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1. Introduction 

Viscometric flows, locally equivalent to simple 
shearing, are very important in the theory of 
incompressible viscoelastic fluids. It is well 
known, e.g. see the review article by Pipkin 
and Tanner (1), that in these flows, the two 
normal stress differences N1 and N2 and the 
shear stress function ~ play crucial roles. With 
respect to a local Cartesian system, if v = ~cyi 
is the velocity field, then N1, N 2 and •a re  
defined through: 

N~ = T ( x x )  - T ( y y ) ,  [1.1] 

N z = T ( y y )  - r ( z z ) ,  [1.2] 

= T ( x y ) ,  [1.3] 

N i = Ni(~), i =  1,2; z = z(tc), [1.43 

Ni(~c)= N i ( - ~ ) ,  i =  1,2; z ( - t c ) =  -z (K) .  

[1.5] 
In [ 1 . 1 ] -  [1.3], T (i j )  are the physical compo- 
nents of the stress tensor T and in [ 1 . 4 ] -  [1.5], 
~c is called the rate of shear. Much work, theoret- 
ical and experimental, has been done in deter- 
mining the various configurations wherein N »  
N z and z may be measured. For example, apart 
from Pipkin and Tanner (1), orte may consult 
Lodge (2), or Huilgol (3), or Walters (4) for an 
exhaustive study of these aspects. This would 
reveal that in a number of situations, meas- 
rement of the stress distribution on a flat plate 
(e.g. in cone and plate flow, torsional flow) or 
at a point on a curved surface (e.g. in Couette 
flow) are required. One approach to the meas- 
urement is to drill a hole or cut a slot for the 
insertion of a pressure sensitive device. The 
question this raises is: does the presence of a 
hole induce errors in the values of the stresses 
so recorded? 
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Twenty-five years ago, Greensmith and Rivlin 
(5) did a number of tests to determine whether 
the holes would induce "pressure-hole errors". 
They concluded, by varying the diameters of 
holes, that these errors did not exist. The matter 
rested here until Adams and Lodge (6) found 
that the normal stress measurements obtained 
from the cone-and-plate apparatus did not agree 
with those obtained from the parallel-plate 
apparatus. 

Following upon this discovery, Broadbent 
et al. (7) published an article in which they 
pointed out that if a systematic error, Pc, in- 
dependent of the hole size but dependent on 
the shear stress r, was assumed to exist, then these 
inconsistencies could be resolved. These authors 
found an equation connecting Pe and z, which 
was somewhat empirical. 

The next advance was made by Tanner and 
Pipkin (8), who considered the creeping flow of 
an incompressible second order fluid (Coleman 
and Noll (9)) across an infinitely deep slot. They 
found that 

Pe = --N1(~C)/4, [1.6] 

where for the second-order fluid, described by: 

T + p l  = ~loA1 + flA~ + ,/A 2, [1.7] 

with t/o, fl and ~ constants, A t and A z being 
the first two Rivlin-Ericksen (10) tensors, 

N I ( ~ )  = - 2 ~ , ~  2 . [1.8] 

Using this very constitutive relation [1.7], 
Kearsley (11) found that in the creeping, recti- 
linear flow along a deep slot, 

Pe = N2(t¢)/2, [1.9] 

N~(~) = (/~ + 2~,)~ 2 . [1.10] 
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Later, Kearsley (12) discussed the rectilinear 
motion of the second-order fluid between two 
infinitely parallel plates D apart, with the top 
plate moving with a constant speed V and the 
bottom plate at rest. The bot tom plate had a 
slot, of finite depth d and width W, in the djrec- 
tion of the motion. Kearsley obtained an exact 
solution to this problem and found explicitly 
that 

N 2  (/c) 
Pc = - - "  G(k,Œ), [1.11] 

2 

where N 2 (/¢) is evaluated at ~c = V/D, and 

1 - k 2 
G(k,Œ) = _ k 2  [1.12] 

1 sn  2 c~ 

with k and sn « being the modulus and modular 
sine respectively. 

