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Abstract. A sensitivity methodology for nonlinear delay systems arising in one class of
cellular HIV infection models is presented. Theoretical foundations for a typical sensitivity
investigation and illustrative computations are given.

1. Introduction

1.1. Background

Over the past several years, the use of mathematical models as an aid in under-
standing features of HIV and other virus infection dynamics has been substantial.
Several papers published in the mid nineties provided strong evidence for the high
rate of HIV-1 replication and clearance in infected individuals [22,42,54]. By the
end of the decade, the general consensus was that in vivo, on the order of 1010 viri-
ons are assembled and cleared every day [31,44]. In many of these papers, the viral
clearance rate c was identified by modeling the disease pathogenesis with a system
of deterministic differential equations, numerically calculating a solution, and then
fitting the results with experimental data (using a nonlinear least squares (NLS)
approach), e.g., see [42,44]. The existence of such a high replication/clearance rate
implies a high mutation rate, thus indicating that pharmacological mono-therapy
will ultimately fail, since the virus can rapidly manifest a resistance to any one
drug. More importantly, this knowledge directly contributed to the current practice
of simultaneously administering multiple drugs to HIV positive individuals in an
effort to counteract the high mutation rate of the virus.

Following its success in helping to identify this significant feature of the HIV
pathogenesis, the use of mathematical modeling and parameter identification in
the study of HIV experienced a dramatic increase. In particular, in the wake of the
publication of [42], there were papers covering everything from additional and/or
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alternative compartment formulations [13,27,33,37,43,48,55,59,60] to arguments
for and against the use of delay differential equations in modeling the eclipse phase
[19–21,30,32,34–36] (including those that addressed the solution stability [35,
36]). Moreover, in the context of delay equations, many of these papers focused
heavily on the inter-relationship between the parameters describing the drug effi-
cacy η, the length of the eclipse phase τ , the infected T-cell death rate δ, and
the virion clearance rate c [19,21,30,32,34–36]. The purpose of this paper is to
illustrate our approach, which allows one to develop new insights into HIV patho-
genesis by utilizing a mathematical tool not typically associated with conventional
NLS techniques. Indeed, there is a precedence for this approach, as is evidenced
by previous papers within the HIV modeling literature that make use of stochas-
tic analysis and inference [24,51,52,57,61], control theory [25,56], and nonlinear
analysis [53]. Note that the above survey is not intended to be comprehensive, as
there already exist thorough reviews of the field presented in [38,40,41].

For any system of differential equations designed to model real world phenom-
ena, whether it be biological, chemical, or physical, a common goal is to understand
the manner in which the system’s constitutive parameters influence its solution.
These parameters (such as δ above) are designed to correspond to aspects of the
phenomena under investigation (e.g., HIV pathogenesis), and thus it is desirable
to predict how changes in the parameters will affect the solution. Indeed, there are
several papers in the HIV modeling field which focus heavily on the topic (good
examples include [48,50]).

One way to address this question is to perform a sensitivity analysis, a mathe-
matical tool developed in the context of modern control theory. Though not often
isolated and identified, the sensitivity equations (used in sensitivity analyses) are
actually quite pervasive in mechanical, aerospace, and electrical engineering [1,
16], as well as optimization and inverse problem theory. Furthermore, both the
least squares and maximum likelihood (ML) based model discrimination/model
selection literature employs sensitivity equations in calculating the the dispersion
matrix and Fisher Information Matrix (FIM) respectively. In the least squares-based
theory, the dispersion matrix is used to determine stability and accuracy functions
[8]. In the ML-based theory, the inverse FIM is used in evaluating the Generalized
Akaike Information Criteria (GAIC) [2] and the Information Complexity (ICOMP)
[12] (see [11] for a survey of the field). In particular, utilization of AIC-type tests
can be found in the ecology [39], biomedical engineering [15], and pharmaceutical
sciences [47] literature.

A precursor to formal sensitivity analysis can be traced back to an 1833 elec-
trostatics experiment designed to measure the inductance of certain metals [14].
However, significant activity in this area only arose in the middle part of the 20th

century, concomitant with the development of modern control theory in the late
1930’s. In our analysis, we will employ the semirelative sensitivity function, though
there are other possibilities, such as the logarithmic sensitivity function advocated
by Bode in his book on electrical network analysis [7].

