
Gyanesh K. Gupta 
William W. Schultz 
Ellen M. Arruda 
Xiaoyong Lu 

Nonisothermal model 
of glass fiber drawing stability 

Received: 25 July 1996 
Accepted: 23 September 1996 

Dedicated to the memory 
of Professor Tasos C. Papanastasiou 

Dr. G.K. Gupta  • Dr. W.W. Schultz ( ~ )  
Dr. E.M. Arruda  • X. Lu 
Department  of Mechanical Engineering 
and Applied Mechanics 
University of Michigan 
Ann  Arbor, Michigan 48109, USA 

Abstrac t  Draw resonance is caused 
by a constant speed winder that 
leads to non-constant axial forces 
(Schultz, 1984). The well studied 
isothermal Newtonian fiber drawing 
predicts very modest critical draw 
ratios (around 20, much less than 
the typical production draw ratios 
for glass fibers of 103-105). The 
nonisothermal fiber drawing model 
presented here shows that cooling 
along the spin line strongly 
stabilizes the process. However, we 
show that the conclusion of Shah 
and Pearson (1972a, b) that non- 
isothermal Newtonian fiber spin- 

ning is unconditionally stable is 
based on non-converged numerical 
results. The choice of  viscosity-tem- 
perature correlation function has a 
strong influence in determining the 
stability of the process. While 
viscoelasticity generally has an 
adverse effect on the stability, low 
viscoelasticity in the presence of  ex- 
tensional thinning helps to slightly 
improve the maximum critical draw 
ratio. 
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Introduction 

The properties of glass fibers and those of  the same mate- 
rial in bulk form are usually quite different. During glass 
fiber drawing, the material is rapidly stretched as it ex- 
periences severe thermal gradients such that the fibers 
solidify into a non-equilibrium state. Hence, it is reason- 
able to conclude that viscoelastic effects are important at 
some location on the spin line. The fiber properties and 
the process stability depend strongly on process parame- 
ters such as melt temperature (temperature at the orif- 
rice), heat transfer to the environment (radiation and con- 
vection), draw ratio and winder speed. 

For high-speed operation, an undesirable phenomenon 
called draw resonance limits the production rates for a 
stable process. Draw resonance is characterized by period- 
ic oscillations in tension in the drawn filament. Draw 
resonance is caused by a constant speed winder that leads 
to nonconstant axial forces (Schultz, 1984). 

There have been significant experimental and theoreti- 
cal efforts in the past three decades to study the effects 
of  various parameters on the draw resonance instability. 
Most previous efforts concentrate on studying Newtonian 
or non-Newtonian isothermal fiber drawing. Recently, 
Gupta and Schultz (1996) have analyzed steady, noniso- 
thermal Newtonian fiber drawing. We shall here consider 
the thermal effects for unsteady drawing of glass fibers. 
Since glass fibers have extensive applications from tele- 
communications to composite materials, the study of  
nonisothermal draw resonance in glass fibers has practi- 
cal importance. 

Petrie and Denn (1976), and Denn (1980) provide ex- 
tensive literature reviews on draw resonance in fiber draw- 
ing. When viscoelastic, inertia, surface tension, gravity 
and thermal effects are neglected, the predicted critical 
draw ratio (ratio of the average fiber speed at the winder 
to that at the orifice, E = ww/wi) is approximately 20.21 
(Petrie and Denn, 1976). This is much less than the typi- 
cal production draw ratios for glass fibers of 103-105 . 
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This isothermal result is now well established and serves 
as a benchmark for testing numerical methods for study- 
ing draw resonance. The goal of this study is to carefully 
determine how nonisothermal and viscoelastic effects in- 
hibit draw resonance. 

Shah and Pearson (1972a) correlate the critical draw 
ratio for nonisothermal Newtonian fiber drawing with a 
parameter S representing convective heat transfer. They 
report the process is unconditionally stable beyond a criti- 
cal S. They also find increasing convection does not en- 
sure greater stability. Shah and Pearson (1972b) find that 
inertia has a similar effect. In all these studies, they have 
further simplified the basic state governing equations us- 
ing an exponential temperature dependence on z that is 
not affected by the kinematics of the problem, rather than 
solving the coupled steady state governing equations. The 
findings of Chang et al. (1981) on the stability of con- 
tinuous isothermal drawing of Newtonian fibers incor- 
porating the effects of inertia, gravity and surface tension 
agree qualitatively with Shah and Pearson (1972a). Pear- 
son and Shah (1974) extend the nonisothermal analysis to 
power-law fluids. They find that the "relation between 
critical extension rate and power-law index proves to be 
monotonic, while the effect of cooling seems to be far less 
effective with 'strain-rate-thinning' fluids than with 
Newtonian fluids" The strain-rate thinning in their 
modeling occurs for extensional or shear flow. Chang 
et al. (1982) find that a weak temperature-viscosity 
dependence enhances the stabilization process. Vasiljev 
and Naumchic (1990) conclude that for an optical glass 
fiber-drawing process there is an optimum temperature 
condition for maximum stability. Mhaskar and Shah 
(1977) show that heat transfer increases the stability for 
Newtonian fiber drawing. They also show that surface 
tension has destabilizing effects. The experiments of 
Demay and Agassant (1985) for isothermal drawing of 
polymer fibers are in good agreement with the stability 
curves computed using a nonisothermal Newtonian or a 
viscoelastic Maxwell model. The analyses of Cao (1991, 
1993) for isothermal draw resonance in power-law fluids 
agree with Pearson and Shah (1974). Myers (1989) con- 
siders draw resonance in fibers drawn from glass preforms 
where the radiative exchange is the dominant form of 
heat transfer. Like Shah and Pearson (1972a), he finds 
unconditional stability for sufficiently high heat transfer. 
Kase (1974) also finds that cooling stabilizes the process, 
although he does not determine critical draw ratios. 

