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Failure of Nielsen's theorem in higher dimensions 

By 

FRANK RAYMOND and LEONAED L. SCOTT *) 

The tbllowing is known for closed orientaMe surfaces. I f  H :  3 / - 7  M is a map 
whose n-th power is homotopic to the identity, then H is homotopie to a homeo- 
morphism K with K ~ ----identity. The result is known as Nielsen's Theorem on 
finite mapping classes. There are doubts (see [8]) as to the correctness of  all parts  of 
Nielsen's arguments in [6]. Different (using complex analysis and the Smith theorems) 
and valid proofs have been given independently by  Fenchel and Macbeath. Because 
we are dealing with surfaces, each self homotopy equivalence is homotopic to a 
diffeomorphism, and homotopic diffeomorphisms are diffeotopic. Consequently, Niel- 
sen's theorem may  be equivalently stated as follows: I f  H :  M--> M is a diffeo- 
morphism whose n-th power is homotopic to the ident i ty then H is diffeotopic to a 
diffeomorphism K with K n ~- identity. The theorem is extremely useful in studying 
periodic maps on 3-manifolds, and there are obvious applications in surface theory. 

The question has been raised as to what extent Nielsen's theorem holds for 
aspherical manifolds of  dimensions gTeater than  2. An aspherical mani]old is a closed 
manifold whose universal covering is contractible. Aspherical manifolds are therefore 
closed manifolds which are also K(g ,  1)'s. An important  and interesting class of 
aspherical manifolds (generalizing the tori) are the nil-manifolds. A nil-mani/old 
is simply .the quotient of a connected contractible nilpotent Lie group by  a uniform 
discrete subgroup. 

We shall show tha t  in dimensions greater than 2 there exist closed nil-manifolds 
for which l~ielsen's theorem fails in a v e r y  strong sense. Specifically 

Theorem 1. For each m > 2 there exist closed m-dimensional nil-mani/olds, M ra, 
and diffeomorphisrr~s H :  M ---> M so that H 2 is di//eotopic to the identity but H is not 
homotopic to any  homeomorphism K so that K s ~ identity. 

The method of proof is not restricted to period 2. In  fact in Theorem 2 we shall 
describe examples for any  period k. In  all of these examples the nil-manifolds are 
fiber bundles fibered over the circle with fiber an (m - -  1)-torus. 

We would now like to put  our negative results into perspective with some known 
positive results. 

*) Research partially supported by the National Science Foundation. 
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Let  H(X) denote the (topological) group of self-homeomorphisms of a closed 
manifold X with the compact-open topology. Let  E (X) denote the H-space of self- 
homotopy equivalences of X and ~: E (X) -+ Out ~1 (X, x) be the map which assigns 
to each self-homotopy equivalence the outer automorphism induced on the funda- 
mental  group. I f  E0 (X) denotes the path-component  of the identi ty of E (X), then 
E (X)/Eo (X) is a discrete group. (This discreteness may  be deduced, for example, 
from [5; Theorem 4.1].) Since V]E0(x) is trivial, ~o induces a homomorphism 

~' : E (X)/Eo (X) --+ Out (~1 (X, x)). 

Let  ]: H (X) -~ E (X) denote the natural  inclusion. The composition 

o ]: H (X) -+ Out ~1 (X, x) 

is a homomorphism. 
I f  X is a K(~zl(X), 1) then %o' is bijective. I f  X is a nil-manifold it is known tha t  

%o o ] is sur]ective. That  is, every homotopy  equivalence of a closed nil-manifold is 
homotopic to a homeomorphism (in fact a diffeomorphism). 