We direct the interested reader to the following introductory [17,18,46] and
advanced texts [26,58] as well as Bortz and Nelson’s sensitivity analysis of a delay
differential equation model of in vivo HIV infection dynamics [10]. We also note



A parameter sensitivity methodology 609

that the sensitivity analysis described in this paper should not be confused with the
statistical technique based on Latin Hypercube Sampling [6,23].

1.2. Approach

The first step in the sensitivity analysis is to derive the sensitivity equations by for-
mally taking derivatives (with respect to a parameter of interest) on both sides of the
original equation(s). The solution to this new system (assuming for the moment it
is well-posed) contains information regarding the sensitivity of the original system
to perturbations in the chosen parameter (around some a priori fixed value of that
parameter). Hereafter we will refer to the solution to the sensitivity equations as a
sensitivity function.

To illustrate the sensitivity procedure, we will examine an HIV population sys-
tem with compartments described in [4], summarized in Table 1, and denoted by
the vector x = (V ,A,C, T )T . In this case (see [4] for details), our system of
distributed delay differential equations is

ẋ(t) = L(x(t), xt )+ f1(x(t))+ f2(t) for 0 ≤ t ≤ tf

(x(0), x0) = (�(0),�) ∈ R
4 × C (−r, 0; R

4) , (1)

where r and tf are finite, xt denotes the function θ �→ x(t + θ), θ ∈ [−r, 0], and
for (η, φ) ∈ R

4 × C (−r, 0; R
4),

L(η, φ) =




−c 0 nC 0
0 rv − δA 0 0
0 0 rv − δC 0
0 0 0 ru − δu


 η + nA

[
δ(1,2)

]
(4,4)

∫ 0

−r
φ(θ)dP1(θ)

+γ ([δ(3,2)
]
(4,4) − [

δ(2,2)
]
(4,4))

∫ 0

−r
φ(θ)dP2(θ)

f1(η) =




−pη1η4

−δ(∑4
i=2 ηi)η2 + pη1η4

−δ(∑4
i=2 ηi)η3

−δ(∑4
i=2 ηi)η4 − pη1η4




f2(t) = [0, 0, 0, S]T , 0 ≤ t ≤ tf .

Here the compartments in x and the parameters (including the probability distri-
butions P1, P2) given in the vector q = (c, rv, ru, nA, nC, δ, δA, δC, δu, γ, p, P1,

P2, S)
T are all described in [4]. A full and thorough sensitivity analysis could

include not only derivatives with respect to the scalar parameters (e.g., γ or δA),
but also Fréchet derivatives with respect to the delay distributions (e.g., P1 or P2).
The following sections include discussions regarding the well-posedness of the sen-
sitivity equations and an example numerical simulation as well as an interpretation
of the results.
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Table 1. in vitro model compartments

Notation Description

V Infectious viral population
A Acutely infected cells
C Chronically infected cells
T Uninfected or target cells

2. Theory

For those interested in the mathematical considerations, this section contains the-
oretical foundations for the well-posedness of the sensitivity equations. While the
results presented here are important because they legitimize our study of these equa-
tions, understanding the techniques in the proofs are not essential to appreciating
the simulations and results presented in Section 3. Therefore, those readers who
wish to skip the details in this section may do so with little loss in understanding
the formal aspects of sensitivity analyses.

For our illustrative discussions, we will only consider distributions P1, P2 that
are both differentiable and parameterizable by a mean µ and a standard deviation
σ (i.e., for i = 1, 2, pi(θ) = ∂

∂θ
Pi(θ) and Pi(θ) = Pi(θ;µi, σi) for θ ∈ [−r, 0]).

Moreover, we further assume that the resulting densities pi are C 1 in µi and σi ,
respectively. To illustrate a sensitivity analysis, let us fix the forms of the distribu-
tions P1, P2 and consider for t ∈ [−r, tf ], the derivative of x(t;µ1) with respect
to µ1 (where µ1 is the parameter corresponding to the mean of p1). If we let
(η, φ) ∈ R

4 × C (−r, 0; R
4), t ∈ [0, tf ], µ1 > 0, then from results established in

[9], we note that F (t, η, φ, µ1) = L(η, φ;µ1) + f1(η) + f2(t) is C 1 in t , η, φ,
and µ1 under smoothness assumptions (detailed in[4]) on F , L, f1, and f2. For
our specific case, to prove that the derivative of x with respect to µ1 exists and is
continuous in t , we will make use of the following lemma.

