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Abstract  

A latent class methodology for conjoint analysis is proposed, which simultaneously estimates mar- 
ket segment membership and part-worth utilities for each derived market segment using mixtures 
of multivariate conditional normal distributions. An E-M algorithm to estimate the parameters of 
these mixtures is briefly discussed. Finally, an application of the methodology to a commercial 
study (pretest) examining the design of a remote automobile entry device is presented. 

In their reviews of the various applications of conjoint analysis, Cattin and Wit- 
tink (1982) and Wittink and Cattin (1989) have documented the increased com- 
mercial usage of conjoint analysis, as well as the increased number of research 
suppliers capable of performing such studies and the increased availability of 
computer software for customized study designs and analyses. The authors report 
that the majority of these applications involve the full profile method of stimulus 
construction with the use of metric rating scales, and a dramatic rise in the use of 
multiple regression for subsequent estimation (see Wittink and Cattin, 1989, table 
1 on p. 92). Also mentioned was the fact that market segmentation ranks among 
the primary purposes for performing conjoint analysis in such commercial appli- 
cations. Green and Krieger (199l) have also discussed how conjoint analysis can 
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be gainfully utilized for market segmentation purposes. Traditionally, this has 
been accomplished in one of two ways. In an a priori segmentation scheme (Green 
1977), where segments are known or defined prior to the research, an aggregation 
of individual level preference judgments occurs and subsequent estimation of the 
conjoint model is performed at the segment level (cf., Green and Srinivasan 1978, 
1990). In post hoc segmentation schemes (Green 1977), estimation of the conjoint 
analysis occurs at the individual level, and subsequent individual level part-worths 
are then clustered to form market segments. In the former scheine, problems typ- 
ically arise since traditional demographic or psychographic background informa- 
tion that typically characterize market segments rarety adequately describe het- 
erogeneous utility functions at the individual or market segment level (Moore 
1980). In the latter scheme, the traditional two-stage methodology described 
will often influence the results obtained. In particular, the multiple regression 
and subsequent cluster analysis procedures typically optimize different and un- 
related objective functions/aspects of the structure of the data. In addition, the 
classification literature (cf., Hartigan 1975) is abundant with evidence of how 
different clustering methods orten produce different cluster (segment) results 
when applied to the same data. Finally, the conjoint analysis literature has well 
documented the potential instability of part-worth estimates derived at the indi- 
vidual level, especially in highly fractionated designs (cf., Wedel and Kistemaker 
1989). 

Recently, a number of procedures for performing market segmentation in con- 
joint analysis have been proposed. Hagerty (1985) developed a Q-factor analytic 
procedure that maximizes the predictive power of the derived segment level utility 
functions. This procedure models each consumer as, in part, belonging to every 
market segment and shows that the degree of membership of each consumer in 
each of the segments is determined by the first eigenvector of the correlation 
matrix calculated across the observed preference ratings among consumers. How- 
ever, as noted by Kamakura (1988), such factor analytic procedures lead to over- 
lapping clusters that are rarely identifiable. In addition, Stewart (1981) has argued 
that the number of factors obtained in such Q-factor analyses of individuai char- 
acteristics (here, preferences) is not truly indicative of the true number of clusters. 
As Kamakura (1988) aptly notes, one may have more or less clusters than factors 
and the identification of the homogeneous clusters is subjective and complex, 
especially when there are more than two factors present. Finally, it must be men- 
tioned that such factor analytic solutions identify prototypes and the correlations 
of individuals with these prototypes. These loadings are not equivalent to seg- 
ment/prototype membership or probabilities of membership as they do not nec- 
essarily satisfy the row sum (to unity) constraints. 

