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Abstract 

Our paper provides a brief review and summary ofissues and advances in the use of latent structure 
and other finite mixture models in the analysis of choice data. Focus is directed to three primary 
areas: (I) estimation and computational issues, (2) specification and interpretation issues, and (3) 
future research issues. We comment on what latent structure models have promised, what has 
been, to date, delivered, and what we should look forward to in the future. 

1. B a c k g r o u n d  

T h o u g h  o r i g i n a l l y  m o t i v a t e d  in  t e r m s  o f  l a t e n t  v a r i a b l e  m o d e l s ,  l a t e n t  s t r u c t u r e  

r n o d e l s  f a l l  u n d e r  t h e  u m b r e l l a  o f  w h a t  a r e  r e f e r r e d  to  asfinite rnixture models (cf .  
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McLachlan and Basford, 1988; Titterington, Smith, and Makov, 1985). Latent 
structure analysis is a special case of finite mixture models in which the axiom of 
local independence is explicitly invoked. The term "finite" is used because the 
latent continuum is assumed to be finite and discrete. The term "mixture" is used 
because the population is assumed to consist of homogeneous subgroups. These 
subgroups are frequently referred to as the c o m p o n e n t s  o f  the mixture,  or simply 
as componen t s .  Let f(y, 9~s) be the probability density for observation Y, when 
sampled from the sth component. Assume further that the sth component is a 
fraction 0s of the total population, with ~s= ~ Os = 1. If samples from the entire 
population are taken without knowledge of the component membership of each 
observation then Y has the mixture density 

S 

By, P) = ~ Osf(y, cp~) (1) 
s--1 

where the unknown parameter vector P consists of S component parameters q~~, 
q~s and S component proportions, often referred to as mixing proport ions  

or mixing weights ,  Ol, • • • , Os. Depending on the form of the density function 
that is assumed to characterize each component of the mixture, different latent 
structure models can be realized. 

Recently, latent structure and other finite mixture models have proven to be an 
extremely versatile class of models in the analysis of (scanner) panel, survey, and 
experimentally derived choice data. The allure and potential promise of latent 
structure choice models are their ability to account for taste differences without 
the need for estimation at the individual level. Under a latent structure model 
individuals are assumed to belong to one of possibly many (but finite) number of 
homogeneous latent classes that account for the variation in taste distributions 
across the population of individuals - a (possibly) unique vector of choice-related 
parameters is estimated for each latent class. In the context of choice modeling, 
latent structure models provide a compromise between the approach that treats 
all individuals as different, with a separate set of choice-related parameters esti- 
mated for each individual, and the approach that treats all individuals alike, with 
a single set of choice-related parameters estimated for all individuals. 

Several comprehensive reviews of recënt applications of latent structure models 
have appeared. DeSarbo, Manrai, and Manrai (1993) have reviewed latent struc- 
ture multidimensional scaling models, including latent structure multidimensional 
scaling models for "pick-any/K" and paired comparison data. DeSarbo and Wedel 
(1993) have reviewed latent structure regression models, including latent structure 
regression models for binary choice data and count data. Dillon and Kumar (1992) 
have reviewed latent class and latent structure models, including recent models 
appearing in the marketing literature dealing with mixtures of multinomial logits 
and paired comparison data. 
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2. Estimation and computational issues 

2.1. ML estimation 

A variety of algorithms can be used to find maximum likelihood solutions. One 
approach is to apply standard numerical optimization methods to the appropriate 
set of normal equations that define the within-segment conditional densities. Nu- 
merical methods for obtaining ML estimates primarily involve the use of gradient 
methods. Newton-Raphson, quasi-Newton, simplex, and Fisher's scoring are 
some of the gradient methods that can be used. Another approach relies on the 
so-called EM algorithm. In 1977 Dempster, Laird, and Rubin published a seminal 
paper describing an algorithm that could be used to obtain ML estimates in a 
variety of situations. The EM algorithm derives its name from the two basic steps 
in the algorithm. In the E-step (expectation step) new provisional estimates of the 
component membership probabilities (i.e., the posterior probabilities) are ob- 
tained based upon provisional estimates of 0, and q0, In the M-step (maximization 
step) new estimates of Os and % are obtained on the basis of these provisional 
estimates of the component membership probabilities. These two steps are re- 
peated iteratively. 

