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Abstract 

This paper discusses the issues in estimating the effects of marketing variables with linear models. 
When the variables are not directly observable, it is well known that direct regression yields biased 
estimates. Several researchers have recently suggested reverse regression as an alternative pro- 
cedure. However, it is shown that the reverse regression approach also fails to provide unbiased 
estimates in general, except for some special cases. It is proposed that covariance structure anal- 
ysis with an appropriate measurement model can ensure the unbiasedness of estimated effects. 
These issues are examined in the context of assessing market pioneer advantages. 

Marketing researchers are often interested in estimating the impact of a certain 
exogenous variable on the endogenous variable while controlling for the effects 
of other exogenous variables. For example, one might ask a question: Do market 
pioneers get higher market shares than equally performing late entrants? A con- 
ventional approach to answering this question is to regress a market share variable 
(M) on a pioneer dummy variable (D = 1 for market pioneers, D = 0 for late 
entrants) and a performance variable (P).‘-That is, the following linear model is 
used: 

M=aD+PP+u (1) 

where (Y indicates the advantage that pioneers have over late entrants after con- 
trolling for the firms’ performance. 

* The authors thank the editor and the two anonymous reviewers for their helpful comments on 
the previous version of this paper. 
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An important task is then to estimate the market pioneer advantage (cx). When 
observations on all variables are available, its estimation is straightforward; direct 
regression of M on D and P will provide unbiased estimates of (Y. However, esti- 
mating the market pioneer advantage is problematic if another predictor affecting 
the market share (e.g., performance) is unobservable and is replaced with its cor- 
relates that are observable. This problem, identified originally in the economics 
literature on the theory of distributive justice (e.g., Conway and Roberts 1983; 
Greene 1984), has recently been introduced to marketing researchers (e.g., Van- 
honacker and Day 1987). 

Researchers (Vanhonacker and Day 1987) have identified the case where the 
usual regression (often-called direct regression) provides biased estimates and in 
its place suggested an alternative procedure for obtaining an unbiased estimate of 
cy on the basis of related econometric research (e.g., Goldberger 1984). This esti- 
mation procedure is referred to as “reverse regression” since the roles of endog- 
enous and exogenous variables are reversed; that is, exogenous variables (e.g., 
P) are regressed on endogenous variables (e.g., M). Indeed, reverse regression 
may yield unbiased estimates under certain circumstances. However, as we show 
later in this paper, reverse regression fails to provide unbiased estimates in gen- 
eral. Given the widespread use of regression analysis and the difficulty of directly 
observing variables in marketing, it seems necessary to understand these prob- 
lems and develop an estimation procedure that can provide unbiased estimates. 

The purpose of this paper is therefore (1) to investigate the problems in esti- 
mating linear regression models with unobservable variables, (2) to show the 
limitations of reverse regression, a method recently suggested in place of the 
often-used direct regression, (3) to propose an alternative method that can yield 
unbiased estimates, and (4) illustrate these alternative procedures in the context 
of substantive research (i.e., assessing market pioneer advantages). 

1. Issues in estimation by direct and reverse regression 

In this section, we examine the issues in estimating linear models via direct and 
reverse regression in the context of assessing market pioneer advantages. Re- 
search in econometrics (e.g., Goldberger 1984) suggests that unbiased estimation 
of the coefficient (e.g., ar) for a predictor (e.g., D) depends upon measurement 
properties of another predictor (e.g., P). Thus, the issues are examined according 
to the way P is measured. 

1 .I. Case I: single measures of P 

Suppose P is measured with a single indicator with random error. Such a case can 
be represented by the following equations. 
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M=pP+cwD+u 

X=hP+0 

P=cD+& 

That is, X is an observed indicator of P, and it has the correlation of A with P. 
Also, the correlation between D and P is c. 

Several points should be noted with respect to this specification. First, this 
specification is different from the specification by Goldberger (1984) in that a ran- 
dom error term (u) is added to the equation for M. Goldberger (1984) used a de- 
terministic model without the random error term. However, given a basic and 
unpredictable element of randomness in market responses, a model with the error 
term seems to be more justified (see Johnston 1984). Vanhonacker and Day (1987) 
also used the model containing random error. Furthermore, the model with ran- 
dom error is a general case, because the deterministic model is its special case 
when random error is zero. 

Note also that we have added an explicit relation between D and P to the model 
specification. Specifically, market pioneering is posited to affected firms’ perfor- 
mance. This relation is based on previous research in the area. Several researchers 
have argued that the order of entry gives the pioneer advantages such as broader 
product lines, higher product quality, lower production cost, lower advertising 
cost, etc.; for example, market pioneers can develop and position products for 
the largest and most lucrative segments and leave the smaller and less desirable 
market niches for late entrants (Robinson 1988; Robinson and Fornell 1985; 
Schmalensee 1978). Fershtman, Mahajan and Muller (1990) also provide theoret- 
ical support for this relationship. However, the estimation issues and results in 
this paper hold whether exogenous variables are causally related or merely cor- 
related. Given that exogenous variables are often correlated, the model should be 
relevant to many research settings. 