Kamakura (1988) developed a least-squares procedure for performing segmen- 
tation in conjoint analysis which attempts to group consumers into homogeneous 
segments so that their stated preferences are explained maximally by their group 
level preference functions. A two-step procedure is developed, conceptually sim- 
ilar to that of Spath (1985), where given a fixed number of segments and a binary 
indicator matrix designating membership of each individual in each market seg- 
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ment, part-worths are estimated in a least-squares fashion for each segment. Fur- 
ther, given these segment level part-worths, Kamakura (1988) devetops an ag- 
glomerative hierarchical clustering procedure which attempts to optimize the 
same error sums-of-squares objective function. Two problems can be identified 
with this innovative approach. One, as pointed out by Kamakura (1988) himself, 
combining two individuals or clusters to form a new cluster early in this agglom- 
erative scheine forces them to be in the same cluster in the latter stages of his 
algorithm. Thus, any misclassification in the earlier stages of the algorithm will 
be carried on to higher aggregation levels. Two, the hierarchical procedure im- 
poses rather severe constraints on the aggregations: a hierarchy and the inability 
to allow overlapping or fuzzy cluster memberships. Note, Green and Helsen 
(1989) have shown that neither the Hagerty nor Kamakura approaches lead to 
higher predictive validity than are obtained by conventional conjoint analysis ap- 
plied to individual response data. 

Finally, a number of related approaches are also relevant to mention here. 
Ogawa (1987) has developed a stochastic, nonmetric approach for simultaneously 
estimating part-worths and aggregating individuals into segments. First, using a 
logit choice model framework, a ridgelike procedure for estimating individual 
part-worths is developed for rank ordered preferences. Then, an information-the- 
oretic criterion or index is developed as a means to aggregate individuals. De- 
Sarbo, Oliver, and Rangaswamy (1989) present a simulated annealing based 
methodology to perform clusterwise regression. These authors demonstrate the 
flexibility of their approach in accommodating multivariate measures, constraints 
on the resulting classification, and so on. Wedel and Kistemaker (1989) and Wedel 
and Steenkamp (1989, 1991) provide alternative clusterwise regression formula- 
tions for benefit segmentation that could also be adapted to perform such simul- 
taneous estimation and segmentation in conjoint analysis. 

Against this background, this paper presents an alternative latent class based 
specification for simultaneously performing conjoint analysis and market segmen- 
tation. The method employs a stochastic framework involving mixtures of multi- 
variate conditional normal distributions allowing for heuristic tests for the optimal 
number of segments, fuzzy posterior probability of memberships that permit frac- 
tional membership in more than orte market segment, and a stochastic approach 
(as opposed to deterministic, as in the vast majority of the other cases) that allows 
for asymptotic standard errors of the estimated part worths. In addition, the pro- 
posed methodology allows for heteroscedasticity among groups of consumers as 
well as for covariance within these groups' responses. 

1. The latent class metric conjoint model 

Let 

i = 1, ... , I consumers; 
j = 1, --. , J conjoint profiles; 
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k =  
A ü = 

X i l =  

~lk 

1, ..- , L independent  variables in the conjoint analysis 
(coded typically as dummy variables); 
1, .-. , K derived segments;  
the metric response rating to 

conjoint profile j elicited by consumer  i; 

the value of the l-th independent  conjoint variable in the 

j-th profile (for ease of  exposit ion,  we have dropped the 

distinction of  factor  and level within factor  in this notation); 

the es t imated conjoint par t -worth for the 1-th independent  

conjoint variable for  the k-th segment;  

a J × J covar iance  matrix es t imated for segment  k. 

It is assumed that  the row vector  Ai of  dimension J has a probabili ty density func- 

tion which can be modeled as a finite mixture of  the following conditional distri- 
butions: 

K 

H (Ai; ~,X,6,~;)  = ~] ~kg~k(A~]X,[3k,~k), (1) 
k = l  

where ~ = (oq, e~» -.. , e~K_~) are the K-1 independent mixing proport ions of  the 

finite mixture such that: 

K 1 

0~<c~ k<~ 1, withc~K = 1 -- ~ C~k; (2) 
k = l  

X = ((Xj~)), 

Xj = the 1 x L row vector  of  independent  variables for the j-th profile; 

Bk = the 1 x L row vector  of  conjoint part-worths for the k-th segment ,  

= ( ( 6 ~ k ) ) ,  

~' = ( x , ,  ~» ..-, ~ù). 