The primary advantages of numerical optimization procedures are their speed, 
relative to the EM algorithm, and the ability to easily obtain standard errors for 
parameter estimates - the usual EM algorithm does not directly provide standard 
errors. The primary advantages of the EM algorithm are that (1) at each stage in 
the iterative process the likelihood is monotonically increasing and (2) under cer- 
rain regularity conditions, the sequence of likelihoods will converge to at least a 
local maximum. Because of its strong convergence properties we favor use of the 
EM algorithm. 

2.2 Identifiability 

Problems of identifiability relate to whether unique solutions can be obtained. 
There are three aspects retating to identifiability that warrant discussion. The first 
concerns whether a distribution or a family of distributions, parameterized in 
terms of one or more natural parameters, is generally identifiable. The second 
concerns the estimation procedure used - whether ML estimation yields identifi- 
able solutions. And the third concerns the particular response model being fit and 
the class of indeterminacies that are relevant. 

The evidence suggests that a large number of distributions are identifiable. Al- 
Hussaini and Ahmad (1981), for example, have shown that the following families 
of multivariate distributions yield identifiable mixtures: negative binomial, loga- 
rithmic series, Poisson, normal, inverse Gaussian, and random walk. Two excep- 
tions are the general multivariate normal in which the covariances are treated as 
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unknown parameters (cf. Hathaway, 1983) and mixed-product multinomials (cf. 
Haberman, 1977, p. 1135). 

An arresting feature of latent structure models is that the likelihood function 
need not be concave. This has two immediate consequences for ML estimation: 
First, the ML normal equations may fail to maximize the likelihood. Second, mul- 
tiple maxima of the likelihood may exist: more than one set of ML estimates may 
maximize the likelihood. The situation is troubling since the EM algorithm guar- 
antees convërgence only to a local maximum. This means that alternative starting 
values may yield strikingly disparate parameter values. Generally, it will be dif- 
ficult to prove that a particular latent structure model is identifiable. One heuristic 
is to investigate whether the matrix of second-order partial derivatives of the log- 
likelihood is negative definite for the parameter estimates obtained at the maxi- 
mum. If this condition holds, then the solution corresponds to a local maximum 
of the likelihood. 

Because starting values play a role in the evaluation of whëther a solution is a 
global one, how to choose "good" starting values is a question of some concern. 
The most popular approach to finding starting values is to use the available data. 
One suggestion is to fit the aggregate model and then use the resulting parameter 
estimates and associated standard errors to obtain starting values. Another sug- 
gestion, implemented in much of the work of DeSarbo (see DeSarbo, Manrai, and 
Manrai, 1993, and DeSarbo and Wedel, 1993, for relevant references), is to define 
starting values via quick clustering methods using the available data. In many 
applications, such methods have proven to render initial solutions quite close to 
the globally optimum solution. Of course, random starting values can always be 
used. In situations where lack of convergence may be problematic, the use of 
random start values may be too ambitious, stretching the limits of the algorithm 
beyond what is reasonable to expect. 

In many latent structure models the natural parameters that define the distri- 
butional and model form are themselve s reparameterized with respect to a set of 
covariates. Depending on the form of the reparameterization, identifiability may 
or may not hold. Proper restrictions must be imposed on parameters for identifi- 
ability to hold for each latent segment, in certain instances, latent structure 
models can help when fitting response models that have known indeterminacies 
- e.g. unfolding models - by providing a more parsimonious description of the 
data that thereby allows both internal and external unfolding models to be fit (cf. 
Böckenholt and Böckenholt, 1991). 