In  [2] it was shown tha t  for "mos t "  bundles B, which fiber over the circle with a 
k-torus T ~ as fiber, the homomorphism 

V: H(B) --> Out(~l  (B, b)) 

is onto and splits. That  is, there exists a homomorphism Z: Out(~l(B,  b)) --> H(B) 
so tha t  y) o Z -~ identity. Our examples will be bundles fibered over the circle with 
fiber a toms.  Therefore the "most"  can not  be improved to all. The theorem of [2] 
has been extended to what  is called in]ective Sei/ert ]iber spaces, (T~, X, ~o). I t  is not 
needed tha t  X is even a manifold. A certain subgroup L of Out ~1 (X, x) is charac- 
terized and it  is shown tha t  the homomorphism 

: H (X) -+ Out ~1 (X, z) 

has image containing L. In  fact for any  finite subgroup F of L we m a y  actually lift 
F back into H(X). See [3; w 9, Th. 12, Cor. 1]. 

Since our examples are injective Seifert fiberings our homeomorphisms H will 
have image in Out ~1 (X, x) outside of  the subgroup L. In  fact, the obstruction to a 
Nielsen theorem in each of our examples is forced algebraically by the obstruction 
to a certain group extension. I f  one considers fiberings over the circle where the 
fundamental  group of the fiber has trivial center, this algebraic difficulty is avoided. 
Recently, J .  Tollefeson has found the following generalization of Nielsen's theorem 
in dimension 3, [7]: Let  i~ be a prime and  M 3 a closed 3-manifold with H1 (M 3; Q) ~ Q 
and which fibers over the circle with fiber a closed surface having negative Euler 
characteristic. Then, if  h: M --7 3 I  is a map  so tha t  hp is homotopie to the identity, 
there exists a PL homeomorphism K :  M -+ M so tha t  KP ---- identity. 

In  the remarks following Theorem 1 we shall examine further the differences 
between our examples and Toltefson's positive results. Now let us turn  to the 

P r o o f  of  T h e o r e m  1. We shall describe the case m =- 3 and then indicate how 
the description can be extended to all dimensions greater than 3. 
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Let  g be a group presented as follows 

= < v l ,  v2 ,  ~ I [ v l ,  v2] = 1,  ~ ~-i = vl ~ ,  n ~2 n-1 = ~ 2 > -  

We m a y  th ink  of ~ as the  semi-direct product  (Z1 x Z2) o 7/. The v~ are the generators 
of the infinite cyclic groups Z~, and  n is the generator  of F. The defining act ion of the 

generator  n on Z,1 • Z,2 is given by  the ma t r ix  2 " 

On ~ we wish to describe an au tomorph i sm t so t h a t  t 2 = conjuga t ion  by  n. P u t  

t ( v l )  = v ~ l v [  l ,  t(v2) ---- v ~  1, t (n)  = v 2 n .  

This defines an  au tomorph i sm t: g --> ~z since the relations are preserved. On Z1 • Z2 (, i t  restricts to 1 - -  . Now t 2 is the au tomorphism of ~ given by conjugat ion 

by  n since 
t2(v l )  = t ( v ~  1 v ~  i) = v l  v~, t2(v2) = v2,  t2(n)  = n .  

i~Ioreover, t i tself  is no t  inner  because t acts non- t r iv ia l ly  on v2 which generates the 
center of ~z. Therefore t generates an  element  t '  of order 2 in  Out  ~z. 

Define an in jec t ion 

: Z/2 Y/--> Out  

by  sending the generator  of 7//2 Z onto t'. This defines an  abs t rac t  kernel  (7//2 Z, ~, V)- 
We claim tha t  

Proof. Suppose 
d iagram:  

Proposition. The  abstract kernel  (7]/2z, ~, w) has no extension.  

such an extension E exists, t hen  we have the  commuta t ive  

i -+ I n n  z --> Aut  ~ -+  Out  z --> 1 
t t t 

1--> z --> E -->7//2Z - + 1 .  

There exists an  e lement  e e E whose image is exact ly  t. Let  s = e 2. Then  s e ~ and  
t (s) = e e 2 e -1 = e 2 --- s. Now the  image of s in  A u t  ~z is conjugat ion  by  s and  i t  
mus t  also equal  conjugat ion  by  n. Thus  s ---- cn,  for some central  e lement  c of ~. 
Since t (n) =4= n, this  e lement  c is non- t r iv ia l .  