Lemma 1. There exists a solution to

ẏ(t) = g1(x(t;µ1); y(t))+g2(µ1; yt )+ g3(xt (µ1), µ1; 1) for 0 ≤ t ≤ tf

(y(0), y0) = (
(0),
) ∈ R
4 × C (−r, 0; R

4) , (2)

for x(t;µ1) the solution to (1), and where for µ, ξ ∈ R, η, ζ ∈ R
4, φ,ψ ∈

C (−r, 0; R
4),

g1(η; ζ ) = Mηζ

g2(µ;ψ) = nA
[
δ(1,2)

]
(4,4)

∫ 0

−r
ψ(θ)p1(θ;µ, σ1)dθ

+γ ([δ(3,2)
]
(4,4) − [

δ(2,2)
]
(4,4))

∫ 0

−r
ψ(θ)p2(θ;µ2, σ2)dθ

g3(φ, µ; ξ) = nA
[
δ(1,2)

]
(4,4)

∫ 0

−r
φ(θ)(

∂

∂µ1
p1(θ;µ, σ1))(ξ)dθ ,
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and where

Mη =




−c − pη4 0 nC −pη1
pη4 rv − δA − δ(2η2 + η3 + η4) −δη2 −δη2 + pη1

0 −δη3 rv − δC − δ(η2 + 2η3 + η4) −δη3
−pη4 −δη4 −δη4 ru−δu−δ(η2 +η3+2η4)−pη1


 .

Proof. On the right side of (2), the function g1 + g2 + g3 satisfies both the differ-
entiability condition (Lemma 4.1) and the global Lipschitz condition (Lemma 4.2)
from [4]. Following the reasoning in the proof of Theorem 4.5 in the same refer-
ence, by defining a convergent sequence of successive approximations, it can then
easily be shown that a solution exists and is unique. ��
Remark 1. Note that Lemma 1 guarantees the existence of a solution to a system of
equations with a general initial condition 
. Recall that in equation (1), the initial
condition� is independent ofµ1 and thus the next step will be to argue that system
(2) combined with the trivial initial condition 
 = 0 comprises the sensitivity
equations.

Theorem 1. For the solution x of (1), x has a derivative with respect to the param-
eter µ1 and for µ1 = µ > 0, this derivative v(t) = ∂

∂µ1
x(t;µ) satisfies (2) with

the initial condition (
(0),
) = (0, 0) ∈ R
4 × C (−r, 0; R

4).

Proof. To prove the existence of a derivative of x with respect to the parameter µ1,
we fix µ1 at µ > 0, let ε ∈ R be a perturbation of µ, and for all t ∈ [−r, tf ], define

h(t, µ, ε) = x(t;µ+ ε)− x(t;µ) .
The overall structure of the proof is thus to show that

∂

∂µ1
x(t;µ) = lim

|ε|→0

h(t, µ, ε)

ε

exists and is continuous for t ∈ [−r, tf ]. We begin by considering h

h(t, µ, ε) =
∫ t

0
{F (s, x(s;µ+ ε), xs(µ+ ε), µ+ ε)

−F (s, x(s;µ), xs(µ), µ)} ds
=

∫ t

0
{F (s, x(s;µ+ ε), xs(µ+ ε), µ+ ε)

−F (s, x(s;µ), xs(µ+ ε), µ+ ε)

+F (s, x(s;µ), xs(µ+ ε), µ+ ε)− F (s, x(s;µ), xs(µ), µ+ ε)

+F (s, x(s;µ), xs(µ), µ+ ε)− F (s, x(s;µ), xs(µ), µ)} ds .
According to the Mean Value Theorem [29], we have

h(t, µ, ε) =
∫ t

0

∫ 1

0

{
DxF (s, x(s;µ)+s′h(s, µ, ε), xs(µ+ε), µ+ε)(h(s, µ, ε))

+DxtF (s, x(s;µ), xs(µ)+ s′hs(µ, ε), µ+ ε)(hs(µ, ε))

+Dµ1F (s, x(s;µ), xs(µ), µ+ s′ε)(ε)
}
ds′ds ,
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whereDxF ,DxtF ,Dµ1F are the Fréchet derivatives of F with respect to its sec-
ond, third, and fourth arguments respectively. Since F is C 1 in all its arguments, we
then know that there exists linear functions�1

s′,ε,�
2
s′,ε,�

3
s′,ε (each parameterized

by s′ and ε) such that

h(t, µ, ε) =
∫ t

0

∫ 1

0

{
DxF (s, x(s;µ), xs(µ), µ)(h(s, µ, ε))+�1

s′,ε(h(s, µ, ε))