2.3 Determining the number of latent classes/segrnents 

The overwhelming temptation in deciding how many components to retain is to 
compute the likelihood ratio statistic between models having S and S + 1 com- 
ponents. Unfortunately, in the case of mixtures the likelihood ratio statistic is not 
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asymptotically x2-distributed with known degrees of freedom given by the differ- 
ence in the number of parameters estimated under the null and alternative hy- 
potheses. Because of the limitations of the likelihood ratio statistic other alter- 
natives have been suggested. The following five alternatives have gained some 
popularity. 

1. One alternative is to use parametric bootstrapping (Hope, 1968). The procedure 
involves drawing T - 1 random Monte Carlo samples of size N from a popu- 
lation having S-components and prespecified density, and fitting S and S + 1 
component models to each of the generated samples. Anyone that has used this 
method knows all too well that it is extremely costly in terms of machine time. 

2. A second alternative is to use information-theoretic-based model selection cri- 
teria to assess goodness-of-fit. With this approach the decision on the number 
of components to retain proceeds by minimizing a particular information-the- 
oretic criterion. The oldest of these information criteria measures is AIC 
(Akaike, 1974). Other criteria include BIC (Schwarz, 1978) and CAIC (Boz- 
dogan, 1987), which attempt to penalize overparameterization more severely 
than does AIC. Though the AIC, BIC, and CAIC have a long history of use, 
recent simulation studies suggest that they tend to systematically underfit or 
overfit depending on sample size and component separation (cf. de Borrero, 
1993). 

3. Bozdogan (1993) developed a new entropic complexity criterion called ICOMP. 
Similar to AIC, BIC, and CAIC, ICOMP is a penalized information-based va- 
lidity functional. It can be viewed in terms of two distinct components. The 
first component measures the lack of fit of the model, and the second compo- 
nent measures the complexity of the estimated inverse-Fisher information ma- 
trix. The preliminary evidence on the performance of the ICOMP measure is 
quite encouraging. More comprehensive and intense simulations are, however, 
needed before definitive and generalizable conclusions can be drawn. 

4. The fourth alternative, introduced by Windham and Cutler (1992), is called the 
minimum information ratio (MIR). The MIR is the smallest eigenvalue of the 
matrix F c ~ F, where F is the Fisher information matrix, and F, is the Fisher 
information matrix for the classified sample. The MiR can be viewed as a mea- 
sure of the proportion of information about the parameters available without 
knowledge of the subpopulation membership of the sample. The MIR may not 
at all perform welk see de Borrero (1993) and Cutler and Windham (1993). 

5. The fifth alternative represents a very different approach. It involves what is 
called nonparametric ML estimation (NPMLE) (cf. Böhning, Schlattmann, and 
Lindsay, 1992), or what is also is called the flexible support size method since 
S itself is treated as an unknown parameter and P is viewed as completely 
unknown varying in the set of all probability measures. In essence, with 
NPMLE a grid of parameter values is specified over which the corresponding 
population proportions that maximizes the likelihood function are found. There 
are several troubling issues related to the NPMLE approach. First, this ap- 
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proach is based upon saturating the likelihood with possibly as many points as 
sample observations, which runs contrary to the basic tenet of latent structure 
modeling. Second, and perhaps more serious, the algorithms available to date 
are for univariate distributions only. Adaptive grid search procedures are 
needed in order to extend this approach to multivariate problem settings. 

3. Specification and interpretation issues 

3.1. Perspectives on heterogeneity 

There are quite different perspectives on how consumer heterogeneity can be 
viewed as the following illustration demonstrates. Let  y,j denote the number of 
selections of b rand j  by respondent i in some fixed time period, where y« -> 0, and 

EJ= = l Y« y~+ is the total number of choices by respondent i. Under the assump- 
tion that the probability of making a choice is unaffected by the length of time 
since the last choice was made, the total number of choices yi+ can be described 
by a Poisson process with mean rate ~.i 

Pr(yi+ ,~) exp( - )~~))~Y'+ , - y~+ ~{0 ,  1 , ' ' ' , } .  (2) 
Yi+! 

Let  us .further assume the availability of a covariate, denoted by X, which pre- 
sumably influences the number of choices by each respondent. To account for the 
effect of a respondent-specific covariate, the rate parameter ki can be parameter- 
ized as 

)~~ = C~ exp(X;/3), (3) 

where/3 is an unknown regression weight and Ci is some measure of the time 
interval for the / th  respondent. 