The general  form of the  act ion of t is 

t(v~ v~ n~) = (vi-1 v_al)b v;C(n v2)~ = vi -b v~ - b - ~  n~. 

For  a fixed poin t  o f  t we have 

b = - - b ,  c = a - - b - - c  or b = O ,  2 c = a .  

Thus the fixed po in t  group of t is <v2n2>. Hence s e <v2n 2) could no t  possibly be 
equal  to cn,  and  so no  extension exists corresponding to the abs t rac t  kernel  defined 
b y  t'. This  completes t h e  proof of the  proposition. 

Let  us now describe M 3 so t h a t  g l  ( M  a, *) ---- ~.  M 3 will be defined as a bundle  
over the circle with fiber a 2-torus T 2. We m a y  describe it  as the  quo t ien t  of T 2 • R 1 
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by  the diagonal act ion of  7/given (on a generator) by  

(~1, z2, r) -~- ( z l ,  z~ z e ,  r - 1),  

where z~ ~= S 1, r e R. Denote  elements of  the orbit  space MS _-- T 2 • ~ R1 by  ((zl,  z2, r)). 
Define H :  M s -7  Ma by  

((Zl, z2, r)) --7 ((zi -1 , z~ "1 z21 e 2~r, r)) .  

This is well-defined since it can be defined on T e • ~ so tha t  i t  commutes  with the 
act ion of  Z : 

(zl, z.~, r) 

,4 
Z--1 ~-1 e2~ir r) 

Now, H a is given by  

r 

(zi-1, z~ -I z~ -2 z~ 1 e"~i~(r-1), r - -  1) 

II 
> (z/-1, zi -e zi-~ z : l  e2~% r - 1) .  

((zl, z2, r) ) --> ( (Zl , z~ z2, r) ) . 

We observe t h a t  the  point  a - -  ((1, 1, 0)) e M 8 is left fixed by  H,  and  H ,  induces 
the au tomorphism t on ~ I (M,  a). ~ar thermore ,  it is clear t h a t  H 2 defines, on M3, 
a diffeomorphism which induces on ~ I ( M ,  a) the inner au tomorphism given b y  
conjugat ion by  n. I n  fact  I-/2 is diffeotopic to the identity.  We m a y  define the i sotopy 
by  

(~  : ((zl, ze, r)) - 7  ((zl, z~ ze, r - -  ~)) ,  0 --- ~ --- 1. 

This map  &~ is well defined and yields the  desired isotopy. 
1Wow if there exists a homeomorphism K :  M3 -+ M3 homotopic  to  H with K e 

identi ty,  then there exists an  extension of  the form : 

1 --> 7ti (M, a) --+ E -+ 7//27/--> 1 . 

One m a y  th ink  of  E as act ing on the universal covering space ~ a  ~ ~3 of  M 3. I n  
fact, an  explicit construct ion of  the act ion (E, ~ s )  is given in [1 ; w 2]. Fur thermore ,  
the abstract  kernel associated to  this extension is precisely our  (7//2 Z, ~, yJ) which 
we know can no t  exist. Thus, K 2 can no t  be the  identity.  

Final ly ,  t ha t  M 3 is a nil .manifold (the quot ient  of  an analyt ic  ni lpotent  Lie group 
by  a uniform discrete s u b ~ o u p )  is well known.  I n  fact  the Lie group here is just  the  

group of  real upper  t r iangular  matrices of  the  form 1 . This completes the  
proof  of  Theorem 1 for m = 3. 0 

Le t  us now describe how the result can be extended to  all dimensions greater  then  3. 
We replace .Ma b y  2l/a • Tin-3. We  define t on ~ • 7/m-3 by  letting it  ac t  tr ivial ly on 
7/m-s and as before on ~. We m a y  car ry  out  the remaining pa r t  of  the  a rgument  
completely analogously to  the case m---- 3. This completes the proof  of  Theorem 1. 

Remarks .  1. Generalizing Theorem 1 to even periods. We would like to  t hank  the  
referee and Darryl  l~lcCullough who kindly  pointed out  t ha t  slight modifications of  
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our construction in Theorem 1 also yield 3-dimensional nil-manifolds for which 
Nielsen's theorem fails for any  even period. We shall describe their  generalization now. 

