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Summary 

A proof is given of a procedure that has previously appeared claiming to determine when two amino 
acid positions on a protein could both possibly be divergent taxonomic characters. An algorithm 
for executing this procedure is described. 

Introduction 

Proteins such as cytochrome c and myoglobin as well as nucleotide sequences have 
been used by many biologists to construct estimates of the evolutionary history 
of various collections of taxa (Boulter et al., 1972; Fitch and Margotiash, 1967; 
Fitch, 1975; Moore el: al., 1973). Each position on a sequence is considered a 
taxonomic character. If it were known for certain which characters were divergent 
(i. e., underwent no reversals or parallel evolution) within the particular collection 
of taxa under study, then these characters could be used to indicate various 
branches of the true evolutionary history of the collection, assuming of course 
,that this evolutionary history is in the form of a tree. 

Obviously it is impossible to know positively if a character did indeed undergo 
divergent evolution of its states, but it nevertheless is an important problem to 
determine if it is at least logically possible for a set of characters to all be 
divergent (Estabrook, 1972; Sneath et al., 1975). Recently a procedure has been 
offered by Estabrook and Landrum (1975) and independently by Fitch (1975) 
that purportedly tells when two characters could both be divergent. These authors 
did not have mathematical verification that their procedure does indeed do what 
they claim. It is the purpose of this note to place this procedure on firm 
mathematical ground and present an algorithm that allows its implementation 
on the computer. 

Rather than have most of the space in this short note devoted to definitions, we 
will assume some knowledge of graph theory terminology as found in (Roberts, 
1976) and the algebraic terms and results as found in (Estabrook et al., 1975, 
1976 a, b; McMorris, 1975). 
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Results 

Throughout ,  S will denote a (finite) study collection of evolutionary units (EU's) 
and S' will denote the true evolutionary history of S. We need some necessary 
definitions and comments.  

A tree is a connected graph having no circuits. Note  that for any two distinct 
vertices of a tree, there exists a unique chain joining them. If a vertex r of a tree 
is picked and all edges oriented toward r (or all oriented away from r), this gives 
a digraph which is often referred to as a rooted tree. In most  methods for 
estimating evolution, including the present one, the assumption is made that  S 
consists of EU's for which S' is a rooted tree containing S. A rooted tree may 
also be viewed as a tree (lower) semilattice, so that the most  recent common 
ancestor of two EU's is their greatest lower bound in the semilattice S'. 

A qualitative taxonomic character on S is a mapping from S onto another set, 
called the character state set of the character. We will simply use the word 
"character" for the above notion. Examples of characters are the various amino 
acid positions on homologous proteins of the EU's. In particular (Boulter et al., 
1972), if S = {sunflower, cotton, tomato}, then the fourth amino acid position K 4 
of cytochrome c is given by K~(sunflower)=Ala,  K4(co t ton)=Gln ,  and 
K 4 (tomato) = Asp. Notice that  if K : S ---, P is a character on S, then K induces a 
partition of S with cells K ,  = {x ~ S : K (x) = p~} for each p~ s P. 

Now let T be a tree containing S as a subset of its vertex set. A map (character) 
K : T ~  P is said to be ideally related to Tif  each K ,  is a connected subgraph of T. 
For  the record, Fitch would say that T is a "most  parsimonious tree" for K 
(Fitch, 1975). I f  K is ideally related to T, then each K~ is convex, i.e., if 
x, y e K ,  and x, xl, ..., x,, y is a chain joining x and y, then xi e K~ for all 
i =  1 . . . . .  n. Note  also that the definition of ideally related makes sense when T 
is rooted if we replace "connected" with "weakly connected". Now if K is 
ideally related to T and T=S',  then K is what we have called divergent, i.e., 
/x K~_</x K~ _< x, with x e K~ implies that  K~ = K~ (Estabrook et al., 1975). Diver- 
gent characters are important  since they are able to distinguish branches of S'. 

The characters K and L on S are said to be compatible if and only if there 
exists a tree T containing S such that K and L can be extended to maps that 
are both  ideally related to T. Hence if K and L are compatible, then it is 
possible that both  are divergent, while if K and L are not compatible, then at 
least one is not divergent (i.e., misrepresents evolutionary relationships). 