The distribution for each g~k is specified as conditional mult ivariate normal: 

gik(Ai ] X, [3k, "~k) 

~_ (2 ,g . ) - J /2  [ ~, k ] I/2 exp [-I /2(A~ - X[3'k)~Z( ~ (A i - X B '0 ' ] .  (3) 

As seen, this f ramework  is similar to the mixture f ramework  in DeSarbo,  Jedidi, 
Cool, and Schendel (1991) and DeSarbo,  Howard ,  and Jedidi (1991) for simulta- 
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neously performing multidimensional scaling and cluster analysis, and generalizes 
DeSarbo and Cron (1988) to a multivariate setting. However, unlike the previous 
mixture/latent class approaches cited above that perform multidimensional scaling 
and a form of cluster analysis simultaneously and require nonlinear search meth- 
ods at each iterate for parameter estimation (cf., DeSarbo, Jedidi, Cook 
and Schendel, 1991), the present methodology performs a type of multivariate 
normal regression and a type of cluster analysis simultaneously, and analytical, 
closed-form, expressions can be derived for all parameter estimates within 
each iterate. 

Given a sampte of I independent consumers, one can thus form a likelihood 
expression: 

B[k~__ K ' O~k (2,-fr) -J/2 

e x p { - 1 / 2 ( 6 ,  - Xj[~'k)Xk I (b  i -- Xj~ 'k) '} [  
J 

(4) 

OF, 

I E~ ] In L = ~2 In Œkgik(Ai ] X,  [~k, Ek) - (5) 
i=l k=l 

Given 4, X, and K, one wishes to estimate ~, E, and [3, in the full model so as to 

maximize expressions (4) or (5), given the conditions specified in equation (2). 

1.1. ldentification of group membership 

Once estimates of ~, ~, and [3 are obtained for any iteration of the maximum 

iikelihood procedure, one can assign each consumer i to each latent class or mar- 
ker segment k via the estimated posterior probability (applying Bayes' rule), pro- 
viding a fuzzy clustering: 

Ô~ kgik (Ai[X,[~k,~k) K 
Pik = K ,where  ~]Pik = 1, and0 ~< ISik~< I. (6) 

k=l 
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This particular feature allows for the flexibility of modeling situations where the 
members of a particular derived market segment display different preference pat- 
terns by allowing individuals to be fractional members of multiple segments. One 
could form partitions, if desired, by simply assigning consumer i to the market 
segment whose f~~k was highest. Thus, out methodology will simultaneously esti- 
mate the conjoint part-worths and market segment membership. An Expectation- 
Maximization (E-M) algorithm (Dempster, Laird, and Rubin, 1977) is utilized for 
parameter estimation (see Ramaswamy, DeSarbo, Reibstein, and Robinson, 1992, 
who employ a similar mixture approach for pooling cross sections of time series 
observations with PIMS data in estimating marketing mix elasticities, for techni- 
cal details). 

1.2. Tests for T and K 

As in DeSarbo, et al. (199la, b), we use Akaike's (1974) information criterion 
(AIC) for the choice of the number of segments in such mixture ctustering models. 
In our methodology, one would select K, which minimize: 

AIC(K) = - 2  In L + 2N(K), (7) 

where N(K) is the number of independent parameters for the estimated model: 

N(K) = KL + K[[J(J-1)]/2] + K - 1. (8) 

While this AIC test will be utilized to select appropriate values of K, this criterion 
relies essentially on the same regularity conditions needed for differences in ( - 2  
in L) to have its usual asymptotic distribution under the null-hypothesis (see Tit- 
terington, Smith and Makov, 1985). We therefore recommend the inspection of 
other goodness of fit measures such as a variance-accounted for (VAF) measure 

K 

between A and ~ = ~ ^ ' PikX~ k across all i, for values of K, as is done in tradi- 
k - I  

tional metric conjoint analysis. Also, one can construct an entropy-based mea- 
sure: 

(9) 

as suggested in Ramaswamy, et al. (1992), to examine centroid separation in the 
distributions. Ek is a relative measure bounded between 0 and 1. A value close to 
0 indicates that the centroids of these conditional parametric distributions are not 
sufficiently separated for the number of segments specified. 
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2. Application 

2.1. Study description 

An automobile remote entry system allows a driver to lock or unlock a vehicle 
remotely within a certain distance of the vehicle by activating a small transmitter  
that is typically carried on a key chain. Several car manufacturers currently offer 
such remote entry system devices at an additional charge. A major automobile 
manufacturer  was recently interested in determining which specific attributes to 
include in an automotive remote entry system from a consumer 's  perspective.  
Based upon discussions with consumers,  product  engineers, and marketing man- 
agers, seven attributes were included in this conjoint study: 

1. Type of  Transmitter: The first option is a multi-button transmitter that hangs 
from the key chain; each button activates a different feature of the system. The 
other option is a single-button on the vehicle ignition key that activates all the 
features of the system. 