Let  ] and k be arbi t rary positive integers. In  strict analogy to the construction of 
Theorem 1 put  

-~ ( V l ,  V2, n] [Vl, V2] = 1, n v x n  -1 : VlV~ k], n v 2  n -1  -~- v2~.  

Let  t: :~ --> ~ be defined by  

t(vl) = v~ 1 v2J, t(v2) -~ v~ 1, t(n) = v 2 n .  

I t  follows tha t  

t 2q (Vl) = Vl V~ q], t 2q (V2) -~ V2, t 2q (n) = n,  

t 2q+l (vl)  -~ v1-1 v~ "(2q+l)j ,  t 2q+1 (v2) ~ v ~  1 , t2q +1 (n)  ---- v2 n ,  

and t 2~ is the inner automorphism x --> n x n  -1. I t  is easily checked tha t  t r is not an 
inner automorphism for all r, 0 ~ r ~  2k. 

Let  ~v: 77/2k Z --> Out :~ be the monomorphism defined by  assigTling to t its outer 
automorphism class. 

Proposition. The abstract kernel (77/2Z, :~, v2) has no extension. 

The proof is the same as in the earlier proposition. 

We construct M 3 (It, ?') as a bundle over the circle with fiber a torus with mono- 
dromy (~ j  0). The formula for H is ((zl, z~, r)) --> ((z~ -1, z~-J z21 e ~'~r, r)). Once again 
((1, 1, 0)) : a is left fixed and H .  induces the automorphism t on re1 (M, a). H 2~ is 
diffeotopic to the identi ty via 

r  ( ( z l ,  z2 ,  r)) - +  ( ( z l ,  z~k~z2, r - ~)), 

and H is not homotopic to any  homeomorphism K so tha t  K 2~ = identity. We 
obtain examples in higher dimensions by  multiplying by  a torus as before. 

Using our methods, J .  Tollefson has suggested other 3-dimensional aspherical 
manifolds for which Nielsen's theorem fails. P. E. Conner informs us tha t  he was also 
aware of impor tant  aspects of our examples. 

2. Ma(k ,  ]) as a Sei/ert mani/old. For k = j----1, Ma(k ,  ]) is the manifold of  
Theorem 1. I t  m a y  be useful for the reader to observe tha t  M a (k, ]) can also be 
viewed alternatively as a classical 3-dimensional Sei/ert fiber space. In  particular, 
it is a principal circle bundle over the torns T 2 with first Chem class - -  (2k]) times 
the fundamental  coeycle in H2(T2; Z). The "canonical" presentation of g l  (AIa) as 
a Seifert fiber space is 

iv1,  v2, ~[ Iv1, v2] = 1, In, v2] = 1, n v l  n-1 vi-1 = v ~ } .  

Here the generator v2 represents the generator of the fundamental  group of the 
circle fiber. 

3. Out g l M 3 ( k ,  ]). We m a y  identify our automorphism t and its outer outer- 
morphism class among the full gToup of automorphisms and outer automorphisms 
of xel M 3 (k, ]). In  [1, w 8] it is shown tha t  

A n t ( ~ l  (M3(k,  ]))) = (77 0 Z) oGL(2, .Z)  , 

Out (gl (M a (/c, ?'))) ---- ((Z/2/c ?" 7/) @ (Z/2 k ?" Z)) o GL (2, 77). 
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Every  homotopy equivalence of M 3 (/~, ?') can be deformed to a (Seifert) fiber preserv- 
ing diffeomorphism (see [2]). The automorphism t actually has projections onto both 
parts of the semi-direct product in Out ~. However, i t  is more relevant for our 
examples to regard M 3 (/c, ]) as a fiber bundle over the circle. Every outer auto- 
morphism of ~ which arises from an automorphism which is invariant on the group 
generated by  vz and v2 and which induces the identi ty on the quotient group (for 
example our t) can be realized by a diffeomorphism which moves only along the 
toral  fibers, such as our H, (see [3; w 7]). The subgroup of such outer automorphisms 
is isomorphic to 

