
Machine Learning, 8, 87-102 (1992)
© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Technical Note
On the Handling
in Decision Tree

of Continuous-Valued Attributes
Generation

USAMA M. FAYYAD* FAYYAD@AI-CYCLOPS.JPL.NASA.GOV
KEKI B. IRANI IRANI@CAEN.ENGIN.UMICH.EDU
Artificial Intelligence Laboratory, Electrical Engineering and Computer Science Department, The University
of Michigan, Ann Arbor, MI 48109-2110

Editor: Dennis Kibler

Abstract. We present a result applicable to classification learning algorithms that generate decision trees or rules
using the information entropy minimization heuristic for discretizing continuous-valued attributes. The result serves
to give a better understanding of the entropy measure, to point out that the behavior of the information entropy
heuristic possesses desirable properties that justify its usage in a formal sense, and to improve the efficiency
of evaluating continuous-valued attributes for cut value selection. Along with the formal proof, we present em-
pirical results that demonstrate the theoretically expected reduction in evaluation effort for training data sets from
real-world domains.

Keywords. Induction, empirical concept learning, decision trees, information entropy minimization, discretiza-
tion, classification

1. Introduction

Empirical learning from examples is receiving considerable attention in terms of research
and industrial applications. Programs that learn from pre-classified examples aim at cir-
cumventing the knowledge acquisition bottleneck in the development of expert systems.
The problem is due to the fact that human experts find it difficult to express their (intuitive)
knowledge of a domain in terms of concise, correct situation-action rules. Empirical lear-
ning algorithms attempt to discover relations between situations expressed in terms of a
set of attributes and actions encoded in terms of a fixed set of classes. By examining large
sets of pre-classified data, it is hoped that a learning program may discover the proper
conditions under which each action (class) is appropriate.

Learning algorithms typically use heuristics to guide their search through the large space
of possible relations between combinations of attribute values and classes. A powerful and
popular such heuristic uses the notion of selecting attributes that locally minimize the in-
formation entropy of the classes in a data set. This heuristic is used in the ID3 algorithm
(Quinlan, 1986) and its extensions, e.g., GID3 (Cheng, et al., 1988), GID3* (Fayyad, 1991)
and C4 (Quinlan, 1990), in CART (Breiman, et al., 1984), in CN2 (Clark & Niblett, 1989)
and others; see (Lewis, 1968) and (Fayyad, 1991) for a general discussion of the attribute
selection problem.

*Present address: AI Group, M/S 525-3660, Jet Propulsion Lab, California Institute of Technology, 4800 Oak
Grove Drive. Pasadena, CA 91109.

88 U.M. FAYYAD AND K.B. IRANI

The attributes in a learning problem may be nominal (categorical), or they may be con-
tinuous (numerical). The term "continuous" is used in the literature to indicate both real
and integer valued attributes. The above mentioned attribute selection process assumes that ~
all attributes are nominal. Continuous-valued attributes must, therefore, be discretized prior
to attribute selection. This involves choosing a particular discretization among several possi-
ble discretizations. In this paper, we focus only on the discretization of continuous-valued
attributes. We derive a result about the information entropy minimization heuristic used
in discretizing continuous-valued attributes that gives us:

• a better understanding of the heuristic and its behavior,
• formal evidence that supports the usage of the heuristic in this context, and
• a gain in computational efficiency that results in speeding up the evaluation process for

continuous-valued attribute discretization.

In Section 2 we discuss the evaluation of continuous-valued attributes, and in Section
3 we motivate the need for further study of this step. Section 4 presents the main result
along with its proof. Finally, in Section 5 we empirically evaluate the theoretically predicted
speedup on real-world data sets.

2. The discretization criterion for continuous-valued attributes

Concept learning, pattern analysis, and decision tree generation algorithms in general should
be capable of handling continuous-valued attributes. A continuous-valued attribute takes
on numerical values (integer or real). In general, it is an attribute that has a linearly ordered
range of values. A continuous-valued attribute is typically handled by partitioning its range
into subranges, i.e., a test is devised that quantizes the continuous range. The discretiza-
tion should be chosen so as to provide useful classification information with respect to
the classes to which the examples in the attribute's range belong. In general, a discretiza-
tion is simply a logical condition, in terms of one or more continuous-valued attributes,
that serves to partition the data into at least two subsets.

