
_ _  T h e  A lsual   ornputer 

Computing spanning 
line segments in three 
dimensions 

Ming-En Wang 1, Tony C. Woo 2, 
Lin-Lin Chen 3, Shuo-Yan Chou 3 

1 Department of Industrial and Operations Engineer- 
ing, University of Michigan, Ann Arbor, MI 48109- 
2117, U.S.A. 
z Department of Industrial Engineering, University of 
Washington, P.O. Box 352650, Seattle, WA 98195- 
2650 U.S.A. 
3 National Taiwan Institute of Technology, 43 Section 
4, Keelung Road, Taipei 106, Taiwan 

A set of spanning line segments 5 e in 
a polyhedron P preserves the property of 
intersection; that is, a plane intersects P if 
and only if it also intersects 5 ~. This paper 
gives a linear time algorithm for con- 
structing 5 ° for a polyhedron with N ex- 
treme vertices. I fN is odd, the algorithm is 
optimal in yielding [_N/2] + 1 spanning 
line segments. If N is even, it gives 
(N/2) + 1, which is optimal in some cases 
and nearly optimal in others. 
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1 Introduction 

Spannin9 line segments (SLSs) in a polyhedral ob- 
ject are a set of line segments, each connecting two 
vertices of an object, so that any plane intersecting 
the polyhedron intersects at least one segment in 
the set, and vice versa. A set of line segments forms 
SLSs of a polyhedral object if and only if it satis- 
fies two properties (Wang et al. 1993a): 

1. each vertex of the object must be covered by 
(i.e., be adjacent to) at least one line segment (the 
property of completeness). 
2. The set of line segments is inseparable by any 
plane, i.e., no plane can separate the set into two 
nonempty subsets without intersecting any line 
segment (the property of inseparability). 

The intersection of a polyhedron with a plane 
implies and is implied by the intersection of its 
convex hull with that plane. Therefore, we devel- 
op algorithms on computing SLSs on convex 
polyhedra with the understanding that if a poly- 
hedron is not convex and not simply connected, 
its convex hull is taken. 
In computer graphics and computer-aided design, 
an intersection between polyhedra is often detec- 
ted via the "box text", for which the box is con- 
stituted by the maxima and minima of the vertices 
in the x, y, and z directions. A box with six faces 
has three diagonals, the intersections of which 
reduce the computation time by 50% (Ratschek 
and O'Rourke 1993). Generalizing such a notion 
to that of SLSs offers an interesting representation 
for polyhedra. While there is no equivalent, the 
closest notion is perhaps that of the "skeletons" 
(Blum 1967), which has led to a number of devel- 
opments. Chief among them is the medial axis 
transform (Lee 1982), which has stimulated con- 
siderable interest in computational geometry 
(Goldak et al. 1991; Hoffmann 1990; Kirkpatrick 
1979) and in pattern recognition (Blum and Nagel 
1977; Bookstein 1979; Matheron 1988; Wu et al. 
1986). There are differences, to be sure. 
The SLSs for a given polyhedron are not unique. 
Fig. la  shows a polyhedron with ten vertices, 
eight of which (the extreme vertices) are on the 
convex hull shown in Fig. lb. An SLS set that 
satisfies completeness and inseparability is the set 
of line segments emitting from one of the extreme 
vertices, connecting to all other extreme vertices, 
as shown in Fig. lc. If N denotes the total number 
of extreme vertices, such an SLS set has a size of 
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Fig. l a -d .  Two SLS sets for a polyhedron 
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Fig. 2a-c. An even-vertex polyhedron with minimum size 
(N/2)+l for its SLS 