In this paper, we study the above problem of 
the rectilinear flow when along with the moving 
top plate, a constant pressure gradient c exists 
in flow direction. We have not been able to 

solve the problem completely; however, we have 
obtained upper and lower bounds to the error 
Pc. By putting c = 0, we ean recover bounds 
for the case considered by Kearsley (12). A com- 
parison with his solution (see fig. 4) has been 
made to indicate the position of the bounds 
relative to the exact values. If we put V = 0, 
c (: 0, then our results should be applicable to 
the "Omega flow" considered more recently by 
Lobo and Osmers (13) to measure N,.  

In this paper, we assume that N2(~c) _< 0. 

2. Formulation of the problem 

We are interested in the determination of the 
veloeity field, in a Cartesian frame: 

=o, y=O, ~=w(x,y). [2.1] 

This steady flow takes place between a fixed 
bottom plate with a longitudinal slot which is 
along the direction of the flow, and a moving 
upper plate. Both plates are assumed to be 
infinitely long and wide, and the upper plate 
moves in the z-direction with a constant speed V. 
There is also a uniform pressure gradient 
@/~z = qoC as well, where c _< 0 is a constant. 
The continuity equation is trivially satisfied 
and the equations of motion imply that w 
satisfies 

Aw = «, [2.2] 

when body forces are ignored and the consti- 
tutive eq. [1.7] is used. In eq. [2.2] A is the two- 
dimensional Laplacian: 

_ _  - -  9 2  

A -  ~32 + - -  [2.3] 
~X 2 t;3y 2 

The boundary conditions (see fig. 1) are: 

0, [x[ < (W/2); y = 0 ; 

w = 0, Ix] = (W/2); 0 < y _< d; [2.4] 

Ixl >- ( w / 2 ) ;  y = d; 

w(y) as lYl ~ oe. 

Point at J 
Infinity 

in ~ - p a n %  /I 
(-oo) ] (~1 ! 

/~ ~., I/2 
,~ r-~ 7 7 7  

Fig. 1. Flow domain in the z-plane and the boundary 
regions I, II, III, IV, V and VI 

We shall digress a little and note that the 
corresponding problem for a Newtonian fluid, 
i.e., the fluid defined by [1.7] with fl = 7 = 0, 
is also given by eqs . [2 .1 ] - [2 .4 ] .  Thus the 
Newtonian and second-order fluid velocity fields 
are identical, but the pressure fields are not. In 
the Newtonian fluid, pO= pO(z), while in the 
second-order fluid, as shown by Kearsley (11), 
the pressure p is given in the steady flow [2.1] 
by: 

1 dp ° 
p = po _ (/~ + 2 ~ ) - - - - w ,  

rlo dz 

i.e., by 

p = pO _ c(fi + 27)w. 

[2.5] 

[2.6] 

Using eqs. [1.7], [2.1] and [2.6], one can cal- 
culate the normal stress Tyy to be: 

B ,  = _pO + ½(fl + 27) [(w2~ - w, 2) - 2 c w ] ,  

[2.7] 
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where the comma denotes the partial derivative 
and w 2 -- (Ow/~x) 2, etc. ,x 

We assume that in this flow, the normal stress 
is measured at x = 0 ,  y = 0 ,  while the un- 
disturbed normal stress, i.e., the true normal 
stress, is the one at x =  _+0% y = d .  The 
pressure error Pe is then defined through: 

Pc = T,(_+_ ~ , d ) -  T,(0,0) .  [2.8] 

Now, along the fixed plate, w = 0 and W x = 0 
as weil. Therefore, eqs. [ 2 . 7 ] -  [2.8] lead to (t2): 

~ + 2 ~  
Pc = • [w2v(___oe,d) - w.2y(0,0)]. [2.9] 

2 

If we calculate the second normal-stress dif- 
ference for this fluid based on the shear rate at 
x = +oe,  y = d, and denote this by N2, [2.9] 
becomes: 

Pc = ½N2 G , [2.10] 

where 

G = [ 1  w'21° ] .  [2.11] 

Here 0 denotes the origin and C denotes the 
point at (o%d) as shown in figure 1. 

To sum up, the determination of Pc reduces 
to that of finding the function G, which depends 
on the dimensions of the flow: d, D, W as well 
as V and c. 