+DxtF (s, x(s;µ), xs(µ), µ)(hs(µ, ε))+�2
s′,ε(hs(µ, ε))

+Dµ1F (s, x(s;µ), xs(µ), µ)(ε)+�3
s′,ε(ε)

}
ds′ds ,

where |�1
s′,ε|, |�2

s′,ε|, |�3
s′,ε| → 0 uniformly in s′ as |ε| → 0. Thus for s ∈ [0, t],

ν, ξ ∈ R, η, ζ ∈ R
4, φ,ψ ∈ C (−r, 0; R

4), and g1, g2, g3 as defined in Lemma 1,

DxF (s, η, φ, ν)(ζ ) = g1(η; ζ )
DxtF (s, η, φ, ν)(ψ) = g2(ν;ψ)
Dµ1F (s, η, φ, ν)(ξ) = g3(φ, ν; ξ) .

Then the equation for h is

h(t, µ, ε) =
∫ t

0
{g1(x(s;µ);h(s, µ, ε))+ g2(µ;hs(µ, ε))+ g3(xs(µ), µ; ε)} ds

+
∫ t

0

∫ 1

0

{
�1
s′,ε(h(s, µ, ε))+�2

s′,ε(hs(µ, ε))+�3
s′,ε(ε)

}
ds′ds .

Moreover, since g1, g2, g3 are all linear in their last arguments, the equation for h
can be used to obtain

≤ max
τ∈[t−r,t]

∫ τ

0

{∣∣∣∣g1(x(s;µ); · )+
∫ 1

0

∣∣∣�1
s′,ε

∣∣∣ ds′
∣∣∣∣ |h(s, µ, ε)|

+
∣∣∣∣g2(µ; · )+

∫ 1

0

∣∣∣�2
s′,ε

∣∣∣ ds′
∣∣∣∣ ‖hs(µ, ε)‖

+
∣∣∣∣g3(xs(µ), µ; · )+

∫ 1

0

∣∣∣�3
s′,ε

∣∣∣ ds′
∣∣∣∣ |ε|

}
ds ,

where ‖·‖ is the ∞-norm on [t − r, t]. Thus for constants K1,K2 > 0, we know
that

‖ht (µ, ε)‖ ≤ K1

∫ t

0
‖hs(µ, ε)‖ ds +K2tf |ε| ,

and a simple application of Gronwall’s inequality implies that

‖ht (µ, ε)‖ ≤ K2
∣∣tf

∣∣ |ε| exp(K1tf ) , (3)

which will be useful in the next step.
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Now, if we divide both sides of the equation for h by ε so that

h(t, µ, ε)

ε
=

∫ t

0

{
g1(x(s, µ); h(s, µ, ε)

ε
)+ g2(µ; hs(µ, ε)

ε
)

+g3(xs(µ), µ; ε
ε
)
}
ds

+
∫ t

0

∫ 1

0

{
�1
s′,ε(

h(s, µ, ε)

ε
)+�2

s′,ε(
hs(µ, ε)

ε
)

+�3
s′,ε(

ε

ε
)
}
ds′ds ,

we note that the form of the integrand is strikingly similar to the right side of the
equation in (2). For equation (2), we denote the solution generated usingµ1 = µ and
initial condition (
(0),
) = (0, 0) ∈ R

4 × C (−r, 0; R
4) as v(t) for t ∈ [−r, tf ].

Moreover, we claim that this solution v is equal to the limit of h/ε as |ε| → 0.
By Lemma 1, we know that v exists and is continuous for t ∈ [−r, tf ]. Clearly

v and h/ε are identically zero for t ∈ [−r, 0] for all ε > 0, and thus we consider
for t ∈ [0, tf ]
∣∣∣∣v(t)− h(t, µ, ε)

ε

∣∣∣∣ ≤
∥∥∥∥vt − ht (µ, ε)

ε

∥∥∥∥∞

≤ max
τ∈[t−r,t]

∣∣∣∣
∫ τ

0

{
g1(x(s, µ); v(s)− h(s, µ, ε)

ε
)+ g2(µ; vs − hs(µ, ε)

ε
)

+g3(xs(µ), µ; 1 − ε

ε
)

}
ds −

∫ τ

0

∫ 1

0

{
�1
s′,ε(

h(s, µ, ε)

ε
)

+�2
s′,ε(

hs(µ, ε)

ε
)+�3

s′,ε(
ε

ε
)

}
dτds

∣∣∣∣

≤ max
τ∈[t−r,t]