(N - 1) -- 7. A smaller set is shown with 4 diag- 
onals in Fig. ld. Clearly, an SLS set of the smallest 
size is desirable. 
By noting that adding extra line segments that 
connect vertices to an SLS set generates another 
SLS set, the largest SLS set for a polyhedron with 
N vertices is the set of all the line segments con- 
necting the vertices, which is of size N ( N  - 1)/2. 
In contrast, according to the property of com- 
pleteness, the smallest possible size of an SLS set 
is rN/2-]. However, exceptions exist, as some poly- 
hedra with an even number of vertices have a min- 
imum size (N/2) + 1 instead of N/2. An example 
of such polyhedra, a polyhedral cone with a pen- 
tagonal base (facing the viewer), is shown in 
Fig. 2a. Consider generating an SLS set with 
N/2 = 3 line segments for the cone. As shown in 
Fig. 2b, to satisfy the property of completeness, 
one line segment is used to connect the top vertex 
to a base vertex, and two lines segment the re- 

maining four base vertices in two pairs. However, 
as also illustrated in Fig. 2b, the segment covering 
the top vertex can be '"sliced off" by a plane, which 
violates the property of inseparability. Hence, no 
set of three line segments qualifies as an SLS set 
for a hexahedral cone. (This result can be general- 
ized, i.e., any polyhedral cone with a even number 
of vertices has a minimum size of (N/2) + 1). By 
adding an extra line segment to those in Fig. 2b to 
increase the connectivity of the base vertices, an 
SLS set is generated and shown in Fig. 2c. We call 
an SLS set of the minimum size a minimum SLS 
set. These observations lead to the following 
problem definition. 

Problem minimum SLS (mSLS) set. Given a poly- 
hedron P, determine an SLS set of the minimum 
size. 
It is understood that P is convex, for otherwise its 
convex hull would be taken. A recent linear time 
algorithm to compute an SLS set was based on 
a subalgorithm that computed the SLS set for 
a simple polyhedron with a fixed number (say, 
k = 5) of vertices (Wang et al. 1993b). Then the 
SLS set was grown by repeatedly applying the 
subalgorithm, adding (k - 1) vertices each time to 
the set already covered. The idea was to reuse 
a single covered vertex each time to ensure the 
inseparability of the enlarged set. Doing so, how- 
ever, forfeits the goal of achieving the minimum 
size. In fact, the size of an SLS set thus obtained is 
about [1 + 1/(k - 1)] times the minimum size. To 
reduce this overhead, subalgorithms for an in- 
creasingly larger k need be developed. It is noted 
that subalgorithms for k > 7 vertices can be quite 
tedious and even difficult. 
The current paper presents a linear time algo- 
rithm that computes near minimum SLSs. Two 
critical observations contribute to the develop- 
ment. First, suppose that two nonadjacent 
vertices are removed from a polyhedron that is 
then reconstructed. It is noted that adding the line 
segment connecting the two removed vertices to 
an SLS set of the reconstructed polyhedron forms 
an SLS set for the original polyhedron. Insepara- 
bility is automatically satisfied without reusing 
a vertex. This observation also suggests recursive- 
ly removing nonadjacent vertex pairs from a given 
polyhedron, for completeness. The second obser- 
vation, which states that there is always a pair of 
nonadjacent vertices of degrees less than or equal 
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to five for any polyhedron with more than four 
vertices, provides a basis for a linear time com- 
plexity. No convex hull is taken to reconstruct the 
polyhedron. This algorithm obtains minimum 
SLS sets for polyhedra with an odd number of 
vertices and SLS sets of sizes at most one larger 
than minimum for polyhedra with an even num- 
ber of vertices. The rest of this paper is organized 
as follows: the two observations are presented in 
Sect. 2, the algorithm in Sect. 3, and a brief con- 
clusion in Sect. 4. 

2 Computing near minimum SLS sets 

Lemma 1. The smallest possible size S* of an SLS 
set for a polyhedron with N vertices is: 

S * = [ N / 2  7 = L N / 2 j +  I i fN  isodd 

S* = [ N / 2 q  = N/2  i fN  is even. 

Proof As a line segment covers two vertices, at 
least [- N/21 line segments are needed to satisfy the 
property of completeness, where [N/2q equals 
LN/2 + l J  if N is odd and N/2 if N is even. [] 

As illustrated in the previous section, not all poly- 
hedra have a minimum SLS set with a size equal 
to the smallest possible size S*. Some, such as the 
hexahedral cone shown in Fig. 2, have a minimum 
size of (N/2) + 1 instead of N/2. With this in mind, 
the rest of this section presents a method to com- 
pute the minimum SLS set. Let P denote an arbi- 
trary polyhedron with a vertex set ~U containing 
N vertices. 