2. Range of  Operation: The range of operation defines the maximum distance 
from the vehicle that the transmitter taust be to make the system active. The 
options are either 10 feet or 30 feet. 

3. Feedback: A remote entry system may or may not provide feedback to the 
operator.  A system with feedback sounds the horn every time a button on the 
transmitter is depressed. 

4. Panic Alarm: A remote entry System may or may not include a panic alarm 
feature. When activated, this feature sounds the horn and flashes the lights to 
indicate danger. 

5. Keypad: A remote entry system may or may not include a keypad on the ve- 
hicle below the door  handle. This keypad offers an alternate means of locking 
or unlocking the vehicle by punching into the keypad a unique five-digit code. 

6. Memory Features: Ä remote entry system may or may not include memory  
features that automatically set the driver 's  seat and the power mirrors when 
the doors are unlocked with the use of the transmitter. Multiple transmitters 
for a given vehicle contain unique predefined settings for that driver. 

7. Trunk Release: A remote entry system may or may not include a trunk release 
feature that unlocks the trunk when that feature is activated from the trans- 
mitter. 

Table 1 presents the levels of the seven attributes with their respective codings. 
The table also provides the 27 fractional factorial design (Addelman, 1962) utilized 
for stimulus profile definition for main effects estimation. A pretest of  this exper- 
iment was conducted with N =48 consumers.  Pictures were provided to initially 
describe many of  the features. In addition, to make the task more realistic, each 
feature level was assigned a cost or price, and each profile was appended with a 
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Table 1. Remote  ent ry  design at tr ibutes and design 

27 Orthogonal  Array  

X-mit Range Feedback Panic Keypad  Memory  Trunk Price* 

Card l 0 0 0 0 0 0 0 90 
Card 2 0 0 0 0 l 1 0 240 
Card 3 0 0 0 1 0 1 1 220 
Card 4 0 0 0 1 1 0 1 170 
Card 5 0 l 1 0 0 0 0 130 
Card 6 0 l 1 0 1 1 0 280 
Card 7 0 l 1 1 0 1 1 250 
Card 8 0 l 1 1 1 0 1 200 
Card 9 1 0 1 0 0 0 1 110 
Card 10 1 0 1 0 1 1 1 260 
Card 11 1 0 1 1 0 1 0 210 
Card 12 1 0 1 1 1 0 0 160 
Card 13 1 1 0 0 0 0 1 130 
Card 14 1 1 0 0 1 1 1 280 
Card 15 1 1 0 1 0 1 0 240 
Card 16 1 1 0 1 1 0 0 190 

*Total price was not included in the analyses;  consumers  only viewed total price and not individual 
at t r ibute level costs /pr ices  (shown below).  

At t r ibute  At t r ibute  levels 

Transmit ter  0 = Mult i-Button ($90) 
1 = Single-Button ($90) 

Range 0 = 10 Feet  
I = 30 Feet  (+$10)  

Feedback  0 = No 
1 = Yes (+$10)  

Panic Alarm 0 = No 
1 = Y e s ( + $ 2 0 )  

Keypad 0 = No 
1 = Y e s ( + $ 5 0 )  

Memory Features 0 = No 
1 = Yes (+$100) 

Trunk Release 0 - No 
1 = Yes (+$10)  

t o t a l  p r i c e  t h a t  w o u l d  b e  c h a r g e d  f o r  s u c h  a n  e n t r y  s y s t e m  ( to  a v o i d  t h e  p r o b l e m  

o f  t h e  c o n s u m e r s  u n i f o r m l y  p r e f e r r i n g  t h e  p r o f i l e  c o n t a i n i n g  t h e  m o s t  f e a t u r e s ) .  