There can be a pronounced lack of fit of the data to this model. Generally, this 
is a signal that the sample may be too heterogeneous for this specification. In 
essence, the specification shown in equation 2 may "force"  too much structure 
on the data. There are at least two approaches for accounting for respondent het- 
erogeneity. Orte approach to accounting for unobserved heterogeneity is to repa- 
rameterize ~~ as 

)~i = Ci exp(X;/3 + 7,) = C~ai~» (4) 
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where •i, which can be either random or fixed, captures the heterogeneity in re- 
spondent i's choices. The second approach, consistent with a latent structure 
model, is to adopt the following reparameterization 

~.irs : Ci exp(Xißs), (5) 

where ~il« is the mean purchase rate for individual i who belongs to latent segment 
s and [3s is the value of the unknown regression weight in latent segment s, where 
s = 1 , 2 , - . -  ,S .  

In the first approach, y/is viewed as a nuisance parameter. It provides no mean- 
ingful diagnostic information in the sense that it is introduced to capture those 
factors that have been left out of the model. It is introduced to "overcome"  the 
heterogeneity problem, rather than as a possible explanation. In contrast, the tacit 
assumption underlying the second approach is that the population consists of a 
discrete number of homogeneous subgroups or component populations and a sim- 
ple Poisson model is assumed to hold in each component,  where each component 
of the mixture may have a different parameter (/33 value. Thus, this perspective 
views heterogeneity as providing diagnostic information; the latent segments, 
through the S-/3~ weights, capture respondent heterogeneity in response sensitiv- 
ity. 

3.2. Continuous versus diserete latent segments 

In general, the unconditional likelihood for a consumer h with choice vector y can 
be written as 

f 
+ ~  

Lh(y) = _~ Lh(y I ~)dF(qg) (6) 

where Lh(y [ q~) is the conditional likelihood with parameter % and F(.) is the 
mixing distribution. The distinction between discrete and continuous latent con- 
structs may not be particularly important since it can be shown that a continuous 
mixing distribution function F(.) can be consistently estimated with a finite num- 
ber of S mass points (cf. Lindsay, 1983). 

The assumption that the latent segments account for all the covariation in the 
data is probably unrealistic: respondents who belong to the same latent segment 
are to some degree different and thus some within-segment heterogeneity is pre- 
sent. One way to overcome this problem is to incorporate parameters that can 
account for within-segment variation. For example Böckenholt (1993a) recently 
presents a latent structure model in which unexDlained variations in the choice 
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probabilities within each latent segment are (potentially) captured by compound- 
ing the multinomial distribution with the Dirichlet distribution (Johnson and Kotz, 
1969). Under this specification the choice probabilities vary according to the Dir- 
ichlet distribution from consumer to consumer within each latent segment and the 
effects of covariates are modeled by reparameterizing the Dirichlet parameters. 
Ramaswamy, Anderson, and DeSarbo (1993) present a mixed NBD model that 
can also account for otherwise unexplained within-segment variation. 

4.3. Stare dependence 

When scanner panel data are used to calibrate probabilistic choice models it is 
generally assumed that successive purchases for a household are independent. 
Latent structure probabilistic choice models are typically parameterized to be 
consistent with the proposition that, conditional on latent segment membership, 
consumers follow a zero-order brand switching pattern. When there is feedback, 
choice on one occasion affects probabilities of choice on future occasions; some 
sort of state dependence is operating. State dependence conceivably can manifest 
several different types of behavior. Brand loyalty, as evinced in large repeat pur- 
chase probabilities, for example, could reflect state dependence: the choice of 
alternative A increases the probability of choosing alternative A on the next oc- 
casion. Similarly, variety seeking could reflect state dependence as weil: the 
choice of alternative A decreases the probability of choosing alternative A on the 
hext occasion. 