A continuous-valued attribute is typically discretized during decision tree generation by
partitioning its range into two intervals. A threshold value, T, for the continuous-valued
attribute A is determined, and the test A _< T is assigned to the left branch while A >
Tis assigned to the right branch. 1 We call such a threshold value, T, a cutpoint. This method
for selecting a cut point is used in the ID3 (Quinlan, 1986) algorithm and its variants such
as GID3 (Cheng, et al., 1988), in the CART algorithm (Breiman, et al., 1984), and others
(Gelfand, et al., 1991). This discretization algorithrn could be used in general in any algorithm
for learning classification trees or rules that handles continuous-valued attributes by quan-
tizing their ranges into intervals. Thresholding against a cut value is not the only way to
discretize attributes. One may, for example, consider linear combinations of several at-
tributes and compare the result against a threshold (Breiman, et al., 1984). It may also
be possible to avoid thresholding by forming a condition that compares the values of two
or more attributes directly, e.g., IF A < B, where A and B are two attributes, However,
the huge number of such possible expressions makes the space too large to search. Fur-
thermore, most work in the literature adopts the simple scheme of selecting a cut value.
We therefore focus on this scheme and study one particular criterion for cut value selection.

HANDLING CONTINUOUS-VALUED ATTRIBUTES 89

Although the result we derive is applicable to continuous-valued attribute evaluation in
general, we discuss it in the particular context of top-down decision tree generation (as
in the ID3 algorithm). First we describe the use of the entropy minimization heuristic for
the selection of an attribute and a cut point for partitioning its range into two regions.

Assume we are to select an attribute for branching at a node having a set S of N ex-
amples. For each continuous-valued attribute A we select the "best" cut point Ta from
its range of values by evaluating every candidate cut point in the range of values. The ex-
amples are first sorted by increasing value of the attribute A, and the midpoint between
each successive pair of examples in the sorted sequence is evaluated as a potential cut point.
Thus, for each continuous-valued attribute, N - 1 evaluations will take place (assuming
that examples do not have identical attribute values). For each evaluation of a candidate
cut point T, the data are partitioned into two sets and the class entropy of the resulting
partition is computed. The set S of examples is partitioned into the subsets S1 and $2. Let
there be k classes C1 , Ck. Let P(Ci, S) be the proportion of examples in S that have
class C/. The class entropy of a subset S is defined as:

Ent(S) =
k

- ~ P(C/, S) log(P(Ci, 3))
i=1

where the logarithm may be to any convenient base. When the base is 2, Ent(S) measures
the amount of information needed, in bits, to specify the classes in S. This measure gives
the degree of "randomness" that the classes appear to exhibit in a set S. The smaller this
number, the less even is the class distribution. To evaluate the resulting class entropy after
a set S is partitioned into two sets $1 and $2, we take the weighted average of their resulting
class entropies:

Definition 1: For a set S of examples, an attribute A, and a cut value T. Let $1 C S be
the subset of examples in S with A-values not exceeding T and $2 = S - $1. The class
information entropy of the partition induced by T, denoted by E(A, T; S), is defined as

E(A, T; S) = IS~-~[Ent(S1) + IS2IEnt(S2)
N N

(1)

where N = IS[is the number of examples in the set S.
The cut point T A for which E(A, TA; S) is minimal amongst all the candidate cut points

is taken as the best cut point. This determines a binary discretization for attribute A.
After all continuous-valued attributes have been discretized, an attribute should be selected

for branching out of the node. In algorithms that use information entropy minimization
for attribute selection, e.g., (Quinlan, 1986), the attribute Aj, for which E(Aj, T,i; S) is
minimum, is the selected attribute among the (now discretized) continuous-valued attributes.
When, in turn, attributes are to be selected for partitioning the child nodes, the discretiza-
tion process must be performed again to rederive a new quantization based on each child
node's own examples.

9 0 U.M. FAYYAD AND K.B. IRANI

3. Discussion of the cut point selection criterion

It has been demonstrated empirically that this selection criterion constitutes a powerful '~
heuristic when used to guide the search for a good decision tree to classify a set of training
examples (Quinlan, 1986). It does not guarantee optimal trees but it is a good method for
determining which attributes are relevant to the classification task at hand.