Most previous studies of viscoelastic fiber drawing 
assume an isothermal process and focus on the portion of 
the fiber away from the orifice where the flow is taken to 
be one-dimensional. This means that the axial velocity 
and pressure are independent of the radial coordinate or 
that the axial velocity has become rectilinear. Denn et al. 
(1975), Gupta et al. (1986), Sridhar et al. (1986), Papana- 
stasiou et al. (1987), Phan-Thien (1987), Schultz (1987), 
and Nguyen et al. (1990), have addressed viscoelastic iso- 

thermal fiber drawing using either Maxwell or Oldroyd-B 
viscoelastic models. However, nonisothermal effects on 
viscoelastic fiber drawing have received little attention. 
Recently, Wang and Forest (1994) have considered steady 
nonisothermal fiber spinning of a Maxwell liquid using 
an Arrhenius type viscosity-temperature dependence. In 
the present study, we show an Arrhenius viscosity-temper- 
ature dependence does not fit the experimental data well 
for glass for the entire range of temperatures in spinning. 

There are fewer studies where viscoelastic effects are 
analyzed in stabilizing the process. Fisher and Denn 
(1976) study draw resonance of isothermal melt spinning 
of a White-Metzner viscoelastic fluid. They find the ex- 
istence Of lower and upper critical draw ratios. Beris and 
Liu (1988), Liu and Beris (1988), and Anturkar and Co 
(1988) also find the existence of two critical draw ratios 
for an isothermal viscoelastic fluid. They find that the 
fiber drawing process is stable at low and high draw 
ratios. However, the lower critical value is found to be 
unaffected by the magnitude of the viscoelastic effects. 
Furthermore, Schultz (1987) questions the validity of one- 
dimensional modeling for higher extension ratios where 
viscoelasticity affects the process stability. 

Fisher and Denn (1977) find that both viscoelasticity 
and cooling are stabilizing, and the system becomes ab- 
solutely stable to infinitesimal disturbances for sufficient- 
ly large viscoelastic effects. However, large viscoelasticity 
leads to an unattainable region at larger draw ratios. This 
region corresponds to infinite drawing forces. Hence, 
there is little gain in stable draw ratios. Pearson et al. 
(1976) also find that freezing of the fiber in the spinline 
improves stability and that elasticity appears to destab- 
ilize the process. 

In glass fiber drawing, the flow field is predominantly 
one-dimensional except within one diameter of the orifice 
for typical parameter ranges. Glass is nearly a Newtonian 
fluid when hot, and a Hookean solid when cool. In fiber 
drawing, the material goes from fluid to solid state 
without a sudden change in phase (without devitrifica- 
tion). Our preliminary experiments show that fiber prop- 
erties depend strongly on the thermal-strain history. The 
measurements of Sammler et al. (1996) also show typical 
viscoelastic effects near glass transition temperatures. 
Hence, we seek a viscoelastic model that is able to 
describe the material response in the entire drawing do- 
main and for various post-processing steps, such as 
tempering. A realistic model would consider an integral 
model as in Chen and Papanastasiou (1990). Instead, we 
use a simple differential upper-convected Maxwell model 
with strain rate and temperature-dependent properties 
(the modified Maxwell model is also widely known as the 
White-Metzner model) that is commonly used for fiber 
drawing. 

Since the fiber length is several orders of magnitude 
larger than the orifice diameter, the one-dimensional flow 
analysis should be appropriate except when viscoelastic 
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effects dominate, especially near the orifice. A lubrication 
analysis (Schultz, 1987) systematically derives the one- 
dimensional equations without an a priori one-dimen- 
sional assumption for small viscoelastic effects. However, 
most viscoelastic one-dimensional models to date include 
viscoelastic effects at leading order. In this study, for 
simplification, we also include viscoelastic effects at 
leading order. While we recognize that viscoelasticity and 
heat transfer can lead to invalidation of the one-dimen- 
sional model, their combination can have a beneficial ef- 
fect without loss of validity. That is, where the fiber is 
hot, the glass is Newtonian and most of the deformation 
will occur there. By the time viscoelastic effects become 
important, the deformation is small, so locally the weakly 
elastic criteria of Schultz 0987) holds. Therefore, the 
more simple model appears to be valid except near the 
unattainable region that typically occurs in upper-con- 
vected Maxwell models (Fisher and Denn, 1976). Our 
preliminary studies testing the validity of the one-dimen- 
sional model have confirmed this. 

The one-dimensional governing equations (conserva- 
tion of mass, momentum and energy) are coupled and a 
closed-form basic state solution is not available. Thus, an 
eigenvalue analysis requires a numerical simulation of the 
basic state solution as well as the linearized stability 
system of equations that become ordinary differential 
equations in the axial coordinate. In many previous 
nonisothermal studies (Shah and Pearson, 1972a; Pear- 
son et al., 1976; Mhaskar and Shah, 1977; Fisher and 
Denn, 1977) the basic state solution is further simplified 
by assuming that the energy equation is decoupled from 
the momentum equations. We solve the coupled basic 
state governing equations numerically using B splines. We 
present a one-dimensional model that explores the in- 
fluence of viscoelasticity and heat transfer in stabilizing 
the process. The present model shows that while heat 
transfer stabilizes the fiber drawing operation, visco- 
elasticity generally has an adverse effect on the process 
stability. However, in the presence of extensional thin- 
ning, low viscoelasticity slightly improves the maximum 
critical draw ratio. No study has yet addressed numerical 
convergence of the critical draw ratio for nonisothermal 
drawing. We address these issues and establish a criterion 
for determining spurious eigenvalues that can lead to er- 
roneous conclusions. 