{∫ τ

0

{
|g1(x(s, µ); ·)|

∣∣∣∣v(s)− h(s, µ, ε)

ε

∣∣∣∣

+ |g2(µ; ·)|
∥∥∥∥vs − hs(µ, ε)

ε

∥∥∥∥∞
+ |g3(xs(µ), µ; ·)| |0|

+
∫ 1

0

{∣∣∣�1
s′,ε

∣∣∣
∣∣∣∣
h(s, µ, ε)

ε

∣∣∣∣+
∣∣∣�2

s′,ε

∣∣∣
∥∥∥∥
hs(µ, ε)

ε

∥∥∥∥∞
+

∣∣∣�3
s′,ε

∣∣∣ |1|
}
ds′

}
ds

}

≤
∫ t

0
(|g1(x(s, µ); ·)| + |g2(µ; ·)|)

∥∥∥∥vs − hs(µ, ε)

ε

∥∥∥∥∞
ds

+
∫ t

0

∫ 1

0

{∣∣∣�1
s′,ε

∣∣∣
∣∣∣∣
h(s, µ, ε)

ε

∣∣∣∣+
∣∣∣�2

s′,ε

∣∣∣
∥∥∥∥
hs(µ, ε)

ε

∥∥∥∥∞
+

∣∣∣�3
s′,ε

∣∣∣ |1|
}
ds′ds.

By equation (3), we know that
∥∥∥∥vt − ht (µ, ε)

ε

∥∥∥∥∞
≤

∫ t

0
{|g1(x(s, µ); · )| + |g2(µ; · )|}

∥∥∥∥vs − hs(µ, ε)

ε

∥∥∥∥∞
ds

+
∫ t

0

∫ 1

0
K2

∣∣tf
∣∣ exp(K1tf )

{∣∣∣�1
s′,ε

∣∣∣ +
∣∣∣�2

s′,ε

∣∣∣
} |ε|

|ε| +
∣∣∣�3

s′,ε

∣∣∣ |1| ds′ds
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≤ K1

∫ t

0

∥∥∥∥vs − hs(µ, ε)

ε

∥∥∥∥∞
ds

+tf
∫ 1

0

{
K2tf exp(K1tf )

{∣∣∣�1
s′,ε

∣∣∣ +
∣∣∣�2

s′,ε

∣∣∣
}

+
∣∣∣�3

s′,ε

∣∣∣
}
ds′

≤ K1

∫ t

0

∥∥∥∥vs−
hs(µ, ε)

ε

∥∥∥∥∞
ds +K3(tf )

∫ t

0

{∣∣∣�1
s′,ε

∣∣∣+
∣∣∣�2

s′,ε

∣∣∣ +
∣∣∣�3

s′,ε

∣∣∣
}
ds′,

where K3(tf ) = tf max{K2tf exp(K1tf ), 1}. By Gronwall’s inequality, we then
have that∣∣∣∣v(t)− h(t, µ, ε)

ε

∣∣∣∣ ≤ K3(tf )

∫ 1

0

{∣∣∣�1
s′,ε

∣∣∣ +
∣∣∣�2

s′,ε

∣∣∣ +
∣∣∣�3

s′,ε

∣∣∣
}
ds′eK1tf .

Since |�1
s′,ε|, |�2

s′,ε|, |�3
s′,ε|→0 uniformly in s′ as |ε|→0, we can then conclude

that for t ∈ [−r, tf ], h/ε→v as |ε|→0. Therefore, the partial derivative of x with
respect to µ1 (evaluated at µ1 = µ > 0) exists and satisfies (2) with the initial
condition (
(0),
) = (0, 0) ∈ R

4 × C (−r, 0; R
4), which completes the proof.

��
Remark 2. The line of reasoning presented here in Lemma 1 and Theorem 1 con-
cerns the existence and continuity (in t) of the derivative of a solution to (1) with
respect to the specific parameter µ1. Similar arguments (with minimal changes to
g3) establish the existence and continuity (in t) of derivatives with respect to µ2,
σ1, and σ2. For the parameters that appear in (1) as linear coefficients, g1 and g2 are
slightly altered (dependent upon the parameter under consideration), while g3 ≡ 0.
However, these differences do not change the conclusion that the derivative of the
solution x(t) (with respect to any parameter appearing on the right side of (1)) exists
and is continuous in time. One can also establish differentiability of solutions with
respect to discrete delays (i.e., when P1 or P2 is a Dirac measure) and well-posed-
ness of the appropriate sensitivity equations. The arguments, while in the spirit of
those given above, are however somewhat more tedious and will not be given here.