(Z |  ((Z/2~./Z) X (Z/2Z)) 

which follows from [1 ; 4.5]. In  terms of an obvious coordinate representation y~ (t) = 
= (0, 1) o (?" X e), where ] X e ~- (-~ _0) and the action is the usual action. Wha t  we 
believe is significant here is tha t  ~p (t) has coordinate projections on each factor of 
the semi-direct product. I f  ~v (t) were an element of  either factor, then the abstract  
kernel would determine an extension and we would also be able to find diffeomor- 
phisms K so tha t  K 2~ ---- identity. 

(In Tollcfson's positive results ([7]) the outer automorphism group of g l  (M S) is 
really, in some sense, simpler than  encountered in our examples. For it arises solely 
from the normalizer of the mapping class of the monodromy homeomorphism in 
the outer automorphism gToup of the fundamental  ~OTOUp of the fiber, see [1 ; w 4]. 
Consequently, two homotopy equivalences of M S which induce the same outer 
automorphism on a fiber are homotopic. One may,  as Tollefson successfully does, 
t ry  to extend a periodic map on a surface to M 3. In  our examples, the diffeomorphisms 
H and H': ( z l ,  z2, r) --> (z~ -~, z~ j z21, r)  agree on the fiber over (1, 1, 0), but  H 
and H '  are not homotopic in M.) 

4. Poincar~ Complexes. We may  also ask if i t  is impossible to find a periodic 
homeomorphism K on some Poincar4 complex X having the homotopy type  of M m. 
Actually, we have shown even more: I / X  is a space so that 7~1 (X, x0) ~ g l  (Mm, a) 
and t is the automorphism used in the theorem then there exists no homeomorphism K 
with K 2~ -~ identity and K .  representing the same outer automorphism represented by t. 
~or, if  there were such a homeophormism K,  then we would be able to construct 
the extension from the abstract  kernel (Z/2/c j ~, ~, y~) by  [1 ; w 2]. 

Periods greater than 2. The generalization from M3 to M3(k, ]) does not appear 
to work for odd periods. To obtain failure for all periods another modification of the 
method of Theorem 1 will be used in the proof of Theorem 2. 

Theorem 2. For each I~ ~ 1, there exist closed (2/c - -  1) dimensional nil-mani]olds M 
and di//eomorphisms H: M -> M so that H ~ is di/]eotopic to the identity (and H~ is not 
homotopic to the identity/or 0 ~ 1 ~ Ic) but H is not homotopic to any homeomorphism K 
with K ~ ~ identity. 

Actually, the  dimensions of M are larger than  necessary. We may  modify the 
construction to bring the dimensions down to a t  least 3 -~ (k - -  1). As in Theorem 1, 
once one produces an example, one gets examples for that  k in all higher dimensions. 
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S k e t c h  o f  P r o o f .  The  cons t ruc t ion  a n d  a rgumen t  is a genera l iza t ion  of  t h a t  
used in  Theorem 1. W e  t a k e  

We form 

V1 ~ 77k-1 _-- k - -  1 copies of  7/, 

V2 ---- 77~-1 

v - - v ~ •  

as  t he  semi-d i rec t  p r o d u c t  of  V wi th  77 ~- <n>, where  n acts  on V b y  

W e  define t on V b y  

o) 
x ~ - -  1 

where  C is t h e  compan ion  m a t r i x  o f - -  T h a t  is, 
x - - 1  " 

0 1 0 . . .  0" 
0 0 1 . . .  

0 1 0 
0 0 . . . 0  0 1 

- - 1  - - 1  . . .  - - 1  - - 1  

C = 

x ~ -  1 
I t s  charac te r i s t i c  po lynomia l  i s - -  W e  p u t  t ( n )  ----- w n  where w ~ V2 genera tes  

x - - 1  " 
V2 as a 77 [C] module .  