In the next section, we summarize the derivation of the 
dimensionless unsteady governing equations following 
the procedure of Gupta and Schultz (1996) and provide 
the basic state solution in the third section. The linearized 
perturbation analysis is carried out in the fourth section. 
In the fifth section we discuss the validity of our numeri- 
cal scheme and nonisothermal results are discussed in the 
sixth section. Concluding remarks and future work are 
discussed in the last section. 

Governing equations 

We analyze the glass fiber drawing process based on the 
upper convected Maxwell fluid model with temperature- 
dependent and shear-rate dependent viscosity and relaxa- 
tion functions (other properties such as density and ther- 
mal conductivity are considered constant). This incor- 
porates the essential characteristics of the material in this 
simulation. We ignore the effects of inertia, gravity, sur- 
face tension and viscous dissipation. 

We consider a slender, axisymmetric fiber emerging 
from an orifice of radius Ri (subscript i refers to the 
quantities at the orifice) into a passive gaseous environ- 
ment. At a distance L the fiber is "wound up" after being 
stretched at a given average axial velocity w w (subscript w 
refers to the quantities at the winder). A cylindrical coor- 
dinate system is shown in Fig. 1. 

We choose a simple differential constitutive equation 
for the fluid and consider an upper convected Maxwell 
model given as 

T = - p I + S  , (1) 

S+ r/(O, H ) c \2t l  =Z-a(S'D+D'S))  =2 (0'a)D , (2) 

where T is the Cauchy stress tensor, I is the identity ten- 
sor, p is the preSsure, S is the extra Cauchy stress tensor, 
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Fig. 1 Schematic of fiber drawing process 
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r/is the viscosity function, a is a rate parameter (here, we lo" 
usually consider only a = 1 for the upper-convected 
model), G is the modulus, 0 is the absolute temperature, lo '~ 
D is the shear-rate tensor, I1 is the second invariant of D, 
and 9 / ~ t  is the Jaumann derivative. The variation in 10 TM 

the modulus for glass is typically found to be less than ! 
20% (Varshneya, 1995) for a wide range of temperature. 10111 
Hence, the relaxation time rl/G is assumed to have the 
same temperature and strain-rate dependence as the 10,0 
viscosity in accordance with the thermo-rheological 
simplicity assumption (G is constant), except where 
noted. "~ 1°+ 

One widely used temperature-viscosity correlation is a 
simple exponential (Gupta and Schultz, 1996; Glicksman, + 1°81 
1968) fitting a modest temperature range, typically for ~ lo7 
moderately high temperatures where most deformation 
takes place. However, the correlation does not capture the 
temperature dependence of  viscosity of E-glass over a 10'! 
large range of  temperatures. An Arrhenius function in ! 
Fig. 2 is valid for all temperatures (other than absolute lo% 
zero), but does not fit E4  glass data well. Figure 2 also 
shows a William-Lendel-Ferry (WLF) temperature-viscos- 1 o' 
ity correlation (Bird, 1987), a commonly used improve- 
ment on the Arrhenius function which has three parame- 10 ~ 
ters to fit the data. However, this function with parame- 
ters chosen for the higher temperature range has a singu- lo' 
larity at a finite temperature (approximately 270°C) 400 
much higher than the ambient temperature. A simulation 
based on such a model is not valid for a nonisothermal 
study all the way to the winder. A Walther temperature- 
viscosity correlation (O'Donnell and Zakarian, 1984) has 
only two parameters but fits the experimental data 
(Larsen, 1980) for a wide range of  temperature. We 
choose this function as it does not have a singularity for 
the temperature interval 0~ < 0< 0~, where 0 i is the aver- 
age orifice absolute temperature, and 0= is the absolute 
ambient temperature. 

We also account for extensional thickening (or thin- 
ning) behavior. A Carreau power-law dependence on the 
second invariant of the strain-rate tensor H (Bird, 1987) 
is considered for the extensional-rate-viscosity depen- 
dence. For one-dimensional extensional flow H is propor- 
tional to dw/dz. Based on the above criteria the following h = 
viscosity function is chosen in the present study: 

f ] 0  

\ W 

exp [exp (v0 - vl in 0)1 , 

(3) 

where v 0 and v~ are viscosity-temperature coefficients, q 
is the power-law index, and fi and I/0 are positive 
constants. Here, we set 6 = 1. This correlation is not 
singular except at absolute zero temperature or when 
dw/dz < 0. 