Lemma 2. For a pair of nonadjacent vertices p and 
q in ~U, let P and c~ denote respectively the convex 
hull C H ( ~  - {p, q}) and its SLS set. Adding the 
line segment (p, q) to 5 ~ forms an SLS set for P. 

Proof. By definition, for 5 ~ u{(p, q)} to be an SLS 
set for P, it needs to cover all the vertices of P and 
be inseparable by any plane. As the segment (p, q) 
covers p and q with Y spanning the remaining 
vertices in ~ ,  the union 5 ~ u{(p, q)} satisfies the 
property of completeness. The property of insep- 
arability is now shown to be satisfied by combin- 
ing two arguments. First, being an SLS set of P, 
is itself inseparable. Second, since P is convex, and 
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Fig. 3a, b. Computing the SLS set for the final convex hull 

p and q are non-adjacent, the line segment (p, q) 
intersects polyhedron P. This implies the insep- 
arability of polyhedron P and the line segment 
(p, q). [In the case that p and q share a face of P, 
edge (p, q) "touches" either a face or an edge of P. 
The lemma also holds for this case.] [] 

Lemma 2 suggests an algorithm: 

1. Remove a pair of nonadjacent vertices from 
P and add the line segment connecting them to an 
initially empty set 5 P. 
2. Reconstruct the convex hull for the remaining 
vertices. 
3. Repeat this procedure until the reconstructed 
convex hull contains no more than four vertices. 

Since exactly two vertices are removed in each 
iteration, the final convex hull has either three or 
four vertices; its SLS set is easy to obtain. (An S L S  
set for the final convex hull, shown as bold line 
segments in Fig. 3, can be obtained by connecting 
the vertices in an arbitrary order with a chain of 
edges.) An SLS set of size three or of size two is 
then added to Y. We call the algorithm mSLS. 

Lemma 3. For polyhedra with N vertices, algo- 
rithm mSLS yields the number 5e of the SLS sets, 
where: 

s = LN/2J + 1. 

Proof. Provided that any polyhedron with more 
than four vertices has a pair of nonadjacent 
vertices, implied by Lemma 4, which is to appear 
shortly, algorithm mSLS is applicable to any 
polyhedron. Since two vertices are removed in 
each iteration, exactly [-(N - 4)/2)1 iterations are 
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executed before the final convex hull is obtained. 
Each iteration adds a line segment to the SLS set. 
After adding an SLS set for the final hull, the overall 
SLS set has a size of r N/2-] + 1 line segments. [] 

Two examples are presented now to illustrate the 
application of the algorithm mSLS. The first 
example, as shown in Fig. 4, illustrates the ap- 
plication of algorithm mSLS to an odd-vertex 
polyhedra where N equals 9. In Fig. 4b, the line 
segment (p, q) is seen to intersect the convex hull 
P of the remaining seven vertices. From P two 
nonadjacent vertices p and q are chosen and a line 
segment is formed; the configuration of (p, q) 
and P is shown in Fig. 4c. As the convex hull 
P still has more than four vertices, another iter- 
ation is run, and thus results in the configuration 
in Fig. 4d. Since /~ now has three vertices, its 
vertices are joined by two line segments, as shown 
in Fig. 4e. The resulting SLS set for N = 9 consists 
of S = 5 line segments, which is minimum. The 
second example, as shown in Fig. 5, illustrates the 
application of algorithm mSLS to the even-vertex 
polyhedron shown in Fig. lb. After iterations sim- 
ilar to the ones in the previous example, the result- 
ing SLS set (Fig. 4d) for N = 8 consists of S = 5 
line segments, rather than the minimum N/2 or 
S * =  4. For even-vertex polyhedra, algorithm 
mSLS is not always suboptimal. Applying it to the 
polyhedron in Fig. la would give a diagonal in the 
base and three SLSs for the remaining tetrahedron, 
resulting in an SLS set of the minimum size four. 
The time complexity is examined next. At a first 
glance, the time-dominant step of algorithm 
mSLS, the reconstruction of P, could take 
O(N log N) time due to the convex hull operation 
(Edelsbrunner 1987). An observation to be pre- 
sented shortly reduces the reconstruction time to 
a constant by providing a criterion for choosing 
nonadjacent vertex pairs. Before presenting the 
observation, two supporting lemmae need to be 
established. 