W e  cla im t is a n  a u t o m o r p h i s m  of  ~ because  the  ac t ion  of  t on V commutes  wi th  
t h a t  of  n,  a n d  t h e  e l emen t  w n  ~ t ( n )  acts  as n on V a n d  also genera tes  a com- 

p l e m e n t a r y  copy  o f T / t o  V i n e .  ( C  C) ~ ( I  0i) 
Now t~ on V is con juga t ion  b y  n, since C = k I . Also, 

t~ (n )  ---- t ~ - l ( w ) - - . t ( w ) w n  = (C ~-1 + - - -  + 1) ( w ) . n  = n .  

Therefore  tlc is con juga t ion  b y  n on all  of  ~.  
Once aga in  we wan t  to  show t h a t  t he  ~ (~)n  conta ins  no e l emen t  of  ~ f ixed b y  t, 

where  ~ (z) denotes  the  center  of  7~. L e t  vl  ~ V1, v2 e V2, t h e n  

t (vl v2 n~) = vl  v2 n~ 

i f  a n d  on ly  i f  

t ( v l )  C (v2) w~  = v l  v 2 .  

Then,  t ( v l )  ~ v l  ( rood V2) which  impl ies  C ( v z )  = v l  (rood V2) and  so C ( v l )  -~ v z .  

This  forces vl  ~ 0 since 1 is no t  a n  e igenvalue  of  C. ~ o w  we have  

w~ = v2 ~-1(v2) = (1 - -  C) (v2). 
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P u t  V2 = \~-0 f (W)where the  zi 's are  integers .  Such an  express ion for an  e lement  

of  V2 is un ique  up  to t he  add i t i on  of an expression m ~ 0 ~ (w), m an  in teger  (con- 
\ i=0 / 

s ider  the  h o m o m o r p h i s m  f rom the  group a lgebra  for the  eyclie group of  o rder  k 
onto 7/[C]). W e  have  

(a C 0 / ( w )  = w a ---- (1 - -  0 )  (v2) = ~ (z~ - -  z~_l) C ~ (w) 
i = 0  

where z-1 = z~- l -  Thus there  is an  in teger  m wi th  a = z0 - -  z-1 ~ m a n d  

O -~- Z l  - -  zO @ ~ ~ " "  ~ z ~ - l  - -  z k - 2  -~- ~ .  

Adding  al l  these  expressions toge ther  we ge t  a = k in .  Thus  a is divis ible  b y  k ,  and  
in pa r t i cu l a r  a ~= 1 so ~ (z) n contains  no e lement  of  ~ f ixed b y  t. Consequent ly ,  we 
have  shown t h a t  the  a b s t r a c t  kernel  (77/kZ, V 0 2!, ~) has  no extension,  where  
~ :  (g/k T/) -+  Ou t (Vo  ~) is induced  b y  the  au tomorph i sm  t. 

The  geometr ic  cons t ruc t ion  proceeds as  in  t he  p roof  of  Theorem 1. Corresponding 
to  the  group ~ ~ V o 7/, we t ake  M 2g-1 = (T ~-1 x T g- l )  • ~ R z, where  th is  is t h e  
quot ien t  of  T 21~-2 X R 1 b y  the  d iagonal  ac t ion  of  7 /g iven  on a genera to r  b y  

(Zl . . . .  , z ~ _ l ,  y x  . . . . .  y ~ - l ,  r )  - +  ( z l ,  . . . ,  z ~ - l ,  z l  ~ y l ,  - - - ,  z ~ - i  ~ y ~ - ~ ,  r - -  1) 

zi, yj e S ~, r e ~.  W e  express  w in t e rms  of  our  s t a n d a r d  basis  for V2 b y  

W ~ W l V 2 , 1 +  " ' "  + W k - - l V 2 ,  k - - 1 .  