3.  B o u n d s  for  the  error 

If the solution of the Poisson's eq. [-2.2], 
subject to the boundary conditions [-2.4] is 
obtained, then G will be known. This is a 
formidable task because the conformal mapping 
which transforms the region in figure 1 - h e r e -  
after called the z-plane which should not be 
confused with the Cartesian co-ordinate - onto 
the upper half-plane in the (-plane is given by 
(Carter (14)) a cumbersome result: 

dz _ M ( l - k 2 ~ 2 ~ l / 2  1 . [3 .1 ]  
d~ \ / i  -2 ~ 1 - k 2 ~2 sn 2 « 

We have already introduced the parameter k 
and snc¢ in eq.[1.12] above, and M is the 
Schwarz-Christoffel constant to be determined. 
(The Appendix treats these matters in a more 
detailed fashion to which the reader is referred). 
t taving accomplished this mapping, the usual 
procedure is to map this upper half-plane onto 

a unit circle in the ~'-plane (fig. 3b), say, and 
determine the mapping: 

z = ~ aù? '~ . [3.2] 
~~=0 

If one finds the coefficients aù, there still remains 
the task of solving the Poisson's equation in the 
?.-plane, which will now be Aw = f(71,  ?'2) rather 
than A w = c. These remarks indicate why we 
have sought to obtain bounds for the solution 
to w and hence derive bounds for G itself. 

To achieve these bounds, let us decompose w: 

w =  w o + w 1, [3.3] 

where w o obeys: 

Aw o = c ,  [3.4] 

and 

{v, y = d + D 
[3.5] w o =  0, y d. 

The solution is trivially shown to be: 

C 2 
Wo = --f  y + b y  + e ,  [3.6] 

where b and e are the two constants: 

V c 
b - (0 + 2d), [3.7] 

D 2 

cd V d  
e = - - ( d  + O) - - -  [3.8] 

2 D 

Breaking up figure i into regions I, II, III, IV, 
V und VI, we can show that w~ satisfies: 

AWl = 0,  [3.9] 

( 0, on I, II and VI,  ] 

w~ = l ~~°:~v~' e°~IIIa~dv l ~3~0~ 
w l  --+ 0 as Ixl ~ o e ,  

so that w ~ w o as [xl ~ oo. Next, the constants 
c and V are such that c <_ 0 and V -> 0. From 
this, one obtains that b_>0  and e < 0  and 
using these it can be shown that the boundary 
data for wa is non-negative. We shall now 
introduce two other harmonic functions w~ and 
and w v. These obey: 

A w )  = O, Aw v = 0. [3.11] 
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The boundary data for w } and w vare:  

w ~ = { Ö ,  e ° n l V  
elsewhere, 

w) ~ 0 as Ixl -- '  o o ,  

wV = ~ - - e  on III, IV and V 
(o, elsewhere, 

w[  --+ 0 as Ixl --, oo.  [3.12] 

We claim that w~ < wl < w v. To make this 
transparent, consider the mapping of the up- 
per half of the (-plane (fig. 2) onto the unit 
circle in the ?'-plane, (see fig. 3), together with 

- l / k  sn ~ -1/k -1 0 1 1/k l/k s n o  ~ 
I I I I I I 

(C') (B') (A') (0) (A) (B) (C) 

Fig. 2. Points in the (-plane corresponding to the flow 
domain 

C) O 0  
P P P 

(a) (b) Ic) 

Fig. 3. Boundary data for w }, wl and w v in the ?'-plane 

the relevant boundary data for w L, w 1 and w v. 
Clearly, the functions (wl - w )) and (w~ - wl) 
are harmonic and the boundary data are non- 
negative. Hence, by the maximum principle 
(Prot ter  and Weinberoer  (15)): 

wE < w 1 < w~ [3.13] 

as asserted. 
Moreover, at the point P in the ?'-plane 

which corresponds to 0 in the z-plane, 

0 
- - ( W l  v - wO >_ 0 ,  
~~2 

- - ( %  - w L) > 0 .  [3 .14]  
@2 

A glance at eq. [3.1] shows that these map- 
pings are all conformal at z = 0 and hence 

0w___~1 v > ~wl > ~w ) at 0. [3.15] 
0y Oy ~y 

Now, by the nature of the boundary conditions 
on wE and w v, wLI.x - -~  O, wUI.~ --+ 0 at Ixl ~ oo. 

Moreover, as we Shall see, w L v 1,y -+ 0, ~ 0 Wl,y  

as ]xl--+ oo. Bearing in mind the fact that 
Wl,x--,  0 as Ixl--> 0% as well as the ellipticity 
of the problem with boundary data prescribed 
over a small region near the origin in the z-plane, 
one has that wl,y --+ 0 as Ixl ~ oo as well. 