Let us assume that 

E(&(D)=O 
E(BJP,D) = 0 
E(u(P,D) = 0 

V(EID) = u28 
V(fJP,D) = 02e 
V(ulP,D) = uzU, 

Then, we get 

E(X(D) = AcD V(XlD) = X2&, + cr2@ 
E(M(D) = (CY + @c>D V(MID) = p2crzE + ozU Cov (X, MID) = Xpo’, 

Let us first consider the parameter estimators from direct regression. When the 
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above models are true,. an application of direct regression (M = pP + olD + u) will 
give the following estimators. 

p- Xf3U2& 
X2& + CT2 F. e 

&=CY+ PCQ213 
h2w2 + rJ* =ol+@(l-p,) 

E e 

where pp is the reliability of the P measure. Note that the bias in the estimator for 
the coefficient (rx) of D is a direct function of (1) the unreliability of the P measure 
(1 - p,), (2) the true coefficient (p) for P, and (3) the correlation (c) between P and 
D. Since l3 and c are expected to be positive in general, the estimator of o is biased 
upward in direct regression. 

What do these results imply? Estimating the effect of a predictor (the market 
pioneer advantage) with direct regression is problematic especially when other 
predictors (e.g., performance) exhibit relatively large measurement errors. For 
instance, if we measure D with considerable accuracy but have only a rough in- 
dicator of P, the effect of D will be exaggerated. This is because the coefficient 
(l3) of, the poorly measured variable will be attenuated, but the coefficient (or) of 
the well-measured variable will be amplified. That is, the,estimated impact of one 
predictor is affected by the measurement properties (i.e., reliabilities) of other 
predictors incorporated in the regression equation. The estimation is also difficult 
when other predictors are highly correlated with the focal variable. 

Let us now consider the parameter estimators from reverse regression. If re- 
verse regression (X = gM + dD + v) is used, the following estimators are obtained. 

The estimator of CY from reverse regression is biased downward. When the re- 
verse regression approach is taken, the estimator of (Y is still biased, but the di- 
rection of the bias is downward. The magnitude of the bias is a function of the 
ratio between the.error variance for M and the error variance for P, as well as the 
correlation between D and P. In sum, when P is measured with a single indicator 
with random error, neither direct regression nor reverse regression provides an 
unbiased estimate for the effect of D. 



Now let us examine some special cases of the model and implications for’un- 
biased estimation. Let us first look at the case when the random error term is zero 
(u = 0 and w2U = O), which is the model used by Goldberger (1984). We can note 
that the estimator of M. from reverse regression is unbiased in such a case. A sec- 
ond special case might occur when D and P are totally uncorrelated (i.e., c = 0). 
It can be noted that the estimator of OL from direct or reverse regression is unbiased 
in this case. That is, under certain special circumstances direct and reverse regres- 
sion can provide unbiased estimators. However, these situations are unlikely to 
occur in practice, and direct or reverse regression is of limited applicability for 
unbiased estimation. 

I .2. Case II: muttiple measures ofP 

Marketing variables (e.g., firms’ performance P) are often measured with a set of 
indicators (X’ =(X,, + I . , X,)), rather than with a single indicator. Since such a 
case is most likely, it will be the focus of this paper. Eased on Goldberger’s (f984j 
results, Vanhona~ker and Day (1987) consider two measurement models for P 
with multiple measures: Formative and Reflective measurement Models. The 
measurement vector X will be imperfectly correlated with P, a latent variable 
interpreted as performance. These two modefs differ in epistemic reiationships 
between X and P. 

Formative Measurement Model specifies that the elements of X (Xi’s) are mul- 
tiple causes of P. That is, Xi’s are formative indicators of P, and P is a linear 
combination of Xi’s, The equation for this measurement model is as follows: 

P=PXSv 

Reflective Measurement Model hypothesizes that the elements of X (Xi’s) are 
multiple indicators of P. In other words, P is an unobservable factor underlying a 
set of measures (Xi’s), and Xi’s are reflective indicators of P. The following is the 
equation for the Reflective Measurement Model: 

X=AP+B (31 

Let us consider the latter case where P is measured by muftipfe reflective in- 
dicators with measurement errors. This case can be represented by the following 
equations: 

M=@P+cuD+u 
X=RP+0 
P=cD+e 
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Let us assume 