One of the main problems with this selection criterion is that it is relatively expensive.
Although it is polynomial in complexity, it must be evaluated N - 1 times for each at-
tribute (assuming that the N examples have distinct values). Machine learning programs
are designed to work with large sets of training data, so N is typically very large. In the
case of nominal (or discretized) attributes, this criterion is not expensive since each at-
tribute needs a single evalution of an r-partition, where r is the number of values of the
nominal attribute. Typically, r ,~ N. Indeed, experience with ID3-1ike algorithms con-
firms that they run significantly slower when continuous attributes are present.

The other objection that may be raised is that the algorithm has an inherent weakness
in it that will cause it to produce "bad" cut points especially when there are more than
two classes in the problem. This objection is based on the fact that the algorithm attempts
to minimize the weighted average entropy of the two sets in the candidate binary partition
(as shown in Equation 1 above). The cut point may therefore separate examples of one
class in an attempt to minimize the average entropy. Figure 1 illustrates this situation. In-
stead of falling on one of the boundaries B1 or B2, the cut point may fall in between so
that the average entropy of both sides is minimized.

However, neither of these objections turns out to be true. We prove below that regardless
of how many classes there are, and how they are distributed, the cut point will always oc-

cur on the boundary between two classes (see Definition 2 for a precise statement of what
we mean by a boundary point). This is indeed a desirable property of the heuristic since
it shows that the heuristic is "well behaved" in terms of the cut points it favors. It tells
us that this heuristic will never select a cut that is considered "bad" from the teleological
point of view. In addition, this result will also help us improve the efficiency of the algorithm
without changing its function at all. Since the cut point must occur on a boundary, we
only need to evaluate boundary points between classes instead of evaluating possibly all
N - 1 candidate cut points. If there are k classes, then in the best case we only need to

Po ten t i a l cu t po in t T

I I
examples examples
c l a s s C1 c l a s s C2

I n c r e a s i n g A v a l u e s

B2

I ' ' | •
30 20
examples examples
c l a s s C3 c l a s s C1

200 Examples sorted by A values

Figure 1. A potential cut point that separates examples from the same class.

HANDLING CONTINUOUS-VALUED ATTRIBUTES 91

evaluate k - i points. This occurs when the sorted sequence of examples has all examples
of the same class adjacent to each other. For the example shown in Figure 1, we only need
to evaluate three candidates rather than 189. Of course, in the degenerate case where the
sorted sequence of examples forms a sequence in which the class changes from one exam-
ple to the next, all N - 1 points need to be evaluated if all the examples have distinct values
for the attribute. However, in practice, the occurrence of this event for all attributes
simultaneously is not likely. Savings in computation will most likely still be achieved. We
verify this claim empirically in Section 5 by measuring it for a few real-world data sets.

A simple analysis of a "bad" situation can help clarify our intuition about the expected
savings in evaluation effort. In a "bad" scenario, all classes will be uniformly distributed,
and the values of the attribute will have no correlation with the classes. Thus when we
place the examples in a sorted sequence of increasing values of the attribute in question 2,
the class labels of the sequence may be assumed to be labeled randomly according to a
uniform distribution (all classes equally likely). Let b(n) be the expected number of boun-
dary points that need to be evaluated in a set of n examples with k classes.

b(1) = 0

k - 1
b(2) = - -

k

Now assume that we have n + 1 examples with an expected number of boundary points
b(n + 1). Take the first n examples in the sorted sequence. We expect to have b(n) boun-
daries among the first n. Now, the probability that the class of the n + lth example differs
from the nth's is (k - 1)/k. So the expected number of boundaries is

b(n + 1) = b (n) + ~ - ~ "1

k - 1
= b(n) + - -

k

Unfolding the recurrence gives us that

b(n) = (n - 1) (k - 1~) (2)
k

In a typical training set, we expect n ~> k. For example, let us assume we have 20 ex-
amples of each class, then n ~ 20k. Thus (n - 1) ~- 20k. We therefore have:

b(n) ~ 2 O k . (k - 1)
k

~ 20(k - 1)

92 U.M. FAYYAD A N D K.B. IRANI

Therefore, in this undesirable scenario, when the attribute values show no correlation what-
soever with the classes, we expect to save approximately 20m evaluations per node, where
rn is the number of continuous attributes in the problem. The savings grow as the correla- -
tion between classes and attribute values increases. It also grows if the classes are not
uniformly distributed--they rarely are.