3. Analysis and results

In this section we examine some applications of the theory developed in Section 2.
All of the simulations presented in this section were done using Matlab software
originally developed in [4] for the purpose of simulating systems of Abstract Evo-
lution Equations (AEE’s) that are linear in the delay (e.g., system (1)). As can be
inferred from equation (2), in order to solve sensitivity equations, one needs the
solution x of the original system. Therefore, we use the calculated solution from
[4] with parameters q∗ ∈ Qad (the space of admissible parameters) identified by
minimizing the cost

J (q) =
10∑
i=1

(X(ti; q)− X̂i)
2 , (4)

over q ∈ Qad , where X̂ = {X̂i} is the data from [45] taken at times {ti}, and
X = A + C + T . In the calculations reported on here and in [4,9], we employed
the Nelder-Mead nonlinear iterative Matlab optimization routine fminsearch to
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estimate the 10 parameters consisting of those in q in Section 1.2 minus c, rv , ru,
and S which were held fixed and given (see [4] for more details).

We are not able, however, to compute the exact solution x and thus (as described
in [4,9]) we actually minimize

JN(q) =
10∑
i=1

(XN(ti; q)− X̂i)
2 , (5)

where xN = (V N,AN,CN, T N) is an appropriate approximation to x,N is an inte-
ger describing the accuracy of the numerical simulation such that limN→∞ xN(t; q)
= x(t; q), and XN = AN + CN + T N . In this case, we used the piecewise lin-
ear spline approximation scheme for delay differential equations as developed by
Banks and Kappel in [5]. For our example, these approximation schemes lead to
a 4(N + 1) dimensional nonlinear ordinary differential equation vector system for
the generalized Fourier coefficients in the expansion of solutions in terms ofN + 1
piecewise linear spline basis elements. We employedN = 32 in our calculations to
obtain 33 basis elements and a 4 × 33 = 132 dimensional approximating system.
The numerical scheme (also described in[4,9]) is such that asN → ∞, a minimizer
qN∗ to (5) converges to q∗, a minimizer to (4). Both the experimental results and
the numerical best fit solution xN (using parameters qN∗ from Table 2) are depicted
in Figure 1.

By Theorem 1, we can legitimately consider the derivative of both sides of (1)
with respect to any appropriate parameter. We first consider the derivative of x(t)
with respect to µ1 at µ1 = µ

d

dµ1
ẋ(t;µ) = d

dµ1
L(x(t;µ), xt (µ);µ)+ d

dµ1
f1(x(t;µ))

+ d

dµ1
f2(t) for 0 ≤ t ≤ tf

d

dµ1
(x(0, µ), x0(µ)) = d

dµ1
(�(0),�) ∈ R

4 × C (−r, 0; R
4) . (6)

Table 2. Optimal in vitro model parameter values.

Parameter Value Units

nA 0.112 hours−1

nC 0.011 hours−1

γ 9E − 4 hours−1

δA 0.078 hours−1

δC 0.025 hours−1

δu 0.017 hours−1

δ 1E − 12 (cell hours)−1

p 1.3E − 6 (cell hours)−1

µ1 −22.8 hours
µ2 −26 hours
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Fig. 1. Data from [45] and best fit simulation xN of (1).

If we denote v(t) = d
dµ1

x(t;µ) (for some specific value of µ1 = µ > 0), we
obtain the sensitivity equations

v̇(t) = g1(x(t;µ); v(t))+ g2(µ; vt )+ g3(xt (µ), µ; 1) for 0 ≤ t ≤ tf

(v(0), v0) = (0, 0) ∈ R
4 × C (−r, 0; R

4) , (7)

where g1, g2, g3 are as defined in Lemma 1. As before, due to the complexity of the
right side of (7), we cannot solve exactly for the solution v(t). Moreover, we do not
have x which appears in the terms g1 and g3; we only have an approximation xN to
x. Therefore, we must propose a viable numerical scheme to calculate an approxi-
mation vN to solutions of (7), with x replaced by xN such that limN→∞ vN = v.