\ 

[ L I 

600 800 1000 1200 

Temperature (C) 

Fig.2 Viscosity-temperature correlations for E 4 Glass (here, 0 is in 
degrees Kelvin). • Experiment (Larsen, 1980); 
Walther correlation: exp (exp (20.5682-2.5641 In 0)); - - - Sim- 
ple exponential: 1.3293×1024 exp(-0.017690); - - -  WLF cor- 
relation: 1 0 - 1 " 7 + ( 4 1 7 7 / 6 - 4 7 4 ) ;  - - - - -  Arrhenius correlation: 
exp ( -  22.8217 + 43113/0) 

We consider the heat-transfer coefficient h (which may 
include radiation effects) to be a function of the local 
kinematic parameters (Kase and Matsuo, 1965), 

2R 
(4) 

where ko~, p= and r/= are the thermal conductivity, den- 
sity and the viscosity of the ambient air at room tempera- 
ture, respectively. The coefficients C and m are deter- 
mined from the experimental data. To combine the effects 
of radiation in the heat-transfer coefficient, the constant 
C and the powerqaw coefficient are modified from those 
in Kase and Matsuo (1965). 

Following Schultz and Davis (1982), we apply lubrica- 
tion scaling to the governing equations and develop all ex- 
pansions in powers of  e = RilL.  We define the following 
dimensionless variables: 
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r Z u w 
r *  = - -  , z *  - ~ - -  u *  - -  W *  = - -  

Ri L e wi wi 
r l  T 0-0~ 

r / * = - -  , T * - - -  , 0 * - - -  
ivli WiiV]i/L O i -  Ooo 

, (5)  

where the superscript * refers to the nondimensional 
quantities. The following dimensionless parameters are 
defined: 

Pe -pwiRiCp , B i -  i hR i (6) 
ke e 2 k 

Here, p, Cp and k are the density, specific heat and ther- 
mal conductivity of glass, respectively. Though these 
glass properties are all functions of temperature, for 
simplification they are considered constant here. By re- 
quiring the Biot number to be scaled in the above manner 
with Bi = O (1), the leading-order solution for 0 depends 
only on the axial coordinate consistent with the one-di- 
mensional assumption. 

The unsteady one-dimensional dimensionless govern- 
ing equations are obtained from the leading-order equa- 
tions following the procedure of Gupta and Schultz 
(1996). The superscript * is dropped for notational conve- 
nience, henceforth all variables are considered as non- 
dimensional. Conservation of mass and axial momentum 
give: 

O ( R 2 ) + O ( w R 2 )  = 0 . 
at Oz 

(7) 

--z[R2(T=-Trr)] = 0 . (8)  

The unsteady energy equation includes advection, axial 
conduction and heat-transfer to the ambient due to con- 
vection. Viscous dissipation is neglected as the Brinkman" 
number is small. Heat loss due to radiation is often small 
compared to convective heat losses and hence it is lumped 
in the convective heat-transfer coefficient for simplicity. 
This heat transfer model is different from previous analy- 
ses in that it includes thermal conduction, and hence has 
an extra term in the unsteady energy equation: 

(O0+wO0~_ i 0 (R200~ 2 B i 0 .  
Pek~-  ~ -5-£/ R z Oz \ Oz/ - R 

(9) 

The Peclet number Pe is an inverse dimensionless thermal 
conductivity and the Biot number Bi is a dimensionless 
heat transfer coefficient. Thermal conductivity must be 
present in the model to formally derive the one-dimen- 
sional equations (Gupta and Schultz, 1996). The model 
requires that the Peclet and Biot numbers be O (1). Since 

these numbers in our simulation can become quite large, 
there is some concern about two-dimensional effects 
(Bechtel et al., 1992). We will not consider these com- 
plications here. 

The unsteady dimensionless conservation laws for 
mass, momentum and energy along with the constitutive 
equation form the governing set of equations for the 
stability analysis. A linearized perturbation analysis fol- 
lowing the steady-state solution determines the temporal 
stability. 

The basic state solution 

The steady basic state solution (designated by overbar) 
for the fiber radius/~ is obtained from the mass conserva- 
tion equation as 

R = w-~/2 . (10) 

The axial momentum equation gives a uniform (indepen- 
dent of z) axial force F,, as 

~zz  orr _ F , ( 11 )  

rP 

and the axial temperature distribution O(z) is obtained by 
the energy conservation equation as 

d2Odz 2 ( l  d~+pe ~') dO-2 l[~Bi O= O dz (12) 

The constitutive equation provides a first-order differen- 
tial system for stress terms given by 

rl ff dS;rr + ( l + a fl drP~ dffp 
dz \ -G --~z / Srr + O -~Z = 0 ' (13) 

rl ~dSzz+(l_2a 0 drP~ dvP 
dz G ~ z / ~ z z - 2 f / -  = 0 " dz (14) 

The above system of equations is then solved with the 
following boundary conditions (Gupta and Schultz, 
1996): 

~P=I , / ? = 1  , and 0 = 1  at z = 0  , (15) 

d20 
= e  a = l n E ,  and = 0  at z = l  , (16) 

dz 2 

where a, known as the Hencky strain, is the critical 
stability parameter. An upstream stress boundary condi- 
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tion completes the problem statement. We choose to im- 
pose a boundary condition at the orifice based on the 
Newtonian limit consistent with the one-dimensional 
model (Schultz, 1987). In addition, the glass is hot at the 
orifice, so it is not very elastic there. Then 

t r ( S ) = O  at z = 0  . (17) 

The linearized stability analysis 

We seek a solution of the governing equation in the form 

0 = (~(z)[l+Op(z,t)], 08) 

where q~ represents the quantities w, R, 0, and S, the over- 
bar denotes the basic state variables; and the subscript p 
denotes the perturbed quantity. The proportional distur- 
bances of  this form were first used by Pearson and Mato- 
vich (1969) to simplify the stability analysis. Substituting 
(18) in the unsteady dimensionless equations of conserva- 
tion of mass, momentum and energy and collecting terms 
linear in the perturbation quantities gives the governing 
equations for the stability analysis. 