Another way to view this situation, without necessarily assuming that classes are equally
likely is to ask the following question: What is the probability that two consecutive ex-
amples in the sequence have the same class? We compute the lower bound of this prob-
ability for the "worst case" when there is no correlation between the attribute values and
the examples. Assume we have Ci examples of each class, i = 1 . . . , k. Assuming no cor-
relation between values and classes, the probability that two consecutive examples have
the same class is approximately

k 2

i=1

Note that if the classes are equally likely, Ci/N ~ 1/k. Thus

k 2

 'rob{same class/

1

k

and increases as correlation between attribute values and classes increases.
We shall focus on the problem of discretizing continuous-valued attributes into two in-

tervals. Later in the paper, we briefly mention the generalization of the algorithm to pro-
duce two or more intervals. We now turn our attention to modeling the problem and prov-
ing the aforementioned result about the discretization criterion.

4. Cut points are always on boundaries

In this section we prove that the value T A for attribute A that minimizes the average class
entropy E(A, Ta; S) for a training set S must always be a value between two examples of
different classes in the sequence of sorted examples. We must be careful in defining what
we mean by a boundary point between two classes since in the sorted sequence, some ex-
amples of different classes may have identical values for the attribute.

Let S be a training set and A be a continuous-valued attribute. Sort the examples in S
by increasing value of attribute A. Let T be some candidate cut point in the range of A,
that is T is a value between two consecutive examples in the sequence that have different
values for A. We introduce the notation A(e) to denote the A-value of an example e ~ S.

HANDLING CONTINUOUS-VALUED ATTRIBUTES 93

Definition 2: A value T in the range of the attribute A is a boundary point iff in the se-
quence of examples sorted by the value of A, there exist two examples el, e2 fi S, having
different classes, such that A(el) < T < A(e2); and there exists no other example e' fi
S such that A(e~) < A(e') < A(e2).

In other words, T is a boundary point if it falls between two consecutive examples that
do not belong to the same class. In the special case when a group of two or more examples
have the same value for attribute A but belong to more than one class, then the cut points
on either side of this group of examples are also boundary points. When the attribute is
integer-valued rather than real-valued, we are more likely to encounter the special case
of repeated attribute values. In such a situation, the examples with identical values cannot
be separated from each other using the attribute in question. However, the cut points on
either side of the group must be treated as boundary points.

Theorem 1. I f T minimizes the measure E(A, T; S), then T is a boundary point.

Proof." We shall proceed to show that the minimizing T cannot occur within a group of
adjacent examples all of which have the same class.

In general, assume that T occurs somewhere within a sequence of nj examples of the
same class, where nj _> 2. Without loss of generality, assume that this class is Ck, where
k is the number of classes (this will simplify the proof later).

Assume that nc examples in this sequence of nj examples of class Ck have an A-value
less than T, 0 _< n c <_ nj.

Figure 2 illustrates the situation. Our sequence consists of nj examples that have values
greater than T1 and less than T 2 where T1 and T2 are boundary points according to Defini-
tion 2.

We will show that E(A, T; S) is minimized at nc = 0 or at nc = nj thus forcing T to
coincide with one of the boundary points T1 or T2.

Let there be L examples in S with A-values < T1, and R examples in S with A-values
> Ta, where 0 < L, R <_ N - nj. Note that nj + L + R = N by definition (see Figure 2).

L examples
L i examples of class C i

Potential cut point T
!

" ~ Increasing A values ~
-~---n c

T1 ~1~ T2
.

I ~ n~ examples ~ I R examples I
class Ck R i examples of class C i

N E x a m p l e s sorted by A v a l u e s (N = L + R + n j)

Figure 2. Modeling a possible partition at A = T,

94 U.M. FAYYAD AND K.B. IRANI

For the L examples on the left, let L i examples be of class C/, i = 1 k. Similarly
let R i examples of the R examples to the right be of class Ci, i = 1 , k. Note that
0 <_ Ri <- R ,O <__ L i <_ L,

k k

Z L i = L and Z R i
i=1 i=1

= R

We need to show that E(A, T; S) is minimized at n c = 0 or at nc = nj thus making T
a boundat 3, point.