W e  now define H on 21i 2k-1 so t h a t  the  induced  a u t o m o r p h i s m  on the  f u n d a m e n t a l  
group is g iven b y  t b y  us ing  the  2 k - -  1 m a t r i x :  

0 

v o 

Wl 

C C 

Wk--1  

0 . . . . . .  0 1 

(0 i) [For  example ,  i f  k = 3, t h e n  C = F o r  th is  case we m a y  choose 
w = re, 1 ~ V2. Then  we define - -  1 - -  " 

H ( (zl  , z2, Y l ,  y2 ,  r) ) = ( (z2, z~ -1 zE  1, z2 Y2 e 2~tir, (zl z2 Yl Y2) -1, r)) . ] 

The  d i f feomorphism H ~ m a y  be i so toped  to  the  i d e n t i t y  in a manne r  s imilar  to  t h a t  
employed  in  the  p roof  of  Theorem 1 because  

H ~  ( (z l ,  . . . ,  z ~ - l ,  y l  . . . . .  y ~ - l ,  r)) = 

= ( (z l  . . . . .  z ~ - l ,  z l  ~ y l  . . . .  , z ~ - i  ~ y ~ - l ,  r ) ) .  

Of course, H is no t  homotop ic  to  a n y  homeomo rph i sm  K so t h a t  K ~ -= iden t i t y ,  fo r  
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otherwise we would have to have an extension for our abstract kernel (F//c~, V o 7Z, ~v) 
as in the proof of Theorem 1. This completes the proof of Theorem 2. 

We have seen that  the lack of a/qielsen theorem in our examples is forced alge- 
braically by the lack of an extension. I t  would be very interesting to find an example 
of a closed aspherical manifold M with centerless fundamental group so that  either 

a) there exists a serf homotopy equivalence t: M --> M which generates an element 
of order/c in Out ~1 (M), or 

b) there exists a homeomorphism H:  M--> M so that  H ,  generates an element 
of order/c in Out (~1 (M)), 

and t (or H) can not be deformed (or isotoped) to a homeomorphism K:  M --~ M 
with K ~ ---- identity. 

I t  is definitely possible to state a positive algebraic result which is the algebraic 
analogue of the result alluded to earlier in [3]. 

Theorem 3. Suppose V is a torsion /ree normal subgroup o/ a group K. Assume 
that every element o / K  centralizing V and K~ V lies in V. 

Let G be a finite group and q~: G --> Ant K a/unction such that 

1) ~(G) centralizes V and K / V ;  

2) the map y~: G ~ Aut K --> Out K is a homomorphism. 

Then there exists an extension corresponding to the abstract kernel (G, K,  ~o). 

We have included a (purely algebraic) proof of this result in an appendix. I t  may  
be noted from the first lemma that  part of the hypothesis may be dropped when G 
is cyclic. Also the proof of the theorem shows that  its conclusion may be strengthened 
when G is a subgroup of Out K:  there exists an extension E with an abelian subgroup 
whose image is G under E --> G. See statement (*) in the proof for more details. 

A p p e n d i x .  The notation and terminology for the proof of Theorem 3 is taken 
from [4]. 

Lemma 1. Suppose V is a torsion-/tee normal subgroup o / a  group K. I~et G be a 
/inite c yc l i c  group and q~: G --> Ant K a/unction such that 

1) ~(G) centralizes V and K / V ;  

2) The map v2: G -~ Aut K --> Out K is a group homomorphism. 

Then there exists an extension corresponding to the abstract kernel (G, K,  ~v). 

P r o o f .  Let k ~->/c denote the map K -->/~ = Inn K c Aut K. 
Let x e ~(G) be a generator for IF, q~(G)/~, of order r in the quotient. Thus x r -~ fc 

for some k e K. 
Let x(k) = vk  where v e V. Then k ---- ]~(k) -~ xr(k) = vrk. Hence v r = 1 and so 

v ---- 1 since V is torsion-free. Thus x fixes k. 
I t  follows that  there is an extension E of K by ~r such that E = (K, 2), 2 acts 

by conjugation on K like the automorphism x, and ~ ~ k [4; th. 15.3.1, p. 225]. 
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To get  an  extension corresponding to  (G, K, ~) just  take  the  pullback of  G and E 
with respect to the common quotient  2Kr. 