Lemma 4. For a polyhedron with N vertices, there 
are at most 3N-6 edges. 

Proof See, for example, p. 120 of O'Rourke 
(1994). [] 

Lemma 5. There are at least four vertices of  a de- 
gree less than or equal to 5 for any polyhedron. 
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Proof If the degrees of all vertices but  three were 
greater than  5, then the sum of the degrees, which 
equals twice the number  of edges, would be at 
least 6(N - 3) + 3(3), since every vertex of a poly- 
hedron must  have a degree no less than 3. This 
sum is 6N - 9 > 2(3N - 6), which would violate 
L e m m a  4. [] 

3 Algorithm 

The algori thm is first described conceptually,  fol- 
lowed by details in data  structure requirements 
and analysis for t ime complexity. 

Algorithm mSLS: Minimum spanning line segments 

L e m m a  6. For any polyhedron with five or 
more vertices, there are always a pair of nonad- 
jacent vertices of degrees less than or equal 
to five. 

Input: a convex po lyhedron  P, represented by 
a set V = {vl, v2, ... ,vN} of N vertices and their 
adjacency relations. 
Output: 5P, an SLS set for P containing LN/2J  + 1 
line segments. 

Proof Let v_<5 denote  the subset of vertices con- 
taining those of degrees less than or equal to 5, 
and let N_<5 denote  its size. Also, let p be a vertex 
in v _<5 with the smallest degree d*. A sufficiency 
claim, v _<5 contains a vertex q nonadjacent to p, is 
now proved. Because p is adjacent to exactly 
d* vertices, the set v<5 mus t  contain a vertex 
nonadjacent  to p if N<5 is greater than d* + 1. 
By L e m m a  5 and the fact that  every nondegener-  
ate vertex has a degree greater than  or equal to 3, 
only three cases are possible: d* equals 3, 4, or 5. 
First consider the case d* = 3. The lemma holds if 
v_<5 contains more than four vertices. By Lemma 5, 
N_<5 is at least 4, and N_<5 is 4 only when v_<5 
contains exactly four vertices of degree 3. 
To make  these four vertices adjacent to each 
other would require them to form a complete  
graph and force a disconnected componen t  
for any po lyhedron  with five or more  vertices. 
Therefore, v _<5 always contains a pair of nonad-  
jacent  vertices for d * =  3. By L e m m a  4, N_<5 
is at least 6, if d* = 4, and N_<5 is at least 12, if 
d* = 5. Thus  the result follows immediately for 
these two cases. [] 

The reconstruct ion of a convex hull after 
removing a vertex requires only the geometric 
and topological  information of the removed 
vertex and its adjacent vertices. Edges and 
faces not  adjacent to the removed vertex are 
not  affected by the removal  and should remain 
in the reconstructed convex hull. Therefore, 
the reconstruct ion after each removal  needs 
to consider only information local to the removed 
vertex. Thus, the updat ing  can be done in 
constant  time. 

begin 
Step 0. Initialize 5 P. 
Step 1. Traverse the representat ion of P. 

1.1 For  each vertex v~, compute  its degree di. 
1.2 Classify vi according to its degree d~. 

Step 2. F ind  two nonadjacent  vertices v, and 
vb by searching the classified vertices in ascending 
order of the degrees. 

2.1 Add line segment (Va, Vb) to ~ .  
2.2 Delete first the adjacencies of v, and Vb, 

and then the two vertices themselves 
f rom ~ .  

2.3 Reconstruct  P (i.e., CH(~U - {v,, Vb)). 
Repeat  this step until the number  of vertices in 

P is no more  than 4. 
Step 3. Compu te  an SLS set for P with no more  

than four vertices; add the line segments to 5 ¢. 
end 

To achieve efficient computa t ion ,  a data  structure 
containing a dict ionary D and an array of l inked 
lists L [3..6] is devised. Each entry D[i] keeps the 
degree of vertex i, as well as a pointer  into L for 
the vertex. The elements in L[i] are vertices of 
degree i for i = 3, 4, 5 and vertices of degree 6 or 
more  in L [6]. Now algori thm mSLS is described 
in detail, along with the analysis for the time 
complexity of each step. 