To simplify the notation, let njc = nj - nc. From Equation 1:

= I s 2 l - n E(A, T; S) [--~nt(S1) + __ tz t(S2)
N N

 +ncr
N [_i=1 L + n c

+ nc + Lklog ~nc + Lk~ l
L+nc L+n j

N Li=I R+njc 7njc
+R +njclogR+njc L -TgJ

k-1

_ 1__ [.~l(Lilog(Li) _ Lilog(L + nc)) + (nc + Lg)log(nc + Lk) - E(A, T; S) = N

k-1

(nc + Lk) log(L + nc) + Z(Rilog(Ri) - Ri log(R + njc)) +
i=1

(Rk + njc) log(Rk + njc) - (Rk + nj~) log(R + njc)]

Now let I(x) = x log(x), perform the substitution, multiply both sides by N, and group
some terms into the summations.

k - 1 k

N" E(A, T; S) = - ~] I(Li) + ~ Li log(L + nc) - I(nc + Lk) + nc log(L + nc)
i=l i=1

k - 1 k

- ~ I(Ri) + ~ R, log(R + njc) - I(Rk + nj~) + n:c log(R + nj¢)
i=1 i=1

HANDLING CONTINUOUS-VALUED ATTRIBUTES 95

Note that

k

E L i log(L + nc) = L log(L + n~)
i=1

and similarly for R i. Thus,

N . E(A, T; S) = -

k - 1

Z I(Li) + L log(L + nc) - l(nc + Lk) + nc log(L + nc)
i=1

k - 1

Z l(Ri) + R log(R + njc) - I(R~ + njc) + njc log(R + njc)
i=1

(3t

We now take the first and second derivatives of this expression with respect to n~. Note

that d/dx l(a + x) = log(a + x) + 1 and d/dx l(a - x) = - log(a - x) - 1. Also,

recall that njc = nj - nc.

cl L nc
--.Z_(N" E(A, T; S)) = - - - log(no + Lk) - 1 + + log(L + no)
dnc L + n c L + nc

R - l o g (R + n j - n c) - n-i- nc
R + nj - n c R + nj - n c

+ log(R~ + nj - no) + 1

= log(L + no) - log(L k + nc) + log(Rk + nj - nc) - log(R + nj - nc)

Taking the second derivative with respect to n¢ gives:

d 2 1 ~- 1
- - E (A , T', S) = - -
dnZ~ N L + n~

1 1 + 1 ~

L~ + nc R , + nj - n c R + n . i - n c

However,

1

Z m nc

1
Lk + nc

since Lk < L by definition, and

1 < since Rk < R by definition.
R + n j - nc Rk + nj - n C

9 0 U.M. FAYYAD AND K.B. IRANI

We therefore conclude that

d 2
- - E(A, T; S) < 0 for all n¢ in the range 0 < n c < nj

This tells us that in the range 0 < n~ < nj, E(A, T', S) is convex downwards. Hence its
minimum must be at one of the extremes of the interval (Luenberger, 1973).

The minimum value of E(A, T', S) must therefore occur at one of the two boundaries
n c = 0 or n c = n j .

This proves that T must be a boundary point. []

Note that even though the numbers in the model of Figure 2, including nc are integers,
it is consistent to treat them as continuous and perform the differentiation. Fortunately
the final result indicates that nc = 0 or n¢ = nj and these are both integers; thus our
assumption is consistent with the situation.

Corollary 1. The algorithm used by ID3 for finding a binary partition for a continuous
attribute will always partition the data on a boundary point in the sequence of the examples
ordered by the value of that attribute.

Proof Follows immediately from Theorem 1 and definitions.

4.L Support for the entropy minimization heuristic

The first implication of Corollary 1 is that it serves to support the usage of the entropy
minimization heuristic in the context of discretization. We use the information entropy
heuristic because we know, intuitively, that it possesses some of the properties that a
discrimination measure should, in principle, possess. However, that in itself does not rule
out possibly undesirable situations, such as that depicted in Figure 1. The Corollary states
that "obviously bad" cuts are never favored by the heuristic. This result serves as further
formal support for using the heuristic in the context of discretization, since it tells us that
the heuristic is well-behaved from the teleological point of view. In other words, it possesses
one more desirable property: it implicitly excludes bad cuts of the type shown in Figure 1.

