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Alternative equations of motion for the radiating electron
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Abstract. We have previously written down a simple
second-order equation for the radiating electron and
pointed out that its solutions are well behaved. A key
feature of this equation is the presence of a term involving
the time derivative of the external field f(¢). Here, we show
that a completely equivalent, but less elegant, equation
may be written down which contains no derivatives of f (1)
but, instead, an infinite number of derivatives of the coor-
dinate. However, it has the merit of displaying explicitly
how our result differs from that of Abraham-Lorentz.

PACS: 03.00

The equation of motion of a radiating electron has a long
history, too long to discuss it here, except to reference
some current textbook [1] and review [2,3] expositions
on the subject. One highlight of these discussions is the
emphasis given to the problem of “runaway solutions”
associated with the celebrated Abraham-Lorentz (AL)
equation. Thus, we were motivated to bring a new ap-
proach to the problem [4—7] with the goal of eliminating
the problem of “runaway solutions”. OQur approach has
four key features:

(i) The use of techniques from the realm of stochastic
physics to treat the electron—radiation-field system. In
particular, account was taken of the time dependence of
both the electron and the radiation field.

(ii) The incorporation of electron structure via an electron
form factor [8] Q?/(Q* + w?), where 2 — oo corresponds
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to the limiting case of a point electron, and w is the photon
frequency.

This enabled us to write down the equation of motion
of a quantum oscillator with charge ¢ and bare mass m,
dipole interacting with the electromagnetic field and mov-
ing to a potential V(r), in the form of a generalized
quantum Langevin equation [4]:

mx(t) + j dt' uf{t — )XY+ V'(x)y=F(t) + f(r) (1)

where x(t) is the coordinate operator, F(t) is the oper-
ator-valued random (fluctuating) force, f(t) is the external
force, u(t) is the memory function, and where the dot and
prime denote, respectively, the derivative with respect to
t and x.

This is an exact result and explicit values are known
for u(t) and F(t). However, as is usual, mass renormaliz-
ation is required.

(iff) The equation of motion is quantum mechanical.

(iv) The Fourier transform of the equation of motion may
be written in the form of a response equation involving
a generalized susceptibility with well-known analyticity
properties. This enables us to use the vast mathematical
machinery associated with such functions; in particular, it
enables us to rule out a point-electron model (which is the
basis of the AL equation). We then showed that choosing
the cut-off frequency Q to have its maximum value 7. ?
(where 7, =2¢*/3 Mc® =6x1072*s, M being the re-
normalized mass of the electron) compatible with causual-
ity considerations led to a considerable simplification. In
this large cut-off limit, which corresponds to taking the
bare-mass of the electron m = 0, (1) becomes [4]:

Mz, '5(t) — Mt 2 | dtexp[ — (¢ — ¢)es " T5(F)

+ Vi{x) = F(t) + f(1). 2

Next, if we multiply this equation across by
exp( — 7, 't)(dldt) exp(t,'t), we obtain the operator
equation

M3x(t) + Vige(x) = Fere(£) + fase(2), (3a)
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where

Jerel) = A1) + 7 f (1), (3b)

and similarly for the other “effective” quantities. It
will be noted that (3) above [which is the same as (5)
of [4] in the large cut-off limit] is a simple second-order
equation for the radiating electron and, in contrast to,
say, the Abraham-Lorentz equation, its solutions are well
behaved.

Let us now return to (2) with the aim of writing it as
a differential equation involving only derivatives of x(t).
First of all, we rewrite (2) in the form

T(0) -~ 10+ V(X) = FO) + (0, @
her

I= | ar G- ), ©)
WithAOO

Gl — 1) =expl — (1 — )] ©

The following properties of G(t —t') are found to be
useful:

G-ty 1
o - T—GG(I t'), (7
G(O) =1, (8)
G(o0)=0. ©)

Thus, from (5) and (7), we have

t
I(ty=r1. | dr GU(t — " )xP (1), (10)
where the superscript (n) denotes differentiation n times
with respect to ' inside the integral and with respect to

t otherwise. Integrating (10) by parts and using (7), we
obtain

t
1(t) =1 xM — 1, [ dt' G(t — ¢)xP(t)

t
= 1.x0(1) — 2 | dr GWXP(r). (11)

treating the integral in (11) analogous to that in (10), we
next obtain

I(t) = 1o xV(t) — 12xP(t) + 2 x3(1)

t
— 1 | dt GU(t — ')x™(1). (12)

Substituting (12) in (4) and using (7) leads to

i
M [X(Z) —tx® + 1. | A G(t — t’)x(‘”(t’)} + V'(x)

=MxP+ MY (= 1y 2x® 4 V'(x)

n=3
= F(t) + f(1). (13)

This is our desired quantum equation of motion, It might
be argued that the derivation of (13) from (4) could be
obtained more easily if we carried out a Taylor expansion
in powers of 7. But this would defeat the whole purpose
because all our results are exact. In general, (13) is not
a perturbative series.

The corresponding classical equation is obtained by
taking the mean value of (13). Then, since the mean value
of F(t) is zero, the classical equation is formally the same
as (13) except that F(t) is dropped and all the quantities
on the left-hand side should be interpreted as mean values.
The integral on the left-hand side of (13) or, alternatively,
all terms with derivatives beyond x* constitute the cor-
rections to the AL equation. It is clear that the latter
equation is a good approximation only when x®’ is slowly
varying on a t. time scale. In particular, the latter condi-
tion does not hold in the case of “runaway solutions.” In
other words, such “runaway solutions” to the AL equa-
tion occur in region where the equation is no longer valid.
Finally, we note that our original equation (3) is clearly
more elegant than the completely equivalent equation
(13); in particular, it is much easier to solve. In addition,
our equation for the radiating electron has the merit of
reducing to Newton’s equation in the absence of an ex-
ternal force (a feature missing in the AL equation); this is
immediately apparent from (3) but not from (13).
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