Step 1. Initially D and L are empty. In Step 1, 
degrees of the vertices are first computed ,  in linear 
time by traversing the representat ion of P, and 
entered into D. Each vertex v~ is then inserted in 
L according to its degree stored at D[i], and the 
pointer  at D[i] is assigned. These initial insertions 
take linear time. An example of this data  structure 
is shown in Fig. 6. 
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Fig. 6a, b. A data structure to facilitate finding nonadjacent 
vertices of degrees _<5: a polyhedral cone; b its filled data 
structure 

Step 2.3. After a vertex is removed, faces are for- 
med from its adjacent vertices to restore convex- 
ity. Since each vertex removed is of a degree no 
more than 5, and a face needs at least three 
vertices, there are at most C(5, 3) + C(5, 4) + 
C(5, 5 )=  16 combinations. Therefore, determin- 
ing the new convex-hull faces and, in turn, 
updating the adjacencies in P can both be 
completed in a constant time. After restoring 
the convexity for P, up to ten vertices may need to 
be relocated in L for changes in their degrees. 
Relocating a vertex in L involves two steps: delet- 
ing the vertex at the old position and reinserting it 
according to its updated degree. Both of these 
require only a constant time. Therefore, updating 
the data structure after a reconstruction takes 
a constant time. 
Overall, Step 2 is repeated exactly [ ( N -  4)/2-] 
times, as two vertices are removed in each 
execution. As explained in Step 2.1-2.3, each 
execution of Step 2 takes a constant time. 
Therefore, the total time complexity for Step 2 is 
O(N). 

Step 2. To find a pair of nonadjacent vertices, 
traverse L [3], L [-4], and L [5] in succession until 
a pair is found. By Lemma 4, finding a pair of such 
vertices takes a constant time, as at most, six 
vertices are visited. This selection process is illus- 
trated by Fig. 6. List L [-3] is examined, and the 
first vertex v2 is picked as v~. The second vertex 
stored in L [3], v3, is next visited and found to be 
adjacent to va. The search then goes on to visit the 
next vertex v4, which is not adjacent to v2 and is 
thus taken as vertex vb. 

Step 2.1. Inserting a line segment to 5 ~, which is 
initially empty, takes a constant time. 
Step 2.2. For some representations of polyhedra 
such as the winged-edge data structure (Hoffmann 
1989), deleting the two vertices va, vb and their 
adjacencies takes a constant time. As for main- 
taining D and L, v, and vb need to be deleted from 
L, which takes a constant time by construction. 
Depending on the implementation, the degrees of 
v, and Vb can either be left in D or be deleted in 
a constant time. 

Step 3. SLS sets consisting of three and two 
line segments can be computed in a constant 
time for polyhedra with four and three vertices, 
respectively. 

This completes the description of the algorithm 
for computing the SLS sets for polyhedra with 
N extreme vertices. 

Theorem 1. For a polyhedron of N extreme 
vertices, algorithm mSLS computes an SLS set of 
size S, where: 

S = LN/2_] + 1 i f N  is odd 

S = ( N / 2 ) + I  if N is even 

in O(N) time. 

4 Concluding remarks 

Of particular interest to computer graphics is the 
notion of spatial arrangements of lines (Edel- 
sbrunner 1987; O'Rourke 1994), which arises 
in various contexts such as visibility graphs 
(O'Rourke 1987) and hidden surface removal 

178 



{ omputer 
(Mckenna 1987). As a novel arrangement, the 
SLSs capture the essential property of intersection 
of polyhedral objects and thus provide a new 
representation. 
This paper offers an algorithm that yields the 
minimum LN/2J + 1 number of SLSs when N, the 
number of extreme vertices, is odd, and a near 
minimum (N/2) + 1 when N is even. This paper 
also establishes a tight upper bound for the min- 
imum size of an SLS set. Clearly, an algorithm 
with an output  independent of the parity would 
be desirable. However, such an algorithm implies 
a procedure to determine whether a polyhedron 
with an even number of vertices has the minimum 
size (3//2), which, as dictated by the spatial ar- 
rangement of the vertices, might not have a fast 
solution. 
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