Now let K : S ~ P = {Pt . . . . .  Pro} and L : S ~ Q = {ql . . . . .  q,} be characters on S. 
The matrix of K and L is the m x n matrix (aij) with a~j ~ {0, 1} and aij= 1 if 
and only if there exists x e S such that K (x) = pi and L (x) = qj. As an example, let 
K : S ~ {A, C, G} and L : S --, {A, U} with S = {r, x, y, z, w} be given by K (x) = 
= K (r) = K (y) = A, K (z) = C, g (w) = G, L (r) = L (x) = L (z) = A, L (y) = L (w) = U. 
Then setting p~=A, P2=C, p3=G and ql=A,  q2=U, the matrix, for this 
indexing, is 
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A U  

Clearly different indexing of P and Q will result in different data matrices, but 
the indices are usually fixed at the start of an investigation so that the non- 
uniqueness problem does not occur in practice. 

The data graph is formed by considering the non-zero entries of the data graph 
as vertices and defining an edge between two vertices if they are adjacent non-zero 
entries in the same row or column. Labeling the data graph by placing those 
EU's  that map  onto each vertex we have for above example the following labeled 
data graph. 

x r  y 

d 

z w 

We can now state the theorem which is a translation of the unproven procedure 
announced in (Estabrook and Landrum, 1975) and (Fitch, 1975). 

Theorem: The characters K and L on S are compatible i f  and only i f  their data graph 
has no circuits. 

Proof:  First it is important  to notice that  the initial indexing of the states of K and L 
does not effect the existence of circuits. Assume that the data graph has no 
circuits, fix an indexing of the states, K : S ~ {Pl . . . . .  Pro}, L : S --* {ql . . . . .  q,}, and 
label the graph with the E U's at the vertices. This labeled graph is easily seen 
to be a forest (a disjoint union of trees). 

F rom the construction of the labeled data graph, the set of all EU's  represented in 
row i is precisely Ki:= {x E S : K  (x)=pi}, and the set of all EU's  in column j is 
precisely Lj. If  x 1 ... x l is a vertex with l>  1 relabel it as (x~ ... xl)*. For  each 
such vertex (x 1 ... xi)*, add the vertices x 1, x2, ..., x 1 and define a new edge from 
each x~ to (x 1 ... x~)*. We now have a labeled forest F containing S as a subset of 
its vertex set. Define K* : F ~  {Pl, ..., Pro} by K* ( z ) = K  (z) for all z~  S and 
K* ((x I ... x~)*)=K(xl)  ( = K  (x2) . . . . .  K (xg)). Joining the components of F 
together in the obvious way to form a tree T, it is clear that K* extends K and is 
ideally related to T. A similar argument  holds for L and thus we have shown that 
K and L are compatible. 

For  the converse, we must use some results from our earlier work. Recall 
(Estabrook et al., 1975) that a rooted tree can be considered as a tree (lower) 
semilattice, and that  a cladistic character on S is a map  K : S ~ P where P is a tree 
semilattice. We have shown in (Estabrook et al., 1976 b) that  two cladistic characters 
K and L on S are compatible if and only if ( I m  (K x L)) is a tree subsemilattice 
of the semilattice P x Q, where Im (K x L) denotes the image of K x L in P x Q and 
( I m ( K  x L))  is the subsemilattice generated by I m ( K  x L). It was noted in 
(McMorris, 1975) that the qualitative characters K and L are compatible if and 
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only if thbre exist three semilattice orderings of P and Q making K and L 
compatible cladistic characters. 

Now assume that the characters K and L are compatible and that the data graph 
contains a circuit. It is not hard to see that the states may be relabeled in such a 
way that al 1, al 2, a22, a23, a33, ..., akl (k_> 2) are vertices on the circuit. Note that, 
after relabeling, vertex aij is not necessarily in the i-th row and j-th column. Now 
a~ 1, alz, ..., akl on the circuit implies that the elements 

(P~, ql), (Pl, q2), (P2, q2), (P2, q3), ..., (Pk, ql) 

are members of Im (K x L) in P x Q and since K and L are compatible, there are 
tree semilattice orderings of P and Q so that ( Im (K x L)) is a tree semilattice. 

