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Flow of a viscoelast ic  fluid over a s tre tching  sheet  
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Abstract: This paper presents a study of the flow of an incompressible second-order 
fluid past a stretching sheet. The problem has a bearing on some polymer pro- 
cessing application such as the continuous extrusion of a polymer sheet from a die. 
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1. Introduction 

The flow in the boundary layer of an incompressible 
viscous fluid on moving solid surfaces has been inves- 
tigated by Sakiadis [1]. Due to the entrainment of the 
ambient fluid, this boundary layer is quite different 
from that in Blasius flow past a flat plate. Erickson, 
Fan and Fox [2] extended this problem to the case in 
which the transverse velocity at the moving surface is 
non-zero, with heat and mass transfer in the boundary 
layer being taken into account. These investigations 
have a bearing on the problem of a polymer sheet 
extruded continuously from a die. It is often tacitly 
assumed that the sheet is inextensible, but situations 
may arise in the polymer industry in which it is 
necessary to deal with a stretching plastic sheet, as 
pointed out by McCormack and Crane [3]. Danberg 
and Fansler [4] investigated the non-similar solution for 
the flow in the boundary layer past a wall that is 
stretched with a velocity proportional to the distance 
along the wall, the free-stream velocity being constant. 
Gupta and Gupta [5] analysed the heat and mass trans- 
fer corresponding to the similarity solution for the 
boundary layer over a stretching sheet subjected to 
suction or blowing. 

All the above investigations were restricted to flows 
of Newtonian fluids. However, of late non-Newtonian 
fluids have become more and more important indus- 
trially. The laminar boundary layer on an inextensible 
continuous flat surface moving with a constant velocity 
in its own plane in a non-Newtonian fluid characterized 
by a power-law model (Ostwald-de Waele fluid) was 
studied by Fox, Erickson and Fan [6] using both exact 
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and approximate methods. Apart from the limitations of 
the above power-law model, which does not exhibit 
any elastic properties (such as normal-stress differences 
in shear flow), in certain polymer processing applica- 
tions one deals with flows of a viscoelastic fluid over a 
stretching sheet. This provides the motivation for the 
present study in which the flow of a class of viscoelastic 
fluids past a stretching sheet is examined. These are 
the incompressible second-order fluids whose con- 
stitutive equation based on the postulate of gradually 
fading memory was given by Coleman and Noll [7] as 

T =  - p  l + / / A  1 + 51A 2 + 52A 2, (1.1) 

where T i s  the stress tensor, p the pressure,/~, 51, 52 are 
material constants with ~1 < 0, and A1 and A2 are 
defined as 

A I = (grad v) + (grad/0 T, (!.2) 

d 
A2 = ~-~ A l + A 1" grad v + (grad v) T. A 1. (1.3) 

Coleman and Noll showed that the model (1.1) exhibits 
normal-stress differences in shear flow and is an 
approximation to a simple fluid in the sense of retarda- 
tion. This model is applicable to some dilute polymer 
solutions (such as the 5.4 percent solution of polyiso- 
butylene in cetane reported by Markovitz and Coleman 
[8]) at low rates of shear. 

2. Calculation 

We consider the flow of a second-order fluid obeying 
(1.1) past a wall coinciding with the plane y = 0, the 
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flow being confined to y > 0. Two equal and opposite 
forces are applied along the x-axis so that the wall is 
stretched whilst'keeping the origin fixed (figure 1). 

The steady two-dimensional boundary layer equa- 
tions for this fluid were derived by Beard and Walters 
[9]. In usual notation these equations are 

~u ~v 
ex )--~-y = 0, (2.1) 

8u Ou 
u ~ + v -~y (2.2) 

where 

V=l.Z/O, k = -  ~1/0, (2.3) 

In deriving these equations it was assumed that in 
addition to the usual boundary layer approximations 
the contribution due to the normal stresses is of the 
same order of magnitude as that due to the shear 
stresses. Thus both v and k are O(62), 6 being the 
boundary layer thickness. 