Corollary 1 also provides support for extending the algorithm to extract multiple inter-
vals, rather than just two, in a single discretization pass. The motivation for doing this
is that "better" trees are obtained 3 (Fayyad & Irani, 1991); see (Fayyad, 1991) for details.
The training set is sorted once, then the algorithm is applied recursively, always selecting
the best cut point. A criterion is applied to decide when to refrain from applying further
binary partitioning to a given interval. The details of the stopping criterion are not within
the scope of this paper. The fact that only boundary points are considered makes the top-
down derivation of intervals feasible (since the algorithm never commits to a "bad" cut
at the top) and reduces the computational effort as described below.

HANDLING CONTINUOUS-VALUED ATTRIBUTES 97

4.2. Improving the efficiency of the algorithm

Besides showing that the information entropy minimization selection criterion behaves well
and can never favor a "bad" cut point, Corollary 1 can be used to increase the efficiency
of the algorithm without changing its effects at all. After sorting the examples by the value
of the attribute A, the algorithm need only examine the b boundary points rather than all
N - 1 candidates. Note that

k - l < b < _ N - 1

Since typically k < N we expect significant computational savings to result in general.
We demonstrate speedups in terms of the number of potential cut points evaluated in the
next section.

As a sidelight, we present a corollary of the proof of Theorem 1 that allows us to op-
timize the algorithm further. Consider the new algorithm that only evaluates boundary points.
It computes the entropy of one boundary point then jumps to the nearest neighboring boun-
dary point and evaluates its entropy. Assume that the algorithm just evaluated E(A, T1; S)
and that the next range of examples consists of nj examples of class Cj with the boundary
cut point value being T2.

Corollary 2. I f the entropy at a boundary outpoint T1 is E(A, T1; S), and the next boun-
dary cut point is at T2, separated by nj examples of class Cj from TI, then

E(A, 7~2; S) = E(a, ~1; S) + F(n~, L, R, Lj, R?
N

(4)

where F(nj, L, R, Lj, Rj) =
[I(R) - I(L) + I(Lj) + I(L + nj) - I(Lj + nj) - I(Rj) - I(R + nj) + I(Rj + nj)]

Proof Follows
simplified to

1 E(A, r; s~ = }

directly from the expression 3 in the proof of Theorem 1, which can be

-- Z I(Li) + I(L + nc) - I(nc + Lj)
i=1

k_l]
~ I(Ri) + I (e + nj - no) - I(Rj + n~ - nc)
i=l

by setting

F(nj, L, R, Lj, Rj) = N" [E(A, T2; S) - E(A, T1; S)]

We therefore have an efficient incremental procedure for evaluating the boundaries without
dealing with partitioning the data. Note that the summations no longer need to be evaluated.

98 U.M. FAYYAD AND K.B. IRANI

Thus, rather than evaluating 2k divide-log-multiply-add floating point operations for each
candidate cut point, we only need to evaluate a constant number (eight) of log-multiply-
add. This is advantageous when there are more then 3 classes in the data.

The algorithm for evaluating the boundary points starts by setting L = O, R = N , Li

= O, and R i = I Ci[, 1 <_ i < k , where [cil is the number of examples in S that have
class Ci. Each time, the next nj examples of class Cj are traversed. The values of L, R,
L~-, and Ry are updated, and the new entropy difference is evaluated according to equation
(4) above.

5. Empirical evaluation

In this Section we describe results obtained by running ID3 on several data sets with con-
tinuous attributes to get an estimate of the amount of savings achieved for real-world data
sets. We measure speedup in terms of the number of evaluations of potential cut points.
The speedup ratio is defined to be the number of potential evaluations performed by the
old algorithm divided by the number of evaluations performed by the new algorithm that
utilizes Corollary 1. Experiments with randomly generated artificial data sets resulted in
speedups that ranged from 2 to 30 times. However, speedup on real-world data is of course
more important. We collected reasonably sized data sets that are used in real-world ap-
plications or that have been reported in the machine learning literature. We restrict atten-
tion to medium sized data sets (100 to 300 examples) since these are the sizes for typical
applications.

We need to point out two important facts regarding the results reported in this paper.

1. Our speedup metric measures speedup in the attribute discretization evaluation effort
and does not measure the overhead associated with sorting the examples by increasing
values for each attribute, generating new nodes in the decision tree, partitioning ex-
amples, and selecting an attribute once all attributes have been discretized.