We have (Pl/xp2, q2), (Pl, ql/x q2)_<(pl, q2) in ( Im (K x L))  so that either 
(Pl, ql/x q2)-< (Pl/~ P2, q2) or (Pl/x P2, q2)-< (Pl, ql/x qz). Assume the first case. A 
similar argument will work for the second case. Now (Pl, ql/x q2)_<(pl/x P2, q2) 
implies that Pl =Pl /x  P2 and hence Pl <P2. 

Since (Pl/x P2, qz), (P2, qz/x q3) < (P2, q2) and Pl < P2, we have q2 < q3. 

Since (P2, q2/x q3), (P2/x P3, q3)-< (Pz, q3) and q2 < q3, we have P2 < P3. 

Since (P2/x P3, qa), (P3, q3/x qr (P3, q3) and P2 < P3, we have q3 < q4. 

Continuing this way we have Pl < P2 < . . .  < Pk and q2 < q3 < . . .  < qk immediately 
before checking 

(Pk-1 A Pk, qk), (Pk, qk A qa)<--(Pk, qk) 
which yields qk < q~. 

Finally, (Pl/x Pk, ql), (Pk, qk/x qx) ~ (Pk, ql) implies ql < qk which is the desired 
contradiction. Q.E.D. 

Implementation of Results 

In an actual taxonomic study many characters are used. Although it is not true 
that a pairwise compatible collection of characters is always compatible (McMorris, 
1975), the taxonomist might still want to know those characters that are pairwise 
compatible. We now give a method by which the result proved in the previous sec- 
tion can be implemented on the computer and used for large data sets. 

We say that the unordered pair of characters K : S ~ P- -  {Pl . . . . .  Pro} and L : S ~ Q 
is simply compatibly extended to the unordered pair of characters K* : S * ~  P * =  
={Pl,...,Pm;P,,+I}, L * : S * ~ Q *  if Q*=Q, S~_S*, K agrees with K* on S, L 
agrees with L* on S, K* (x)=pm+l for all x e S * \ S ,  and L* (x)=L* (y) for all 
x , y ~ S * \ S .  

Notice that if K and L can be simply compatibly extended to K* and L*, then the 
matrix for K* and L* is identical to that of K and L except for containing an 
additional row or column that has all entries 0 except for a single 1. Thus we see that 
if K* and L* simply compatibly extend K and L, then K and L are compatible 
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if and only if K* and L* are compatible. This is true since the existence of 
circuits in a graph is not effected by adjoining one vertex and one edge. 

The characters K* and L* compatibly extend K and L if there exists characters 
K (i), L (~ 1 <_ i<_s such that K (1) = K ,  L (1) =L ,  K (s) =K*,  L (s) = L *  with K (~+ 1) and 
L (~+~) a simple compatible extension of K (~) and L (i) for 1 <_iNs-1 .  Hence if K* 
and L* compatibly extend K and L, then K* and L* are compatible if and only 
if K and L are compatible. 

If the matrix of two characters contains a row or column with a single nonzero 
entry, removal of the EU's that correspond to this entry produces a pair of 
characters of which the original pair is a simple compatible extension. If this 
process of removing the EU's corresponding to single nonzero entries in rows or 
columns is continued, one of two matrix types must eventually be encountered: 

1. A matrix with only one nonzero entry, or 

2. A matrix with more than one nonzero entry in every row and every column. 

We will argue that encountering type 1 is sufficient for the original two characters 
to be compatible, and that encountering type 2 is sufficient for the original 
characters to be incompatible. Thus, the simple procedure of successively removing 
rows or columns with single nonzero entries from the original matrix of two cha- 
racters constitutes an algorithm for checking their compatibility, since matrix 
types 1 and 2 exhaust all cases and are exclusive. 

If a matrix has only one nonzero entry, then clearly the data graph of those 
characters has no circuits. Hence any pair of characters that is a compatible 
extension of a pair with such a matrix, is compatible. 

Suppose that the matrix is of type 2. Then, starting at any entry that is a 1 proceed 
first to an adjacent 1 in the same row, then staying in this new column proceed to 
an adjacent 1. Now, staying in this new row, proceed to an adjacent 1. This process 
may continue because every row and column has at least two l's. Since there are 
only a finite number of l's, this process will ultimately revist a 1 thus forming a 
circuit in the data graph. Hence the original characters, being a compatible 
extension of incompatible characters, are not compatible. 

A computer program in F O R T R A N  implementing this algorithm is available 
f romthe  authors. 
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