Hence we consider vN an approximate solution to (7) with x = xN in the
coefficients. This is a linear nonautonomous system of the form

v̇N (t) = A N(t)vN(t)+ g2(v
N
t )+ g3(x

N
t ) for 0 ≤ t ≤ tf(

vN(0), vN0
)

= (0, 0) ∈ R
4 × C (−r, 0; R

4) , (8)

where N is fixed, xN is given, and A N maps R
4 × C (−r, 0; R

4) to R
4. Note that

this is a special case of the systems treated in [4], where existence and uniqueness
are guaranteed. To obtain convergence of vN to v (the unique solution to (7)), we
turn to [3]. A straightforward extension of the theory presented in [3] to treat non-
autonomous linear systems such as (8) will yield, (under the approximation scheme
described in [4]), the desired convergence.

If we were to plot simulations of (7) (or actually, the approximate solutions
defined by (8)), interpretations of these plots would suggest specific effects that
changes in µ1 would have on the solution x. Moreover, if we were to also perform
the analogous derivation for the infection rate p, a plot of that sensitivity function
would depict the effect that changes in p would have on x. Since µ1 and p differ in
their units, the sensitivity functions for µ1 and p would also have different units,
thus rendering any comparison meaningless. We turn to the sensitivity analysis lit-
erature to resolve this issue. To enable a comparison of the effects that parameters
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with different units have on the solution, we simply multiply by the parameter under
consideration, e.g., ( ∂

∂µ1
x1(t;µ), ∂

∂µ1
x2(t;µ), ∂

∂µ1
x3(t;µ), ∂

∂µ1
x4(t;µ)) ·µ. This

form of the sensitivity function is known as the semirelative or semilogarithmic
or unnormalized sensitivity function [17,18]. Moreover, this form is actually the
differential of x with respect to µ1 at µ in the direction µ

Dµ1xi(t;µ)[µ] = (
∂

∂µ1
xi(t;µ)) · µ

for i = 1, 2, 3, 4. With this weighting, we now have the tools to rank the parameters
with regard to their influence over the solution.

Figure 2 depicts the approximation vN of the solution v to (7) (at µ = −22.8),
with each compartment multiplied by µ. It is important to realize that while the
y-axis in Figure 2 has units of cells or virions respectively, it should still be thought
of as a plot reflecting changes in the state with respect to changes in µ1. In other
words, we interpret the upper-left plot of Figure 2 to suggest that for a (positive)
change in the mean delay, the virion compartment V will be dramatically smaller
just before day 10 and then larger around day 12 (relative toV (t; −22.8)). Likewise
for a change in µ1, the acutely infected cell compartmentAwill be slightly smaller
around day 9 and dramatically larger around day 10 (relative to A(t; −22.8)). All
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Fig. 2. Simulation of the semirelative sensitivity solution with respect to µ1 at µ1 = µ =
−22.8.
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the plots depicted in Figure 2 suggest that there will be dramatic changes in the
solution for changes in µ1, and indeed Figure 3 supports this claim (as well as the
specific predictions suggested by the interpretation of Figure 2). For this simulation,
it is important to note that there is practically no indication that the solution x will
exhibit any sensitivity to µ1 until around day 5. In other words, for simulations on
a short time interval (i.e., t ∈ [−r, 120] hours), one could easily conclude that the
solution x is insensitive to µ1 (in the neighborhood of µ1 = µ = −22.8 hours).

As another example, let us consider the solution parameterized with respect to
the infection rate p, i.e., x(t) = x(t;p). Thus the derivative of (1) with respect to
p at p̃ = 1.3 × 10−6 is

d

dp
ẋ(t; p̃) = d

dp
L(x(t; p̃), xt (p̃))+ d

dp
f1(x(t; p̃), p̃)

+ d

dp
f2(t) for 0 ≤ t ≤ tf

d

dp
(x(0, p̃), x0(p̃)) = d

dp
(�(0),�) ∈ R

4 × C (−r, 0; R
4) . (9)

As mentioned in the last part of Section 2, the sensitivity equations with respect
to different parameters will be slightly different than (7), but unique solutions still
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Fig. 3. Simulations of xN(t; −24.8) and xN(t; −22.8).
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exist and are continuous (for each system of sensitivity equations). Figures 4 and
5 depict the semirelative sensitivity functions for p and µ2, respectively. A com-
parison of the scales on the vertical axis in Figure 2 versus the axis in Figures 4
and 5 suggests that changes in µ1 have a more significant influence in the solution
x than changes in µ2 or p (and in one of the compartments by over four orders
of magnitude). This result coincides nicely with one of the primary conclusions
from [4], in which we concluded that when fitting the data, adding the second delay
between than acute and chronic infection was not as significant as inclusion of the
delay between viral infection and viral production.