2. The results reported are for the ID3 algorithm. ID3 partitions the range of a continuous-
valued attribute into two intervals. Algorithms that extract multiple intervals using a
generalization of this procedure achieve higher speedups (see (Fayyad, 1991) for details).
Algorithms that search for rules rather than decision trees also spend more effort on
discretization.

The generalized algorithm in (Fayyad, 1991), described briefly in Section 4.1, extracts
possibly more than two intervals for a given attribute at any evaluation pass. The training
data are sorted once, then the algorithm is applied recursively; always selecting the best
cut point. Thus, the time spent on evaluating cut points increases significantly while other
overhead, such as sorting, remains unchanged. In this case, the results derived in this paper
play an even bigger role in speeding up the run time of the algorithm.

To evaluate speedup, we used eight data sets that have a majority of continuous attributes.
The data sets are described in Table 1. Some of these were obtained from the U.C. Irvine
Machine Learning Repository and others came from our own industrial applications of
machine learning described in (Irani, et al., 1990).

HANDLING CONTINUOUS-VALUED ATTRIBUTES 99

Table 1. Details of the data sets used

Data Set Name Examples Attributes Classes

Faulty operation data from the Jet Propulsion Laboratory
Deep Space Network antenna controller DSN 258 12 5

Problems in a reactive ion etching process (RIE) in
semiconductor manufacturing from Hughes Aircraft
Company SRC1 94 8 4

The waveform domain described in (Breiman et al., 1984) WVFRM 150 21 3

Data obtained from a response surface of multiple
response variables in a set of wafer etching experiments
conducted at Hughes RSM1 300 3 35

Same as RSM1 except that classes are mapped to only
two values: "good" and "bad" RSM2 300 3 2

Publicly available heart disease medical data from an in-
stitute in Cleveland HEART 303 13 2

The glass types data from the USA Forensic Science
Service GLASS 214 9 6

The famous iris classification data used by R.A. Fisher
(1936) IRIS 150 4 3

The echocardiogram data of heart diseases from the Reed
Institute of Miami ECG 132 9 2

The data sets represent a mixture of characteristics ranging from few classes with many
attributes to many classes with few attributes. We intuitively expected smaller speedups
for data sets with a large number of classes. This is generally the case. The RSM1 and
RSM2 entries, for example, show that the speedup increases dramatically when a data set
with many classes is transformed to a two-class problem. The larger the number of classes,
the higher the lower bound on the number of boundaries to be evaluated. The simplified

analysis of Section 3 resulting in Equation 2 also predicts this trend as the number of classes
grows. Of course, the actual number of boundaries is dependent on the distribution of the
values of a part icular attribute over the classes. The evaluation effort measure is the total
number of candidate cut points evaluated during the generation of the decision tree. The
graph on the left in Figure 3 shows the actual speedup in evaluation in terms of cut point
evaluations performed by ID3 to the necessary subset of evaluations (labeled ID3-S) deter-
mined by Corollary 1. The graph on the right shows the corresponding speedup ratios

number of cut values evaluated by ID3

number of necessary evaluations

Note that the results shown in Figure 3 are only applicable to the evaluation of continuous-
valued attributes. The presence of nominal attributes in the data would slow down the ob-
served speedup in terms of total time to generate the decision tree. As mentioned earlier,
our measure of speedup focuses only on reduction in number of evaluations and ignores

100 U.M. FAYYAD AND K,B. IRANI

•
15CCC'

{
~ ICCCC

~ 5CCC

c

Savings in Evaluation Effort

•

SRG1 ECG HEARIRSkll FISM2 IRIS GLASS DSN WVFRId

Data Set

Speedup in Eva lua t ion Due to Corol lary 1

1
~o~ M /
~ ~ ~

•

SRG1 ECG HEART RSM1 RSM2 IRtS GLAS~ ~ WYFRM

Data Set

~'gure 3. Empirical results demonstrating actual speedup.

the effort spent by the algorithm on nominal attribute selection and other algorithm overhead.
The reason we chose it is that it is machine- and implementation-independent. However,
to get a feel for the speedup in tree generation time, we did collect timing measurements.
The timings are obviously machine- and implementation-dependent. We used a Macintosh
Ilcx computer and the program is implemented in the C programming language. The corre.
sponding run times are depicted in Figure 4. With such a measure of performance, the
speedup would obviously be reduced significantly if the majority of attributes are not con-
tinuous or if the implementation is not particularly efficient. In any case, the computational
improvement is a side benefit of the results presented in this paper. The major theme of this
paper is to provide further evidence in support of the usage of the information entropy heuristic.