The boundary conditions are 

u = c x ,  v = 0  at y = 0 ;  

u--+0 as y - + m ,  c > 0 .  (2.4) 

The flow is caused solely by the stretching of the wall, 
the free stream velocity being zero. Eqs. (2.1) and (2.2) 
have the similarity solution 

u =  cx  f '  (rl), v = -  (v c)l/2 f ( r l ) ,  (2.5) 

where the similarity variable q is given by 

rl= (c/v)I/2 y.  (2.6) 

Clearly u and v given in (2.5) satisfy (2.1), and sub- 
stituting into (2.2) gives 

f , 2  _ i f , ,  = f  . . . .  k,  [ 2 f ' f  . . . .  (f,,)2 _ff iv] ,  (2.7) 

where a prime denotes differentiation with respect to r/ 

f 2. 
U=CX 

Fig. 1. A sketch of the physical problem 

and 

kl = kc /v .  (2.8) 

The boundary conditions (2.4) are transformed to 

f !  (0) = 1, f ( 0 )  = 0, f ' ( o o )  = 0.  (2 .9)  

Eq. (2.7) is an equation of fourth order with the three 
boundary conditions (2.9). To overcome this difficulty 
(which essentially involves a singular perturbation 
problem) we follow Beard and Walters [9] and assume 
kl to be small. Since a second-order fluid obeying (1.1) 
represents the behaviour of fluids with short memory 
(Craik [10]) and the characteristic time scale associated 
with the motion is large compared with the time I cq//~ ] 
representing the memory of the fluid, the assumption 
of small kl is valid, in particular, for dilute polymer 
solutions. 

Hence, we expand f in a power series as 

f = fo + k l f l  + k2 f2 + . . . .  (2.10) 

Substituting (2.10) in (2.7) and equating the coeffi- 
cients of k ° and kl results in 

fo '2 - f o fo"  = fo"', (2.11) 

Jq'" +Jofl" +fo"fl  - 2fo'fl' = s, (2.12) 

with 

s = 2fo'fo" '-fo" 2 _fofoiV. (2.13) 

Using (2.9), the boundary conditions for f0 and fl  are 

J0 ' (0)=l ,  f0(0)=0,  f0 ' (oo)=0,  (2.14) 

J i ' (0)=0,  f l (0 )=0 ,  f ( ( o o ) = 0 .  (2.15) 

The solution of (2.11) satisfying (2.14) is 

fo (r/) = 1 - e-L (2.16) 

For solving (2.12), which is linear in fl(r/), we 
assume 

f l  =fA + fllfB (2.17) 

such that 

f J "  +fof~'  - 2fo'fJ +fo" fa  = s, (2.18) 

fA" + f o f [ / -  2fo' f~  + fo" fB = 0, (2.19) 

with the boundary conditions [see (2.15)] 

J~(0) =fj(0)  = 0, fJ '(0) = 0, (2.20) 

fs(0) = f A ( 0 )  = 0, f A ' ( 0 )  = 1, (2 .21 )  

Eqs. (2.18) and (2.19) are then integrated numerically 
using the Runge-Kutta method and the boundary 
conditions (2.20) and (2.21). To determine the param- 
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eter fll in (2.17), we use the third boundary condition 
in (2.15) which gives 

/3 , -  f A ( ~ )  (2.22) 
f ~ ( ~ )  " 

Using (1.1), (2.5) and (2.9), the dimensionless shear 

stress z at the wall is given by 

"C = X -1  V -1 /2  c - 3 / 2 ( T x y ) y = O  = (1 - kl)f"(O). (2.23) 

tion of the presence of  normal stresses inside the 
boundary layer. In fact, the physical explanation of  the 
thickening of  the boundary layer may be attributed to 
tensile stresses in the layer which cause an axial 
contraction and hence thickening of  the layer in the 
transverse direction. 

It may be noticed that the cross-viscosity coefficient 
~2 does not affect the velocity distribution since the 
flow is two-dimensional although ~2 affects the pres- 
sure distribution. 

3. Results 

The following table gives the values o f  z for several 
values of  kl. 

Table 1. Values of t  
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k I T 

0.005 - 0.9975 
0.01 - 0.9949 
0.03 - 0.9846 
0.05 - 0.9738 
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It is seen that the magnitude of  the skin-friction 
coefficient decreases with increasing values of  the 
elastic parameter kl. For  industrial applications, this 
result is of  some importance since the power expendi- 
ture involved in stretching the sheet decreases with 
increasing k~. 

Table2 gives the variation of  f'(rl) with t/ for 
several values of  kl. 
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Table 2. Values o f f '  (r/) 

0.28 0.64 1.11 2.47 4.70 6.32 8.38 

0.005 
0.01 
0.05 

0.7535 0.5241 0.3290 0.0842 0.0090 0.0018 0.0002 
0.7529 0.5232 0.3280 0.0837 0.0089 0.0017 0.0002 
0.7487 0.5164 0.3205 0.0795 0.0080 0.0015 0.0001 

Since u is proportional to f '  (~/) [see (2.5)] it follows 
that u decreases as kl increases. Thus the boundary  
layer thickness increases as the value of  the parameter  
kl increases, which might be regarded as a manifesta- 
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