E a c h  c o n s u m e r  w a s  s h o w n  t h e  a t t r i b u t e  l e v e l s  a n d  t h e  t o t a l  c o s t  - n o t  t h e  i n d i -  

v i d u a l  a t t r i b u t e  l e v e l  c o s t s .  T h e s e  t o t a l  p r i c e s  a n d  a t t r i b u t e  l e v e l  c o s t s  a r e  a l s o  

d i s p l a y e d  in  t a b l e  1. N o t e ,  s i n c e  t o t a l  p r i c e  is  a l i n e a r  c o m b i n a t i o n  o f  e a c h  o f  t h e  
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attributes, it was not included in the analysis explicitly. The consumer  was asked 
to rate each profile using a 10-point preference scale. 

2.2. Latent  class metric conjoint results 

Table 2 presents the statistical summary for K = 1 to 5 latent classes obtained with 
the latent class metric conjoint analysis methodology proposed earlier. Based on 
several computer  runs, constraining £k to be diagonal appears to represent the 

data most parsimoniously (according to the AIC statistic). According to the AIC 
(and VAF) criteria, K = 4  classes appears to most parsimoniously describe the 
structure in these conjoint ratings. Table 3 presents the aggregate conjoint results 
over  all N = 4 8  consumers  derived from the K =  I solution (top right portion of  the 
table). Here,  the optimal design would include the multi-button transmitter,  a 30- 
foot range, a panic alarm, no memory  features, and a trunk release (cost = $130). 
The feedback and keypad attributes are not significant overall. The overall VAF 
statistic is only 0.101. Table 3 also presents the estimated part-worths for the four 
class solution. Here,  the first class finds the memory and trunk release features 
as most important ,  where preference is for no memory  feature (perhaps due to its 
high cost) and a trunk release option. The second latent class finds the transmitter, 
range, panic alarm, memory,  and trunk release features most important,  where 
higher utility is derived for the single-button transmitter, 30 foot range, panic 
alarm, memory,  and trunk release options at higher cost. The third latent class 
finds the panic alarm, key pad, memory,  and trunk release options most preferred.  
Finally, the fourth latent class finds feedback,  panic alarm, key pad, and memory  
all important,  yet given that all the coefficients are negative, prefers a low cost 
remote en t ry  device with few features. Thus, one observes rather dramatic dif- 
ferences between the aggregrate part-worths and these four latent class results 
presented in table 3. In addition, the VAF statistic for the four class solution is 
over  four times as large (0.414) as that of the K =  1 solution. 

Table 3 also provides values of the estimated variances for each of  the 16 pro- 
files for each of the four latent classes. This table shows evidence of  extreme 

Table 2. Latent class metric conjoint results 

K Log-likelihood DF AIC Entropy VAF 

l - 1764.21 24 3576.43 0.00 0.101 
2 -1709.75 49 3517.49 0.94 0.257 
3 1685.55 74 3519.10 0.97 0.301 
4 - 1586.66 99 3371.32" 0.98 0.414 
5 -1577.54 124 3403.09 0.90 0.463 

*Denotes minimum AIC. 
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Table 3. L a t e n t  c l a s s  m e t r i c  c o n j o i n t  K = 4  r e s u l t s  

L a t e n t  C l a s s  

k = l k = 2 k = 3 k = 4 A g g r e g a t e  

I n t e r c e p t  5.73 2.83 1.76 9.28 4.14 

T r a n s m i t t e r  0.35 - 1.35** - 0 . 2 8  - 0 . 2 2  - 0 . 5 1 1 " *  

R a n g e  - 0 .08 0.91 ** 0.58 - 0.32 0.41 * 
F e e d b a c k  0 .07  - 0 .04  0 .20  - 1.54** - 0 .10 

P a n i c  A l a r m  0 .14 1.46** 1.09** - 2.24** 0.62** 

K e y p a d  0.33 0.38 0.79** - 3 .28"*  0.04 

M e m o r y  - 2.40** 1.00"* - 1.24** - 2.99** - 0.90** 
T r u n k  R e l e a s e  0.92** 1.26"* 1.26** - 0 .04  1.04** 