T o t a l E v a l u a t i o n T i m e (w i t h o v e r h e a d

~ 500 '

¢~

N

~ 200 •

.~

.~
~ I00 '
,~

SRC1 ECG HF.~RT RSM1 RSM2 IRIS GLASS DSN WVFRM

D a t a ~ e t

Figure 4. Run times for the various data sets.

HANDLING CONTINUOUS-VALUED ATTRIBUTES 101

6. Conclusion

We have presented a result regarding continuous-valued attribute discretization using the
information entropy minimization heuristic. The result points out desirable behavior on
the part of the heuristic which in turn serves as further theoretical support for the merit
of the information entropy heuristic. In addition, the efficiency of the cut point selection
heuristic can be increased without changing the final outcome of the algorithm in any way.
Classification learning algorithms that use the information entropy minimization heuristic
for selecting cut points can benefit from this result. It also serves as a basis for generaliz-
ing the algorithm to multiple interval discretization, as in (Fayyad, 1991). Empirical evalua-
tion showed that speedup was indeed obtained in terms of significant reduction in the number
of potential cut points evaluated.

Acknowledgments

The authors wish to thank the Machine Learning reviewers for their thorough reading,
insightful comments, and many suggested improvements. Special thanks to professors J.R.
Quinlan and D. Kibler for many suggestions that improved the presentation and corrected
some errors in the earlier drafts. Discussions with Moncef Maiza were also helpful. This
work was supported in part by a DeVlieg Industrial Fellowship and by a Hughes Unrestricted
Grant.

Notes

1. The test A > T stands for: "the value of A is greater than T."
2. For the purposes of this simplified discussion, assume all examples have distinct values for the attribute. See

next section for implications of repeated attribute values.
3. One tree being "better" that another in this context means that it is smaller in size and that its (empirically

estimated) error rate is lower. In (Fayyad & Irani, 1990) we address the meaning of "better" more formally.

References

Breiman, L., Friedman, LH., Olshen, R.A., & Stone, C.J. (1984). Classification and regression trees. Monterey,
CA: Wadsworth & Brooks.

Cheng, J., Fayyad, U.M., Irani, K.B., & Qian, Z. (1988). Improved decision trees: A generalized version of
ID3. Proceedings of the Fifth International Conference on Machine Learning (pp. 100-108). San Mateo, CA:
Morgan Kaufmann.

Clark, P. & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-284.
Fayyad, U.M. & Irani, K.B. (1990). What should be minimized in a decision tree? Proceedings of the Eighth

National Conference on Artificial Intelligence AAA/-90 (pp. 749-754). Cambridge, MA: MIT Press.
Fayyad, U.M. & Irani, K.B. (1991). A machine learning algorithm (GID3*) for automated knowledge acquisi-

tion: Improvements and extensions. (General Motors Research Report CS-634). Warren, MI: GM Research Labs.

1~2, U.M. FAYYAD AND K.B. IRANI

Fayyad, U.M. (1991). On the induction o f decision trees for muhiple concept learning. Doctoral dissertation,
EECS Department, The University of Michigan.

Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annual Eugenics, 7, Part lI, 179-188. ,
Gelfand, S., Ravishankar, C. & Delp, E. (1991). An iterative growing and pruning algorithm for classification

tree design. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:2, 163-174.
Imni, K.B., Cheng, J., Fayyad, U.M., & Qian, Z. (1990). Applications of machine learning techniques in semicon-

ductor manufacturing. Proceedings of The S.P.LE. Conference on Applications o f Artificial Intelligence VIII
(pp. 956-965). Bellingham, WA: SPIE: The International Society for Optical Engineers.

Lewis, EM. (1962). The characteristic selection problem in recognition systems. IRE Transactions on Informa-
tion Theory, IT-8, 171-178.

Luenberger, D.G. (1973). Introduction to linear and nonlinear programming. Reading, MA: Addison-Wesley.
Quinlan, J.R. (1986). Induction of decision trees. Machine Learning 1, 81-106.
Quinlan, J.R. (1990). Probabilistic decision trees. In Y. Kodratoff & R. Miehalski (Eds.), Machine learning:

An artificial intelligence approach, volume IlL San Mateo, CA: Morgan Kanfmann.