We shall now proceed to calculate wl,~L and 
w v This part is straightforward because w~ 1,y" 
and Wl v are harmonic with constant boundary 
data over ( -1 ,1)  and ( - l / k ,  1/k), respectively, 
in the l-plane. Thus (for full details, see Raja-  

gopal  (16)): 

1 - ( 2  k2_(21 sn2c~ + 1- - )~~2 

( 1-k2:2 _:21 sn2 :~)1 , [3.16] 

77 M~ I ---- ?,G 2 
(1 - k2«~sn~=) .)1~~ 
(1  -- k 2 ~2 s n  2 

~2--~-271 Œ')] '  [3.17] 

where ~ is the conjugate of (. Note that when 
= ++_ l / k  sn c~, which corresponds to the point 

Ixl --, c~ in the z-plane, these derivatives vanish. 
N o w ,  let us obtain the upper and 10wer 

bounds to w itself as: 

w U = w  o + w  v ,  w L =  w o + w  L. [3.18] 

Then, from the foregoing 

v 2 e k  2 e  ] 

- W ylo M F I  ' [3 .19]  w'Y]° M FI + b '  L _ + b 

U L 
W ylc = w,rlc = cd  + b .  

We now define two functions G1 and G2 as: 

Gt = 1 - (WV]o)2/(cd + b) 2 , [3.20] 

G 2 = I - (W~lo)2flcd + b) 2. [3.21] 

Though, as we have shown, L W v W,y[o _< ,yl0, it 
need not be true that G 1 _< G 2 always, because 
the squares of these derivatives are included in 
[3.20]-[3.21]. However, it will always be true 
that one of the following inequalities holds for 
the function G defined in [2.10]: 

G 1 ___ G ~ G2, o r  G 2 < G _< G1 - [3.22] 
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Bearing in mind that N2 ~ 0, orte can obtain 
bounds for Pc, as defined in [2.11], by a correct 
choice of one of the inequalities in [3.22]. 

4. Results and discussion 

For values of d / W  < 0.7, we have found by 
direct calculation that L w yl0 > 0 when D / W  = 
0.5 and the parameter  T (see [4.3] below) lies 
between 0 and 0.5. Because L W,yl0 > 0, we have 
the result v 2 L (W,y]o) > (W,y[0), and therefore G 
satisfies: 

Ga < G < G2, [4.1] 

and because ]~2 -~ 0, 

J~2 G2 ]~2 G1 
- -  <-- Pe <-- - -  [ 4 . 2 ]  

2 2 

To facilitate the presentation of the results, we 
introduce a parameter  T through 

T = cD/~co, ~c o = V / D ,  [4.3] 

where ~c o is a measure of the shear rate. Thus 
G1 and Gz can be written as: 

W~:o I~ 
G1 = 1 - 

\-W-B \ ~-õ [4.4] 

G 2 = 1  - 
W~o + w 

"~(~)~(":ö ~)~ 
. [ 4 . 5 ]  

The Appendix lists the method chosen to com- 
pute the numbers k and M if d, D and W a r e  
given. Using these in [4 .4 ] - [4 .5 ] ,  we have 
plotted three sets of curves in figures 4 - 6 .  In 
figure 4, T = 0  and we have been able to 
compare our bounds with the exact volume of 
G in eq. [1.12] above due to Kears ley  (12). 
Figures 5 and 6 treat the cases for T = 0.25 
and T - - 0 . 5  respectively. The results seem to 
indicate that if D / W  -- 0.5, the bounds come 
together as T increases. 

