conclude our discussion, we address a competing model of the SUM-to-MIN transi- 
tion. Neches' (1987) HPM is designed to effect strategy changes whenever it detects an 
opportunity for improving the efficiency of a procedure. To achieve this, HPM stores a 
complete trace of its processing, and constantly monitors this memory with heuristics, such 
as "If a sub-procedure produces an output, but no other sub-procedure receives that result by 
the time the overall procedure finishes, then modify the overall procedure to eliminate the 
superfluous computation" Neches demonstrated that this heuristic and two others sufficed 
for changing the SUM strategy into the MIN strategy. 

HPM had to produce two transitional strategies before it could get to MIN. Siegler and 
Jenkins sought evidence for these transitional strategies in their data. One of the strategies 
(the FrosT strategy) occurred six times, all in the protocol of one subject. Moreover, all of 
these instances occurred after the subject invented the M~N strategy, whereas HPM must 
invent it before it can get to MIN. The second transitional strategy predicted by Neches did 
not appear at all. These unfulfilled predictions cast doubt on the HPM model. 

Another problem with HPM's account is that it requires the storage of an entire search 
tree over several problem-solving attempts. In contrast, GIPS only stores the trace of 
the current solution attempt and discards it after learning. As mentioned previously, it 
may be useful to explore the use of a different credit-assignment method in GIPS, such 
as the bucket-brigade algorithm (Holland et al., 1986). Such an algorithm could allow 
the system to avoid storing any of the solution path. As Neches noted, the HPM model 
"assumes the relative accessibility of extremely detailed information about both ongoing 
process and related past experiences, How can this be reconciled with known limita- 
tions on the ability to report this information?" (p. 213). Although HPM is computa- 
tionally sufficient to produce the SUM-to-MIN transition, it makes dubious empirical and 
mnemonic assumptions. 

To summarize, GIPS achieves its main research objective, providing a computational 
account of the several strategy shifts observed during the SUM-to-MIN transition. It 
uses plausible local processes, rather than the global optimization processes of Neches' 
HPM. In addition, Gins uses modest amounts of storage, in contrast to HPM, which stores 
complete solution traces for indefinite periods. Most importantly, Grps produces all and 
only the transitional strategies observed in the Siegler and Jenkins study. It predicts an 
additional possible strategy, but does not require it to occur before the invention of the 
MIN strategy. 

The GIPS analysis solves a number of puzzles raised by Siegler and Jenkins' study. These 
include the source of the various strategies that appear in the SUM-to-MIN transition and 
their order of appearance, as well as the ability to make significant strategy shifts without 
impasse-driven learning. GIPS also suggests a role for innate knowledge of the principles of 
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addition in the ability to avoid inventing bad strategies, although this depends on the specific 
type of  feedback given to the system. Thus, GIPS provides a plausible, computationally 
sufficient account of  the discovery of  the MIN strategy. However, Siegter and Jenkins 
produced a second set of  findings on the gradual increase in usage of  the newly discovered 
strategy. We have not yet tried to model these findings, but GIPS seems to provide an 
appropriate framework for doing so. 

Finally, the SUM-to-MIN transition does not appear to be explainable by conventional, 
symbol-level learning mechanisms. Rather, some of the important shifts require changes to 
the representation of  the domain. GIPS models these changes by altering preconditions on 
some of  its operators. Adjusting operator preconditions is somewhat dangerous, because it 
can allow the system to corrupt a previously correct domain theory, but GIPS demonstrates 
that such a mechanism can generate useful behavior shifts when controlled by feedback on 
its decisions. 
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