a 0.31 0.38 0.19 0,12 1 

n 15 18 9 6 48 

* p < . 0 5  

**p< .01  
Diag 

Prof i l e  k = 1 k = 2 k = 3 k = 4 

I 5 .719 2.718 1.077 0.632 

2 O. 977 2. 884 O. 221 2. 527 
3 2.352 5.592 3.050 5.514 

4 1.185 4 ,957 7 .136 5.931 

5 1.034 2.800 3.186 15.158 

6 1.538 3.972 2.511 O. 133 

7 2.055 4.659 6.328 3.808 

8 2.612 3.208 7,713 2.823 

9 2.137 1.320 4.938 22.764 

lO 3.523 5.476 8.077 0.573 

11 2.390 4.445 0.691 1.814 

12 2.350 2.704 5.410 2.344 

F 3 2 .646 5,365 6,343 20.347 
14 2.756 6 .157 5.310 4 .634 

15 2.933 5.789 1.877 4.939 

16 4.912 4.715 6.956 3.663 

heteroscedasticity in the responses, especially in the fourth latent class concern- 
ing profiles 5, 9, and 13. The obvious inequality amongst these variance estimates 
both between and within latent classes attests to potential misspecification diffi- 
culties in applying other metric conjoint analysis techniques that assume homo- 
scedasticity (the log likelihood drops to -2253.86 when assuming ~; = o-2I for 

each latent class). The posterior probabilities for each of the N =48 consumers 
indicate good separation of the conditional mixture centroids as there is very lit- 
tle fuzziness (EK=0.98) in the classifications. However, these probabilities of 
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class membership did not significantly relate to gender, previous ownership, or 
average yearly miles driven - the onty three demographic variables initially col- 
lected. 

2.3. Comparison with the traditional two-stage approach 

Table 4 presents the individual level conjoint analysis coefficients obtained by 
muttiple regression. As stated earlier, Wedel and Kistemaker (1989) and others 
have documented the potential instability of such individual part-worth estimates, 
especially in highly fractionated designs. Nonetheless, with the exception of con- 
sumers #1 and #48, and arguably #21 and #41, the main effects model appears 
to reasonably well approximate these consumers utility functions. Yet, as shown 
in table 4, there also appears to exist substantial heterogeneity in terms of the 
mixed signs of these estimated coefficients across the N = 48 consumers. The cor- 
responding VAF statistic calculated over the entire sample is 0.902 (involving 768 
parameters). 

The traditional two-step approach entails first estimating such individual level 
coefficients (cf., table 4), and then clustering this sample of customers on the basis 
of these estimated individual level coefficients. However, as previously alluded 
to, a number of problems arise concerning this secondary clustering stage. Sev- 
eral decisions have to be made initially prior to obtaining clusters, and these de- 
cisions will affect the solutions obtained. For example, how should the data be 
preprocessed prior to analysis (if at all)? What metric should be selected to cal- 
culate proximity? Finally, what type of clustering should be used, and which amaI- 
gamation rule or algorithm should be employed? Most times there is no a priori 
theory to guide an analyst as to such decisions. 

To illustrate some of these issues, we applied all seven clustering methods avail- 
able in SYSTAT (Wilkenson, 1991): KMEANS, Ward's Method, Average Link- 
age, Complete Linkage, Centroid Method, Median Method, and Single Linkage, 
to the individual level part-worths estimated in table 4. To keep matters simple, 
we utilized the raw data (i.e., no preprocessing) and the Euclidean distance metric 
in the hierarchical clustering schemes. We then obtained four-cluster solutions for 
each of these seven methods and cross-tabulated the classifications with those 
derived from our latent class approach (after permuting label assignments to op- 
timal congruence). Table 5 presents these cross-classifications and derived clas- 
sification congruence percentages denoting the percent of the sample of N =48 
consumers that were assigned to the same clusters between our proposed latent 
class approach and each of the seven other methods (in pair-wise fashion). As 
seen in the table, these different clustering methods give rather dramatically dif- 
ferent consumer classifications. Average linkage appears to best replicate the la- 
tent class assignments in allocating two-thirds of the sample to the same clusters. 
However, single linkage, the centroid method, and the median method solutions 
are plagued by chaining with many singleton clusters, accounting for less than 



284 W . S .  D E S A R B O ,  M .  W E D E L ,  M .  V R I E N S ,  A N D  V.  R A M A S W A M Y  

e« 

~2 
?, 
L)  

,fi 

© 

I 

»2 

' 4  
~a 

» 