Finally, we can derive the limiting values of 
G as V ~ 0, i.e., as the flow occurs due to the 
pressure gradient alone. If  V--* 0, then from 
[3.7]: 

cd + b --* CD/2, ' (  [-4.6] ( 
Ttc o ~ c D .  ) 

G °[o 
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in eq: [ 1.121 

c u r v e  
[eve ls  

of f  

__D = 0.5 J 
W 

T = 0  

I/ I I I I I 
0 10 20 30 40 50 60 70 

d % 
W 

Fig. 4. Upper and lower bounds compared with the 
exac tva lueo fGforc=0 ,  V > 0 ,  T = 0  

100 - -  I I I [ I 1 

9 0 -  

G2 

s0 

70 G1 

40 

3O 

20 / T = O. 25 

! 
lO 

I I I I ] 
lO 20 30 40 50 6o 70 

d__ O/o 
w 

Fig. 5. Upper and lower bounds for G, c =p 0, V > 0, 
T = 0.25 

60 
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G2 
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Fig. 6. Upper and lower bounds for G, c 5~ 0, V > 0, 
T = 0.5 

Thus ,  as V --* 0, 

_ (2kd ( l_  +_d/D).~ 2 [4.7] 
G 1 ~ i \ I I M  / ' 

_ ( 2d(1 + d/D) )2. [4.8] 
G2 ~ 1 \ .  ~r/~/- " 

These  show tha t  G 1 a n d  G2 b e c o m e  i n d e p e n d e n t  
of  the  m a g n i t u d e  of  the  p ressure  g r a d i e n t  c. O f  
course  Pe will  d e p e n d  o n  c t h r o u g h  the  shear  
ra te  ~c o at  the  wal l  rar a w a y  f rom the  s lot .  

Appendix 

Given d, D and W, one obtains (Carter (14)) that: 

d/W = (2K' - ct(D/W))/K [-A 13 

where K = K(k) is the complete elliptic integral o f  
the first kind, K'  = K'(k'), k' = (1 - kZ) l/z. Eq. [A 1] 
yields a relationship between ~ and k. Next, 

D ~z cnŒ 

W 4 [K cn « dn Œ - K cn c~ E(e,k) + c~ cn ~E(k)] 

[A 23 
Here E (k) is the complete elliptic integral of the second 
kind and E(«,k) the elliptic integral of the second kind. 
For all of the above formulae and their meanings, see 
Hancoek (17). 

Here, we list the method we have followed to calculate 
the parameters k and M needed in § 4. This procedure is 
based to a certain extent on the Appendix 3 of 
Carter (14). 

(i) Given d/W and D/W, calculate 

~r = 2 { a r e t a n  ( ~ - - )  - ~ß-D In (1 + ( -~ß- )2)}  • 

[A 3] 
(ii) Use the elliptic integral of the first kind, i.e., F to 

calculate k sn c~ as follows: 

F((~/2) - 0 , ~ / 2 )  2 (d  + D - c D )  
= [A 4] 

f(O, n/2) W ' 

where 

k sn c~ = sin ®. [A 5] 

(iii) Let 

sn c~ = sin ~o [A 6] 

and calculate, as a first approximation, sn « from: 

L (~)1 -xj~ sn ~ - I + . [A 7] 

(iv) Since [A 4] has yielded the exact value of k sn c~ 
and sn ct is approximately known from [A 7], we can 
find a first guess to k. Use this to find K (k) and thus « 
from 

tan - ~ . [A8] 

The correct relationship between k, ~0 and ~ is: 

c~ = F (k, (p). [A 9] 

(v) Check if the c, k and sn ct so determined satisfy 
[A 1 ] - [ A  2]. If not, assign a new value to sn «, re- 
caleulate k and employ [A 9]. Repeat until agreement 
with [A 1 ] -  [A 2] is obtained to the desired accuracy, 
say to 3 decimal places. 
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Summary 

The rectilinear flow of a second-order fluid is con- 
sidered between two infinitely wide and long parallel 
plates. The bottom plate is at rest and has a longitudinal 
slot in the direction of the flow, while the top plate 
moves in the flow direction with a constant speed. 
Upper and lower bounds for the pressure error are ob- 
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tained by the use of the maximum principle applied to 
harmonic functions. 

Zusammenfassung 

Es wird die geradlinige Strömung einer Flüssigkeit 
zweiter Ordnung zwischen zwei unendlich ausgedehn- 
ten parallelen Platten untersucht. Die mit einer recht- 
eckigen, in Strömungsrichtung orientierten Nute ver- 
sehene Grundplatte befindet sich in Ruhe, wohingegen 
die glatte Deckplatte sich mit konstanter Geschwindig- 
keit in Strömungsrichtung bewegt. Untere und obere 
Schranken für die Abweichung des Druckes infolge der 
Nute ("pressure error") werden durch Anwendung des 
Maximumprinzips auf harmonische Funktionen be- 
rechnet. 
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