EfejD) = 0 V(E[D) = de 
E@jP,D) =0 V(S/P,D) = fi 
E(ujP,D) = 0 V(ujP,D) = uzU 

Then 

E(X/D) = AcD V(XjD) = hA’o*, + ~2 
E(MID) = ((u + @c)D V(MID) = l&r*, + a*, Cov(X,M/D) = A Ecr’, 

When the above models are true, direct regression (M = bX + orD f v) would give 
the following estimators: 

6 = (A’$2 - ‘lw, -t 1) - ‘R- t iq3a2, 

&=a+ PC 
A’Q-‘Ad E+ 1 

If reverse regression (6’X = 6’gM + 6’dD + w) were used, the estimators would be 

It can be noted that the estimators from direct regression are biased upward, 
while the estimators from reverse regression are biased downward. The bias is a 
function of the ratio between the error variance for M (rr*,) and the error variance 
for P f&J, the effect of P on M (P), and the correlation (c) between D and P, 

We can again examine the speciai cases of the model and implications for un- 
biased estimation, We can note that direct and reverse regression may provide 
unbiased estimators under certain circumstances- Specificafly, when the random 
error term is zero (u = 0 and d, = O), as modefed by Goldberger (1984), the 
estimator of oI from reverse regression is unbiased. When D and P are uncorrelated 
(i.e., c = 0), the estimator of c-w from direct or reverse regression is unbiased. 
These findings are the same as those in the single-indicator case. 
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2. Estimation by covariance structure analysis 

We have seen that direct and reverse regression may fail to provide unbiased es- 
timates of = when variables are unobservabte. Then, a question arises: How can 
we obtain an unbiased estimate? It is suggested in this paper that unbiased esti- 
mation can be achieved by a covariance structure approach. The measurement 
models in Equations 1 and 2 can be combined with the structural model in Equa- 
tion 1 into overall causal models. Let us first consider Formative Measurement 
Model. If we substitute Equation 2 into Equation 1, we get 

where 

P”=pI and u*=/~v+u. 

This equation can be represented as an overall model provided in Figure lA, Un- 
der Reflective Measurement Model, the overall model can be represented as a set 
of measurement and structural models, as illustrated in Figure 13. 

If one knows which of the two overall models is correct, the estimation of that 
model via covariance structure analysis should provide asymptotically unbiased 
estimates of cy (Jiireskog and S&born 1984). An important task for unbiased esti- 
mation is therefore to choose between Models A and 3 in Figure 1. Next, we will 
examine this issue in detail. 

As mentioned earlier, an unbiased estimation of OL will depend on the choice of 
the correct model in Figure 1, which in turn depends upon the choice of the mea- 
surement model. That is, the choice between reflective and formative indicator 
models is critical to deciding which model should be used to estimate 0~. 

The choice of indicator mode should be made primarily on the basis of the 
substantive theory behind the model: the way in which variables are conceptual- 
ized (e.g., Fornell and Bookstein 1982, pp, 441-442). Constructs such as “atti- 
tude” or “personality” are typically viewed as underlying factors that give rise to 
something that is observed. In such a case, the reflective indicator model would 
be used. In contrast, constructs such as ‘~soc~oeconomic status @ES)” might be 
conceived as composites rather than as factors. That is, instead of SES generating 
variables such as education, income, and occupational prestige, these variables 
are more appropriately seen as causing changes in SES. In such a case, constructs 
can be seen as expIanatory combinations of indicators, and their indicators should 
be represented as formative. 
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(a) Overall model with formative indicators 

(h) Overall model with reflective indicators 

Figure 1. Causal model representations. 

To gain further insights into the difference between formative vs. reflective 
specification, let us compare the two formally. If 0 is the observed measure, T, 
the true score and e an error component, it is well-known that the reflective spec- 
ification is: 

O=T+e 



REGRESSION AND COVARIANCE STRUCTURE ANALYSIS 317 

with the assumptions that 

E fe) ‘0, COV fT$ e) =I 0, COV (ei, ej)=O, which imply 
Var (0) = Var (T) + Var fe) and 
Var (T) < Var (0). 

That is, the variance in the true scores is srr?aller than the variance in the mea- 
sured variabfes. However, in the formative specification, the opposite is true. 
Now we have: 

T = 0 + e or [since E (e)=O] 

we can write this as 

T = O-e 

which brings us back to the reflective equation 

0 = T-te. 

But since e represents all remaining causes of T other than 0, we also have 

Cov (T, e)#O and instead 
Cov (0, e) = 0, whic.h imply 
Var (T)>Var (0). 

In addition to conceptual issues, the choice of formative vs. reflective mea- 
surement models has imphcations for the predictive power (within the data) as 
well as assessing the individu~ contribution of one’s measures. Clearly, the re- 
flective formulation can never account for more variance in the dependent vari- 
abte than the formative specification. Typically, the latter will do better on this 
score. On the other hand, in case of high multicollinearity among the measured 
variables, formative specifications make it difficult to assess the individual con- 
tribution of these variables. 