< 

I p  

o )  

e-, 

e-., 

r )  

I l  t l l  I l  I I I  I I l l l  

I I I  I I  I 

I I I I  I 

I I I  I I I  I I  I I  I I  

I I  I I I I 

I I  I 1 1 1 1  I I  I 



EATENT CLASS METRIC CONJOINT ANALYSIS 285 

I 1 I I I I I I I I I I I I I I I I 

I I I I I I I I I I I I I I i I I I 

I I I  I I I I I I  I I [ 1 

I I I  I I I  I I I I  I I 

[ I I I I I I I I I I I I I I l I I 



286 W.S. DESARBO, M. WEDEL,  M. VRIENS,  AND V. RAMASWAMY 

Tuble 5. Cross classification frequencies 

Latent  Class (rows) By K M E A N S  (columns) 
k = l  k = 2  k = 3  k = 4  

k = l  ll 4 0 0 
k = 2  0 15 3 0 
k = 3  1 7 1 0 
k = 4  5 0 0 1 
Total 17 26 4 1 

Total 
15 
18 
9 
6 

48 

Latent  Class (rows) By Ward (columns) 
k = I k = 2 k = 3 k = 4 Total 

k 1 7 0 2 6 15 
k = 2 0 10 8 0 18 
k ~ 3  2 1 6 0 9 
k = 4  0 0 0 6 6 
Total 9 11 16 12 48 

Latent  Class (rows) By Average 
Linkage (columns) 

k = l  k 2 k - 3  k = 4  
k =  1 13 2 0 0 
k =  2 1 17 0 0 
k = 3  2 7 0 0 
k ~ 4  3 0 I 2 
Total 19 26 1 2 

Total 
15 
18 
9 
6 

48 

Latent  Class (rows) By Complete 
Linkage (columns) 

k = 1 k = 2 k = 3 k = 4 Total 
k =  1 7 2 6 0 15 
k = 2 0 13 5 0 18 
k = 3  1 7 1 0 9 
k = 4  1 0 0 5 6 
Total 9 22 12 5 48 

Latent  Class (rows) By Centroid (columns) 
k = 1 k = 2 k = 3 k = 4 Total 

k = 1 0 15 0 0 15 
k -- 2 0 17 1 0 18 
k = 3  0 9 0 0 9 
k = 4  1 1 0 4 6 
Total 1 42 1 4 48 

Latent  Class (rows) By Median (columns) 
k = l k = 2 k = 3 k = 4 Total 

k = 1 2 13 0 0 15 
k = 2 0 18 0 0 18 
k = 3  1 7 I 0 9 
k = 4  0 5 0 1 6 
Total 3 43 1 1 48 

Congruence Rate: 

58.3% 

Congruence Rate: 

60.4% 

Congruence Rate: 

66.7% 

Congruence Rate: 

54.2% 

Congruence Rate: 

43.8% 

Congruence Rate: 

45.8% 
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Table 5 (continued). 

Latent Class (rows) By Single 
Linkage (columns) 

k - 1 k = 2 k = 3 k = 4 Total 
k = 1 0 15 0 0 15 
k = 2 0 18 0 0 18 
k = 3  0 8 1 0 9 
k = 4  1 4 0 1 6 
Total 1 45 1 1 48 

Congruence Rate: 

41.7% 

50% common assignments with our latent-class results. Thus, the results from the 
proposed latent class conjoint analysis are substantially different from those ob- 
tained from the traditional two-stage conjoint analysis technique. In addition, 
fewer ad hoc decisions need to be made concerning analytical options as com- 
pared to these other approaches. 

Finally, to further compare these diverse results, we took the means of the 
conjoint part-worths from the four-cluster solution derived from the Ward meth- 
odology (the second-best sotution in terms of congruence with the latent class 
solution since the average linkage method produced smali clusters with insuffi- 
cient degrees of freedom for this comparison),  and substituted them for [3 in the 

latent class procedure. Accordingly, we so redefined oL and P with the assumption 

of homoscedasticity. The resulting In likelihood function was -2417.45,  rauch 
worse than the - 1586.66 value obtained by the latent class solution. In addition, 
the corresponding VAF statistic for this Ward solution was 0.336, which is lower 
than that obtained with the K = 4 latent class solution. 
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