Now that we have established the framework for calculating semirelative sen-
sitivity functions, let us consider how to rank the influence that changes in the
individual parameters have upon the solution x. Clearly, there are many options,
but for simplicity, we will rank the parameters according to the magnitude of the
∞-norm, e.g., for the virion compartment and the sensitivity with respect to δA, we
consider

max
t∈[0,tf ]

∣∣DδAV (t; 0.0776) [0.0776]
∣∣ .

To illustrate our reasoning, we will focus on just the virion compartment V . Of the
parameters over which we performed our nonlinear least squares estimation in [4],
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Fig. 4. Simulation of semirelative sensitivity solution with respect to the infection rate p
for p̃ = 1.3 × 106.
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Fig. 5. Simulation of semirelative sensitivity solution with respect to the mean delay between
acute and chronic infection µ2 for µ̃2 = −26.

the chosen metric was largest for the parametersµ1, nA, δA, and δu. Figure 6 depicts
(for the compartment V ), the absolute values of the semirelative sensitivity func-
tions with respect to µ1, nA, δA, and δu, for t ∈ [8.5, 15] (the domain where there
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Fig. 6. Absolute value of simulations of semirelative sensitivity solutions for several param-
eters (V compartment only).
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is the most activity in the sensitivity functions). The interpretation of this figure
strongly suggests that δA and nA have the strongest influence over the solution in
the virion compartment (in the chosen ∞-norm). Therefore, for the use of equation
(1) (as a model to simulate HIV pathogenesis), both the viral production rate and
the death rate for acutely infected cells (nA and δA respectively) should be given
top priority when choosing which parameters to determine with a high degree of
accuracy. In other words, these parameters play an important role in the model and
obtaining good values for them is more important to the system response than good
values for other parameters to which solutions are less sensitive.

4. Concluding remarks

As discussed in Section 1.1, the taking of a derivative (with respect to parameters)
of the equations governing a system is not a new idea and indeed has been around
(in some form) for at least 170 years. Within control theory and engineering applied
to physical systems, the forms of the fundamental mathematical models often are,
for the most part, relatively well established and not so open to debate. For exam-
ple, in some investigations, it may not be fruitful to question the significance of
the viscosity parameter in the Navier-Stokes equations (although sensitivity of flow
patterns to viscosity is sometimes very important, see [49]). However, the constitu-
tive parameters and forms of the mathematical models employed in the biological
sciences are frequently not as well agreed upon, and indeed (as is evidenced by the
literature) open to considerable debate. Since the current approach to sensitivity was
originally developed in the context of control theory, the cited literature is (under-
standably) biased toward that field; a considerable proportion of the papers are
devoted to analyzing the sensitivity of transfer functions and eigenvalues. Thus the
application of mathematically rigorous sensitivity analyses to dynamical systems
designed to model biological phenomena does not seem to be common practice.
Indeed, many sensitivity studies often involve copious simulations. As such, there
are many possibilities that have not been fully examined.

In the analysis presented in this paper, we only considered first derivatives of
the state variables. In theory, we could have formally differentiated (1) with respect
to multiple parameters (e.g., ∂2x

∂nA∂δA
or ∂

2x
∂c2 ), an analysis of which could be used to

ascertain the independent identifiability of parameters. Furthermore, consideration
of the Hessian matrix of parameter sensitivities would yield local curvature and con-
fidence interval information (we did not do this for the example discussed in this
paper since a careful statistical analysis is perhaps not so useful given the paucity of
observations (10 points) in the one data set used in our inverse problem calculations
in [4]). We could have also taken a derivative with respect to the initial conditions,
which (as is intuitive) would suggest the influence of the initial conditions over the
solution (this can be extremely useful in certain biological investigations). Finally,
we could have considered the derivative of the least squares functional (4) with
respect to a parameter (as was explored in [28]), which could then be used as
part of a Jacobian in an optimization algorithm (as part of a parameter estimation
scheme).
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The process of taking the derivative of a system with respect to a parameter is
typically not an exceedingly challenging task. Moreover, it is important to remem-
ber that the sensitivity function only reveals the local behavior since it is, in essence,
a Taylor Series expanded around a fixed set of parameter values. However, this idea
can yield useful insights into the solution of complex systems (even those with non-
linearities and delays) such as (1). Effectively, the technique of using simulation
sensitivity functions presented in this paper is a more efficient (and mathematically
rigorous) way to attain insight into a system than manually adjusting a parameter
and observing the effect on the solution through massive simulation efforts.
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