Brand loyalty and brand switching can be distinguished in latent structure 
choice models. For example, both Grover and Srinivasan (1987) and Dillon and 
Gupta (1994) advance parametric representations that distinguish between brand 
loyalty and brand switching. A way of relaxing the zero-order, no feedback as- 
sumption is to adopt a mixed Markov chain model. Mixed Markov models come 
about by conditioning the choice probabilities by the outcomes of the previous 
choice - i.e., outcomes of the previous choices influence the probability distri- 
bution of the next choice. Thus, in a three-wave problem setting we parameterize 
the probability of purchasing brand i on the first occasion, brand j on the second 
occasion, and brand k on the third occasion. Mixed Markov models were first 
introduced by Poulsen (1982). Recently Van de Pol and Langeheine (1989) have 
made further advances and provide software for fitting this class of models. Note, 
however, these models do not consider covariates, so they are somewhat limited 
in the amount of diagnostic information provided. 

Another example of a latent structure model with state dependence is the finite- 
mixture of hazard function models recently suggested by Wedel, Kamakura, and 
DeSarbo (1993). State dependence is explicitly modeled through a flexible Box- 
Cox baseline hazard and nonproportional effects of marketing variables, which 
are estimated through a finite-mixture of Poisson regressions. 
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4.4. Nonstationarity 

Stationarity refers to the assumption that consumers do not change their latent 
segment membership over time. The assumption of stationarity seems overly re- 
strictive in at least two ways. First, if consumers are inextricably fixed to a latent 
segment, then segments are, by definition, presumed not to grow or diminish over 
time. Second, this assumption implies that underlying preference structures taust 
be constant and thus are not influenced by marketing mi× activity (advertising, 
promotion), changes in demographics or environmental factors (aging population, 
weather), politics (changing tax code), etc. 

The only nonstationary latent structure probabilistic choice models that have 
appeared are due to the work of Poulsen (1982) and extensions by Van de Pol and 
Langeheine (1989). These models fall under the umbrella of latent Markov 
models. The driving premise underlying these models is that the observed choices 
are imperfect indicators, reflecting some measurement or uncertainty, and that 
changes are indeed taking place which cause shifts between the latent states. 
Thus, at any purchase occasion each consumer is in a particular state; however, 
over a number of purchase occasions, consumers are allowed to change their la- 
tent state position. The movement between latent stares is governed by a station- 
ary transition matrix that is conditioned on the present state the consumer is in. 
Similar to mixed Markov models, latent Markov models have not, to date, been 
extended to allow covariates to be included in the parameterization. Finally, a 
latent structure probabilistic choice model that can account for nonstationarity 
and stare dependence bas recently been presented by Böckenholt (1993b). 

4.5. Joint versus concomitant specifications 

In the context of latent structure probabilistic choice models, there have been two 
approaches to incorporating covariates. One approach includes all covariates in 
the specification of the within-segment (conditional) density. Thus, a (possibly) 
unique within-segment coefficient is estimated for each covariate. The other ap- 
proach, which has been recently suggested (cf. Dayton and MacReady, 1988; Dil- 
lon, Kumar, and de Borrero, 1993; Kamakura, Wedel, and Agrawal, 1992), falls 
under the umbrella of concomitant variable modeling. Concomitant variable 
models establish a functional linkage between specific covariates and the prior 
probabilities of latent segment membership - the mixing weights. 

The rationale behind concomitant variable modeling is that the covariates avail- 
able are qualitatively different. For example, in the context of choice modeling, 
one set of covariates typically includes brand-specific variables (price, brand at- 
tribute ratings), and another set might pertain to respondent-based variables (in- 
come, family size). The former set of covariates may be thought to influence 
choice directly in the sense that they establish the defining character of the latent 
segment (a price-sensitive segment, a health-conscious segment, etc.), whereas 
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the latter set conceivably can be viewed as concomitant variables since they are 
conceptualized to influence the latent segment membership of a respondent, but 
are not brand-specific. 

5. Future research agenda 

We hope the reader will come away with an appreciation of what latent structure 
probabilistic models have to offer as well as with heightened sensibilities con- 
cerning future research issues. Thus, a fitting close to out discussion is to focus 
on future research priorities: 

1. Develop adaptive grid search procedures to implement nonparametric maxi- 
mum likelihood estimation with multivariate distributions. 