The perturbation quantities q~p are solved in normal- 
mode form 

Op = (~(z)e  '~ , (19) 

where q~ is the eigenfunction representing ~, /~, 0, Srr, 
and Szz, and the eigenvalue is ~7=~r-t-i(ri, where 
i = ] / -  1. If  a r is positive, then the disturbances will grow 
and the flow is unstable. Substituting (19) for the pertur- 
bation variables in the stability equations and eliminating 
nonlinear terms in perturbation quantities gives the fol- 
lowing linear, coupled, homogeneous differential equa- 
tions: 

d ~  rO - -  + 2 ff~ d R  = _ 2 o-/~ (20) 
dz  dz  ' 

d [2/~F~ (~zSzz-grrSrr)- 0 , 
dz 

(21) 

(dl~+ w dSrr_t_ aSrrd-~l I] 
° W z  -d d~ o 

\ a z / j  

( .x A 
+ ~ f /  1 +-~---') 

+ [ -O0(Oi-OoOvl 
{0= +(0~- O~o)OI 

×exp [v0- vl in (0oo + O(Oi-  Oo~))] 

× \ g  ~ d~ ~ ~/jO 

q-[fl(Gd'rrq-a'rrdw~-}-'rr] --G-~/ 

G dz  G 

dz  

dr0 

( 2  d ~  w dSzz + 2a'Szz qcS-ffff z 

\ azlj  

\ dz odz + ~ g )  

q6  - -  [ - fl O(Oi-  0o~) v 1 dz  . d ff~ + 

\ az/ j  

×exp [v0- vl in (0~ + 0 ( 0  i - 0o~))] 

× 

ez o e~ -6 T~/j ° 

+ -~z+o ~ ~ dz/J 

(22) 

fv 
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G dz G 
(23) 

+20 -1 dO d/~ ~-2 Bi ] /~R-  WPe0 -i dO if, 
d z d z  dz 

- o" P e  0 . ( 2 4 )  

The above system of equations along with homogeneous 
versions of boundary conditions (15-17) form a differen- 
tial eigenvalue system for a. 

Numerical approach and validation 

We divide the domain [0, 1] into N intervals and use or- 
thogonal B splines (de Boor, 1978) to seek an eigensolu- 
tion of the form 

~= ~ osBs(z), (25) 

where ~0j are unknown coefficients. Equation (25) is then 
substituted into the governing differential eigenfunction 
Eqs.(20-24) and homogeneous boundary conditions. 
The resulting residuals are then minimized using the 
Galerkin method using a weight function Bi(z ). This 
procedure converts the differential eigensystem into an 
algebraic eigensystem whose eigenfunctions are the un- 
known coefficients ~0. The eigenspectra are then obtained 
using standard EISPACK routines. We also solve the same 
differential eigensystem using central finite differences. 
This parallel approach quantifies the errors associated 
with various approximations, and helps to optimize the 
number of intervals N for accurate analysis. 

We begin by comparing the results using B splines and 
central finite differences with the well established Newto- 
nian isothermal result. Table 1 compares the growth rates 
rain(o-r) obtained numerically with those obtained 
earlier (Schultz and Davis, 1984). The min (o'r) from B 
splines is accurate to five significant digits when the size 
of the eigensystem Nis 100 for an extension ratio between 

Table 1 Isothermal Newtonian fiber drawing, a = 5.05 

Method N rain tr r I Error ] 

Exp. integral 
B splines 

Finite difference 

+ 4.80571 0 
25 +4.80866 0.00295 
50 +4.80586 0.00015 

100 +4.80574 0.00003 
100 +4.75294 0.05277 
200 + 4.79262 0.01309 

the isothermal and nonisothermal critical limits, and for 
which the result from the exponential integral is available. 
The finite difference approach gives only one digit accu- 
racy at N = 100 and two digits for N = 200 consistent 
with quadratic convergence. A further increase in N to 
give a comparable result would be computationally ex- 
pensive. Hence, we pursue only the Galerkin approach for 
further comparison and analysis. 

Nonisothermal computational results 

Generalized Newtonian model 

Figure 3 presents marginal stability curves for glass-fiber 
drawing simulations for the simple exponential viscosity 
temperature correlation. We draw marginal stability 
curves as a function of the Blot number at the winder 
Bi(z = 1) that is changed by varying the constant C in the 
heat-transfer relation (4). We do not observe uncondi- 
tional stability once the effective solidification of the 
fiber is achieved as reported by Shah and Pearson 
(1972a, b), Pearson and Shah (1974), Mhaskar and Shah 
(1977), and Myers (1989). This reflects that after the fiber 
is sufficiently solidified, there is no further deformation 
and hence no further increase in the critical draw ratio. 
Although the fiber is essentially solidified, the process 
can be unstable - essentially moving the downstream 
boundary conditions at the winder to that at the effective 
solidification location. We attribute the conclusions of 
Shah and Pearson 0972a, b), Pearson et al. 0974), 

5.0 I Unstable 

4 0  

3.5 ~l/ Stable 
Isothermal Limit ~ l ~  

3 . o ' ~  
0.0 1.0 2.0 3.0 4.0 (x 103) 

Bi(z=l) 