In sum, then, the choice of t-effective vs. formative measurement specifications 
rests primarily on contextual considerations and the purpose of the modelling 
effort. Empirical matters also play a role. Ideally, the choice should be made a 
priori on the basis of theoretical reasoning. If one’s theory does not provide an 
unequivocal decision on this score, one may have to depend on empirical evi- 
dence. However, it is more difficult to-determine measurement specification on 
the basis of covariance structures because the formative model is always just 
identified with zero degrees of freedom. It is possible however to evaluate the 
covariance fit of a reflective model as long as it has more than three indicators. 
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2.2. An illustration 

It might be useful to illustrate alternative estimation procedures and examine the 
potential biases with an example. Recall that direct regression provides unbiased 
estimators in the case of formative indicators. Given that the case with reflective 
indicators causes problems for analysis, we have focused on the model with re- 
flective indicators. We have constructed a “true” model with plausible parameter 
values and generated data accordingly, rather than using actual data for which the 
true parameter values are unknown, which will cause difficulty in assessing the 
magnitude of bias. 

Suppose the model in Figure 2A represents a true model under investigation. A 
latent variable P has three reflective indicators X, -X,. The correlation between 
D and P is 0.40, while the coefficients relating P to D and M are 0.70 and 0.25, 
respectively. That is, a true value for (Y is known to be 0.25. From this model, a 
data set of 100 cases is generated via the normal random number generator. The 
resulting correlation matrix for the data is given in Figure 2B. For the sake of 
facilitating the argument and without loss of generality, we will treat this as the 
population. The three alternative estimation procedures are then applied to this 
data set, and the estimates for (Y are compared. 

When the direct regression approach is used, the estimate of (Y is 0.357, which 
is higher than the true value of 0.25. As expected, direct regression yielded an 
overestimate of cx (i.e., with an upward bias of 0.107). When the reverse regression 
approach is employed, the estimate of (Y is 0.041. Thus, there is a downward bias 
(0.209) from reverse regression, which is again consistent with the analytic results 
presented earlier. In contrast, the covariance structure approach yields an un- 
biased estimate of 0.25. Also, the fit is perfect (p (4) = 0.00, p = l.OO), since 
we are working with the population correlation matrix for the correct model spec- 
ification. 

This example shows that estimates from direct and reverse regression are biased 
when a true model has an unobservable variable with reflective indicators. We 
have used the model and parameter values that are likely to occur in typical re- 
search settings. However, the magnitude of bias is substantial enough to yield 
misleading inferences about the effect of predictors in the model. These results 
suggest that researchers should pay special attention to estimation when unob- 
servable variables are included in the model. 

3. Discussion and conclusion 

The suggested method based on covariance structure analysis has several advan- 
tages over other practices (e.g., direct or reverse regression) in estimating linear 
models. First, reverse regression fails to provide unbiased estimates when the 
dependent variable exhibits random error. Reverse regression gives unbiased es- 
timates only when no random errors exist for dependent variables (Goldberger 
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(a) Specification of the true model. 

(b) Correlation matrix for the data generated from the model. 

M 1.00 

Xl .520 1.00 

x2 .496 .403 1.00 

x3 .480 .390 .372 1.00 

D .530 .260 .248 .240 1.00 

Figure 2. Model and data used for illustration. 

1984). Such a situation is unlikely for marketing data; which usually contain sto- 
chastic errors due to the imperfectness in measurement or the randomness in 
phenomena. Reverse regression is therefore likely to yield biased estimates. On 
the other hand, the suggested approach provides asymptotically unbiased esti- 
mates even when dependent variables contain random errors. 

Second, the suggested method is consistent in logic. The previous practice con- 
sists of two steps: 1) obtain estimates of l3 from direct regression and 2) use these 
estimates in reverse regression. But if the reverse regression model is correct, why 
should one use estimates that are obtained from a different, incorrect model (i.e., 
direct regression model)? In contrast, the suggested procedure uses the correctly 
specified model in estimation. There is no other specification. 
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We have examined the issues in estimating the effects of marketing variables 
with an example of market pioneer advantages. When there are errors in vari- 
ables, as is typical in marketing data, the often-used direct regression and the 
recently suggested reverse regression yield biased estimates for and misleading 
conclusions about the impact of a predictor. It is proposed that covariance struc- 
ture analysis in conjunction with an appropriate measurement model be used in- 
stead. 

Notes 

t. Altb~u~~ we focus on the impact of a discrete variabte (i.e., a pioneer dummy variable) in this 
paper, this question is genemfizable to a continuous exogenous variable. For exampie, what are 
the effects of adver~tsing expenditures on revenue? Also, the resutts in this paper are valid 
whether the exogenous variable is discrete or continuous. 
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