2. Identify estimation algorithms that provide high statistical efficiency and low 
search. 

3. Provide comprehensive simulations comparing various methods for determin- 
ing the number of latent components to retain with particular focus on ICOMP 
and different methods for computing the Fisher information matrix. 

4. Initiate comparative simulation studies focusing on alternative methods for 
generating starting values. 

5. Develop latent structure models that can account for consumer heterogeneity 
caused by hierarchical data structures. 

6. Understand the estimation costs and diagnostic benefits of explicitly specifying 
latent loyalty segments. 

7. Develop latent structure models that can incorporate prior information in a 
Bayesian framework. 

8. Provide more flexible and comprehensive latent structure probabilistic choice 
models in which consumers are allowed to change latent segment membership 
over time as a function of covariates. 

9. Develop latent structure probabilistic choice models that relax the zero-order 
assumption and parameterize state dependence in terms of a set of covariates. 

References 

Akaike, H. (1974). "A New Look at Statistical Model Identification," IEEE Transactions on Au- 

tomatic Control, AC-19, 716-723. 
AI-Hussani, E. K., and K. E. Ahmad. (1981). "On the Identifiability of Finite Mixtures of Distri- 

but ions,"  IEEE Transactions on Information Theory, 27,664-668. 
Böckenholt ,  U. (1993a). "Estimating Latent Distributions in Recurrent Choice Data,"  Psycho- 

metrika, 58,489-509. 
- - .  (1993b). "Latent  Change in Recurrent Choice Data,"  Unpublished manuscript,  Depart- 

ment of Psychology, University of Illinois. 



ISSUES IN THE APPLICATION OF LATENT STRUCTURE MODELS OF CHOICE 333 

Böckenholt, U., and I. Bockenholt. (1991). "Constrained Latent Class Analysis: Simultaneous 
Classification and Scaling of Discrete Choice Data," Psychometrika, 56,699-716. 

Böhning, D., P. Schlattmann, and B. G. Lindsay. (1992). "Computer Assisted Analysis of Mixtures 
(C.A.MAN): Statistical Algorithms," Biometrics, 48,283-303. 

Bozdogan, Hamparsum. (1987). "Model Selection and Akaike's Information Criterion (AIC): The 
General Theory and Its Analytical Extensions," Psyehometrika, 52,345-370. 

- - .  (1993). "Mixture-Model Cluster Analysis Using Model Selection Criteria and a New In- 
formational Measure of Complexity." In H. Bozdogan (ed.), Proceedings of the First U.S./Japan 
Conference on the Frontiers of Statistical Modeling, Vol. 2: Multivariate Statistical Modeling. 
Dordrecht, the Netherlands: Kluwer Academic Publishers. 

Cutler, Adele, and Michael P. Windham. (1993). "Information-Based Validity Functionals for Mix- 
tute Analysis." In H. Bozdogan (ed.), Proeeedings of the First U.S. Japan Conference ort the 
Frontiers of Statistical Modeling, Vol. 2: Multivariate Statistical Modeling. Dordrecht, the 
Netherlands: Kluwer Academic Publishers. 

Dayton, C. Mitchell, and George B. MacReady. (1988). "Concomitant-Variable Latent-Class 
Models," Journal of the American Statistical Association, vol. 83, no. 401, Theory and Meth- 
ods. 

de Borrero, Melinda. (1993). "Determining the Number of Mixture Components and a Poisson- 
Multinomial Logit Mixture Model Application," Unpublished dissertation, University of South 
Carolina. 

Dempster, A. P., N. M. Laird, and D. B. Rubin. (1977). "Maximum Likelihood from Incomplete 
Data via the EM Algorithm," Journal ofRoyal Statistical Society, B39, 1-38. 

DeSarbo, Wayne S., Ajay K. Manrai, and Lalita A. Manrai. (1993). "Latent Class Multidimen- 
sional Scaling: A Review of Recent Developments in the Marketing and Psychometric Litera- 
tute," In R. Bagozzi (ed.), The Handbook o.fMarketing Research. London: Blackwell Publish- 
ers. 