Fig. 3 Marginal stability curves for nonisothermal Newtonian 
fiber drawing for simple exponential viscosity-temperature correla- 
tions as a function of the Biot number at the winder, Pe = 474, 
m = 0.13, q = 0  (here, 0 is in degrees Kelvin). 
1.3293 × 1014 exp (-0.00769 0); - - - 1.3293 × I014 exp (-0.01769 
0); . . . . . .  1.3293×1014 exp (-0.02769 0) 
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Mhaskar and Shah (1977), to the following two factors: 
they have further simplified the governing equations us- 
ing an exponential temperature dependence on z that is 
not affected by the kinematics of the problem rather than 
solving a coupled steady state governing equation, and 
their finite-difference results are under-resolved for the 
higher extension ratios. Myers (1989) solved the energy 
equation in a more conventional manner, but he did not 
give details about the numerical convergence nor the 
viscosity relationship other than the statement, "In this 
paper it will be assumed that the glass instantaneously 
freezes (and unfreezes during heating) when it reaches T~ 
[the softening point]:' 

We solve the coupled governing equations numerically 
using B splines. We have also shown that the eigenvalues 
obtained by the finite-difference method are not very ac- 
curate as compared to the pseudo-spectral Galerkin meth- 
od using B splines even for the isothermal case. A very 
fine mesh is required to obtain convergent eigenvalues for 
large draw ratios. In essence, the mesh has to be refined 
nearly exponentially as the Hencky strain a increases 
linearly. Previous analyses did not address convergence as 
examined in Table 2. This tabulation is important for two 
reasons: to avoid spurious roots, and to obtain convergent 
(mesh independent) eigenvalues. 

When calculating eigenvalues, unstable modes often 
occur with large growth rates that become unbounded as 
Nincreases. These "spurious modes" arise due to discret- 
ization of  the continuous problem and due to round-off  
and truncation errors. The Galerkin method is one of the 
most accurate methods for studying the eigenvalue prob- 
lem arising in stability analysis (Zebib, 1987), yet this 
method can have spurious modes. These modes are usual- 
ly easily identifiable as they are large in magnitude and 
vary considerably with N. The critical eigenvalue often 

2 2 also has the smallest modulus M= ]/~r+ ai. Hence, to 
locate this critical value we look for eigenvalues with the 
smallest real part as well as the smallest modulus. 

Table 2 shows that the process becomes unstable as the 
draw ratio is increased. However, at low N, the process ap- 
pears to restabilize with a further increase in the draw 
ratio. When we consider a finer mesh the temporal root 

Table2 Nonisothermal Newtonian fiber drawing: min ((7.) for 
simple exponential model (Gupta and Schultz, 1996; Glicksman, 
1968), Pe = 474, C = 4.0, m = 0.33 

a N= 20 N=  60 N= 100 

1.0 - 7.17370 - 7.15855 - 7.15843 
2.0 - 6.94378 - 6.86397 - 6.86232 
3.0 - 4.37698 - 4.45617 - 4.45380 
4.0 - 0.66533 - 0.64305 - 0.64777 
5.0 + 1.76126 +4.36039 +4.31626 
6.0 +0.93108 + 10.8215 + 10.7341 
7.0 - 6.02248 + i8.8188 + 19.0790 
8.0 - 24.5310 + 27.7654 + 29.7668 

value changes not only its value but also its sign, deciding 
the stability of  the process. As the draw ratio is increased, 
a finer mesh is required to obtain a convergent eigenvalue, 
as can be observed from Table 2. Hence, for the large 
draw ratios studied in the present work, we confirm the 
eigenvalues obtained using N =  100 by further refining 
the mesh size when required. A further refinement in the 
mesh does improve the estimate of the eigenvalue to ob- 
tain mesh independence. However, the computational 
time increases quadratically with an increase in the mesh 
size. Most of the results reported here are based on a mesh 
size N = 100. 

Figure 3 shows that different viscosity-temperature 
dependencies affect the stability. However, for significant- 
ly large heat loss (sufficient to make the glass temperature 
at the winder close to ambient temperature) all values of 
the simple exponential coefficient approach the same 
asymptotic value, that we will here call a*. There is a 
strong correlation between the heat transfer represented 
by the Biot number at the winder Bi(z = 1) and the glass 
temperature at the winder O(z = 1). Figure 4 shows the 
data of  Fig. 3 replotted against O(z = 1) that shows act 
has reached its asymptotic value a*  for typical tempera- 
tures at the winder. Hereafter, we plot the stability curve 
as a function of O(z = 1). Figures 3 or 4 show that the 
simple exponential temperature viscosity relationship 
cannot explain the high stable production draw ratios for 
the different cases considered. 

Figure 5 shows marginal stability results for the differ- 
ent viscosity-temperature correlations shown in Fig. 2. We 
observe that the asymptotic predictions from the WLF 
and Walther viscosity-temperature correlations are nearly 
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Fig. 4 Marginal stability curve for nonisothermal Newtonian fiber 
drawing for simple exponential viscosity-temperature correlation, 
Pe=474, m=0.13, q = 0  (here, 0 is in degrees Kelvin). 
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Fig. 5 Marginal stability curve for nonisothermal Newtonian fiber 
drawing for different viscosity-temperature correlations, Pe = 474, 
m = 0.13, q=  0 