DeSarbo, Wayne S., and Michel Wedel. (1993). "A Review of Recent Developments in Latent 
Class Regression Models." In Rick P. Bogozzi (ed.), Handbook of Marketing Research, forth- 
coming. 

Dillon, William R., and A. Kumar. (1992). °'Latent Structure and Other Mixture Models in Mar- 
keting: An Integrative Survey and Overview." In Rick A. Bagozzi (ed.), Handbook of Marketing 
Research, London: Blackwell Publishers. 

Dillon, William R., A. Kumar, and M. Smith de Borrero. (1993). "Capturing Individual Differences 
in Paired Comparisons: An Extended BTL Model Incorporating Descriptor Variables," Journal 
of Marketing Research, 30, 42-51. 

Dillon, William R., and Sunil Gupta. (1994). "A Segment-Level Model of Category Volume and 
Brand Choice," Unpublished manuscript, Southern Methodist University. 

Grover, Rajiv, and V. Srinivasan. (1987). "A Simultaneous Approach to Market Segmentation and 
Market Structuring," Joarnal of Marketing Research, 24, 139-153. 

Haberman, Shelby J. (1977). "Product Models for Frequency Tables Involving lndirect Observa- 
tion," Annals of Statistics, 5(6), 1124-1147. 

Hathaway, R. J. (1983). "Constrained Maximum Likelihood Estimation for a Mixture of Multivar- 
iate Normal Densities," Tech. Rep. 92, Deptartment of Mathematics Statistics, University of 
South Carolina, Columbia, SC. 

Hope, A. C. A. (1968). "A Simplified Monte Carlo Significance Test Procedure," Journal of the 
Royal Statistical Society, Series B, 30,582-598. 

Johnson, N. L., and S. Kotz. (1969). Distributions in Statistics: Discrete Distributions. New York: 
Wiley. 

Kamakura, Wagner A., Michel Wedel, and Jagdish Agrawal. (1992). "Concomitant Variable Latent 
Class Models for the External Analysis of Choice Data," Research Memorandum 486, Faculty 
of Economics, University of Groningen. 

Langeheine, R. (1988). New Developrnents in Latent Class Theory, Latent Trait and Latent Class 
Moclels. New York: Plenum. 



334 W1LLIAM R. DILLON ET AL. 

Lindsay, B. G. (1983). "The Geometry of Mixture Likelihoods, 1I: The Exponential Family," An- 
nals of  Statistics, 11,783-792. 

McLachlan, G. J., and K. E. Basford. (1988). Mixture Models: Inference andApplication to Clus- 
tering. New York: Marcel Dekker. 

Poulsen, C. A. (1982). "Latent  Structure Analysis with Choice Modelling Applications." Aarhus: 
Aarhus School of Business Administration and Economics. 

Ramaswamy, V., E. W. Anderson, and W. S. DeSarbo. (1993). "A New Latent Class Methodology 
for Modeling Brand Purchase Frequencies and Deriving Response-Bases Market Segments," 
Management Science, 40, 405417. 

Schwarz, G. (1978). "Estimating the Dimension of a Model," Ann Statist, 6,461-461. 
Titterington, D. M., A. F. M. Smith, and U. E. Makov. (1985). Statistical Analysis ofFinite Mix- 

ture Distributions. New York: Wiley. 
Van de Pol, F., and R. Langeheine. (1989). "Mixed Markov Latent Class Models," Sociological 

Methods and Research, 15, 118-141. 
Wedel, Michel, Wagner A. Kamakura, and Wayne S. DeSarbo. (1993). "Heterogeneous and Non- 

proportional Effects of Marketing Variables on Brand Switching: An Application of a Discrete 
Time Duration Model," Research Note 541, Faculty of Economics, University of Groningen. 

Windham, M. P., and A. Cutler. (1992). "Information Ratios for Validating Mixture Analyses," 
Journal of the American Statistical Association, 87(420), 1188-1192. 