the same as long as the temperature of  the winder is suffi- 
ciently low but above the singular temperature of  the 
WLF function. However, they both are much different 
from the simple exponential correlation. Hence, heat 
transfer has a stabilizing influence on the process stabili- 
ty, but it is strongly affected by the shape of the viscosity- 
temperature correlation, not just by how rapidly the glass 
solidifies. While the simple exponential correlation pre- 
dicts a modest  increase in critical draw-ratio, the Walther 
correlation predicts stable draw ratios close to those 
found in production. Although the WLF correlation has 
similar stability characteristics as the Walther correlation, 
it is singular in the range 0 < 0 < 1. The Walther correla- 
tion is not singular except at absolute zero temperature. 
The Newtonian nonisothermal max imum critical draw 
ratio for the Walther function is about  1000. While signif- 
icantly higher than the maximum critical draw ratio of  
about  70 for the simple exponential correlation, it is still 
less than the commonly  observed draw ratios in industrial 
fiber production. Hence, we focus on the effect of  dif- 
ferent non-Newtonian parameters on the marginal stabili- 
ty using only the Walther viscosity-temperature correla- 
tion. 

Figure 6 shows the effect of  the power-law index in 
combination with heat transfer. As in the case of  isother- 
mal drawing, we observe that extensional thickening 
( q <  0) increases the max imum critical draw ratio. The 
critical draw ratio is predicted to approach 10000 for the 
nonisothermal generalized Newtonian fiber drawing with 
a power-law index q = -0 .5 .  Extensional thinning (q > 0) 
on the other hand has a destabilizing influence on the 
process stability. Unlike the viscosity-temperature rela- 
tionship, measurements of  extension thickening are not 

available, but they are unlikely to be far from zero. We 
plot a *  for a range of power-law indices in Fig. 7. 

Figure 8 shows the effect of  Peclet number  on the criti- 
cal draw ratio. All previous stability studies neglect axial 
conduction assuming an infinite Peclet number. Based on 
the value of glass conductivity and parameters in our 
analysis, the Peclet number is 474. Figure 8 shows that in- 
cluding axial conduction reduces stability, but not signifi- 
cantly as the maximum critical draw ratio for Pe = 474 is 
close to its asymptotic value as Pe-~ oo. 

Therefore, except for questionably low values of  q, the 
stability of  the generalized Newtonian model is still much 
less than that commonly observed in production. Since 
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Fig. 6 Marginal stability curve for nonisothermal generalized 
Newtonian fiber drawing using the Walther correlation for various 
power-law indices, Pe = 474, m = 0.13 
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drawing using the Walther correlation, a = 1, m = 0.13, q = -0.5, 
G = 20000 

viscoelastic effects have been shown to have a stabilizing 
effect (Fisher and Denn, 1977), we examine these effects 
next. 

Viscoelastic fiber drawing 

In viscoelastic fiber drawing, as before, we find that the 
marginal stability curve correlates with the fiber tempera- 
ture at the winder. Figure 9 shows the effect of  viscoelas- 
ticity on marginal stability for an upper convected modi- 
fied White-Metzner model. This figure shows that beyond 
a certain value of fiber temperature at the winder O(z = 1) 
or the heat transfer parameter C, we obtain unconditional 
stability bounded above by an unattainable region where 
infinite force is required to draw the fiber. The unat- 
tainable draw ratios, indicated by the region above the 
hatches and determined numerically where dF/da--, c~, is 
similar to the isothermal region for the upper convected 
Maxwell model shown in Fisher and Denn (1976). The 
unattainable region indicates that the elongational viscos- 
ity becomes infinite for a finite extension rate, a failure of  
this simple constitutive model. The hatched region adja- 
cent to the unattainable region indicates where the solu- 
tion violates the one-dimensional assumption (Schultz, 
1987). As in previous studies, we find lower and upper 
critical draw ratios. The upper critical curve is always near 
the limiting draw ratio where the one-dimensional model 
loses its validity. Hence, conclusions can only be drawn 
from the lower critical curve. A measure of  the maximum 
draw ratio (a *) for stable operation is determined when 
the critical stability curve achieves its critical value (the 
"nose" or "t ip" as shown in Fig. 9). Since the upper part  
of  the marginal stability curve lies close to the unat- 

tainable region, where the one-dimensional assumption is 
not valid, we consider a *  as a measure of  stability of  the 
fiber drawing process. Our experience has shown that a * 
is close to the unattainable region boundary  as 0~0 .  For 
this case the viscoelasticity and heat transfer have increas- 
ed the draw ratio for stable operation to approximately 
400 as compared to 20 for the Newtonian isothermal case. 
However, the draw ratio for stable operation for the 
generalized Newtonian nonisothermal case in the present 
study is 10000 (q = - 0 . 5 )  as compared to 400 for the 
strongly viscoelastic case (q = - 0 . 5 ) .  This indicates loss 
of  stability when viscoelastic effects are considered. 

The effect of  the viscoelastic parameter  G on the 
marginal stability is shown in Fig. 10 and compares with 
the generalized Newtonian fiber drawing in the limit 
G ~  ~ .  The unattainable regions are not displayed in this 
figure for clarity. For all these viscoelastic cases, the lower 
marginal stability curve is asymptotic to the marginal 
curve for the inelastic fiber drawing as 0~1 .  Figure i0 
shows that when viscoelastic effects are combined with 
extensional thickening, the critical draw ratio is always 
lower than the inelastic limit. As viscoelastic effects are 
increased, the unattainable region (where dF/da~c~) 
lowers the upper critical curve. We interpret this as a loss 
of  stability as viscoelasticity is limiting the extent the fiber 
can be drawn. Figure 11 (Pe = 474 m = 0.13 q = 0.0) 
shows that in the absence of extensional thickening o r  
thinning, the maximum critical draw ratio for low visco- 
elasticity (or higher G) is about the same as that of  
generalized Newtonian fiber drawing. However, as visco- 
elastic effects are increased, we once again observe loss of  
stability. 

The maximum critical draw ratio a*  is shown for 
various viscoelastic parameters and for different power- 
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Fig. 11 Marginal stability curves for nonisothermal  Newtonian 
and viscoelastic fiber drawing using the Walther correlation, 
Pe = 474, q = 0.0, m = 0.13, a = t.0 

law indices in Figs. 12 and 13, respectively. We observe 
that the inelastic fiber drawing is more stable in the 
presence of extensional thickening effects, whereas exten- 
sional thinning helps to slightly increase the maximum 
critical draw ratio when viscoelastic effects are small. In 
contrast to generalized Newtonian fiber drawing (Fig. 7), 
in viscoelastic fiber drawing we do not observe (Fig. t3) 
an unconditional stabilizing influence of extensional 
thickening. We observe that there are two non-Newtonian 
competing factors affecting the stability of the process: 
viscoelasticity is generally destabilizing, extensional 
thickening is stabilizing. The proper balance of these two 
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Fig. 12 Maximum critical draw ratio a*  versus viscoelastic param- 
eter G for nonisothermal viscoelastic fiber drawing for the Walther 
correlation and different power-law indices, Pe = 474, m = 0.13, 
a =  1.0 
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Fig. 13 Maximum critical draw ratio a*  versus power-law index 
for nonisothermal viscoelastic fiber drawing using the Walther cor- 
relation and different relaxation function parameters, Pe = 474, 
m = 0.13, a = 1.0 

competing factors provides the maximum stability for the 
viscoelastic fiber drawing. Hence, viscoelasticity in the 
presence of extensional thinning (or thickening) has both 
adverse and favorable effects on marginal stability. In 
general, we observe that viscoelasticity has a strong 
adverse effect. 

In the above viscoelastic cases, we have chosen the rate 
parameter a = 1, representing the upper-convected model. 
However, to qualitatively account for second normal 
stress differences, the rate parameter should be 
0.4<a<0.9 (Larson, 1988). We study the effect of a on 
the marginal stability in Fig. 14 and observe that for a 
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for nonisothermal viscoelastic fiber drawing using the Walther 
correlation, and different power-law indices, Pe = 474, m = 0.13, 
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power-law index of q = -0 .5  or q = 0, a local maximum 
value of  a*  is found for intermediate values of  a. How- 
ever, when the power-law index is 0.5, decreasing the rate 
parameter results in a loss of  stability, i.e., an upper-con- 
vected model (a = 1) predicts the maximum stability. In 
general, decreasing the rate parameter a results in a softer 
material response (Larson, 1988) and hence, when exten- 
sional thickening is considered along with decreasing rate 
parameter a, there is an increase in the maximum critical 
draw-ratio. Once again, a proper balance of softening ver- 
sus hardening due to the rate parameter, extensional 
thickening and viscoelastic effects determines the maxi- 
mum stability. The behavior of  the material when exten- 
sional thinning is taken into consideration can be ex- 
plained in a similar fashion. 

Finally, we analyze the effect on marginal stability 
when the relaxation and the viscosity temperature depen- 
dencies are different, i.e., we abandon the thermo-rheo- 
logically simple assumption and assume that the modulus 
G = r//2 is a function of temperature, and the relaxation 
time 2 has the following temperature and strain-rate 
dependence: 

( o, dW'] _ 4o 4\ dz/ [ l+&dw] (26) 

we recover thermo-rheological simplicity when v 1 = v 2 
(G = constanl:). When v2> vl, G increases with falling 
temperature, and a * increases as shown in Fig. 15. While 
"small" departure from thermo-rheological simplicity 
rapidly improves the stability, the effects appear to 
asymptote to a value less than its inelastic counterpart.  
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Fig. 15 Maximum critical draw ratio a* versus the varying modu- 
lus for nonisothermal viscoelastic fiber drawing using the Walther 
correlation, Pe = 474, m = 0.13, q = -0.5, a = 1, G(z -- 0) = 10000 

Concluding remarks 

We have clearly exhibited that previous numerical predic- 
tions of  nonisothermal stability were underresolved. 
From converged eigenvalues, we have found that the non- 
isothermal effects stabilize the fiber-drawing operation 
although not unconditionally. The stability is strongly af- 
fected by the nature of  the temperature-viscosity relation- 
ship. The viscoelastic model presented here has an ad- 
verse effect on process stability although extensional 
thickening stabilizes the fiber drawing operation. 

We have found a maximum critical draw ratio to be 
about 104 when heat transfer and extensional thickening 
are present. We also observe that the stability of  the fiber 
is also affected by the rate parameter that accounts for the 
second normal  stress difference. Finally, abandoning 
thermorheological simplicity leads to an increase in 
stability. 

Heat  transfer has increased the stable range for draw- 
ing fibers but the increase in draw ratio for stable opera- 
tion is not sufficient to explain commonly attained draw 
ratios of  105 in industry. We conjecture that a more com- 
plicated viscoelastic model such as a modified Jeffreys 
model that includes retardation effects may increase 
stability in modeling a hot Maxwell liquid cooling to a 
Kelvin solid. A more sophisticated heat transfer model is 
also being considered. We are currently conducting ex- 
periments and developing simulations for preform fiber- 
drawing draw-resonance. 
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