Lemma 2. Suppose V is a normal subgroup o/a group K. Then the group o/all au- 
tomorphisms o/ K which/ix each element of V and K~ V is naturally isomorphic to the 
group o/ 1-cocycles Z 1 (K/ V, ~ ( V) ). In  particular, this group is abelian. 

P r o o L  Let  x be such an au tomorphism and pu t  x(k) ---- ~(k)]~ for k e K.  Thus 
y (~) e V and  ~ (v) ---- 1 for v e V. 

F r o m  x (kl ]r = x (kl) x (k2) we have  7 (kl]C2) = 7 (]~1)/r ~ (k2) ]~- i I n  part icular  
y(kv) = y(k)kT(v)l~-i = 7(]c) for v e  V and  k e K .  Also 

(v ~) = F (v) v ~ (~) v-1 = v y (~) v-1 .  

On the other  hand  r(vk) = 7 ( ~  k - i v  k) = r ( } ) .  Hence 7(/c) belongs to the center 
o f  V, and 7(/~) is independent  of the coset representat ive for /~V = V}. Tha t  is, 
y is an  element of  Z 1 (K/V, ~(V)). 

Conversely, any  such 7 gives rise to  an  au tomorphism of the specified type,  and 
it is clear t ha t  the  correspondence is an isomorphism of  abelian groups. 

P r o o f  o f  T h e o r e m  3. Choose a funct ion (~: v(G)-sT(G) C A u t K  such tha t  
the composite ~ :  V(G) --+ Aut  K -*  Out K is the inclusion map.  Then v(G), ~ satisfy 
the hypothesis  and it is enough to show t h a t  the abs t rac t  kernel (v(G), K,  ~)  has 
an  extension (see the last line of  the proof  of  Lemma 1). 

Hence we m a y  assume at  the  s tar t  t h a t  G C Out  K and tha t  Y is the inclusion 
map.  I n  this si tuation we can prove a slightly stronger result  (and indeed it is essential 
to do so): 

There exists an extension E corresponding to  the  abs t rac t  kernel (G, K, yJ) 
( .)  such tha t  the associated m a p  E -> G has a section x ~-> ~ with ~ - - - - p ~  

for all x, y ~ G, and ~ inducing ~ (x) in the  act ion of  x b y  conjugation on 
KC__E. 

We shall prove (*) b y  induct ion on the order of  G. I f  G -= 1 this is trivial so we 
m a y  assume G =~ 1. B y  L e m m a  2, G is abelian; in part icular  there exists a subgroup 
G1 of  prime index in G. By  induct ion there exists an extension E1 of  K satisfying (*) 
with respect to  Gz, ~1, YJ1 where 901, yJ1 denote the  restrictions of  q~, v 2 to G1. 

Le t  (,) be the factor  set associated with the section x ~-> 5. Tha t  is, 

~ - =  (x,y)~'~, x, yeG1. 

The elements (x, y) belong to  the subgroup K of  E l ;  moreover  they  even belong 
to  V by  hypothesis,  since (x, y) centralizes V and K~ V, by  the equat ion above and 
the fact  t ha t  conjugation by  a ny  s induces ~ (x) on K. 

l~Iext choose an element s ~ G, s ~ G1 ; thus  G ~ (G1, s~. Define a map  ~ : E1 --> E1 
by  

~(k~) = ~(s)(/c) �9 (]ceK, xeG~). 
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Then (r is in fact  an  au tomorphism of  E l :  (We abbreviate  ~ (s) = t.) 

~--- t(kl) xi  t ( k2) ~ 1  (Xl , x2) x i  x2 -~ 

-~ t(ki) t(a~i k2 ~ - l )  (xi, x2) x ix2  -~ 

(since conjugat ion b y  a~l induces ~(xl) on K,  and ~(xl) commutes  with ~(s) ---- t by  
L e m m a  2) 

(since (xl, x2) lies in V) 
= t(k l  ~1 k2 ~2~ -1 @1, x2)) x lx2  = 

= ~(kl ~1 k2 ~i-i (xl, x2) ~ )  = 

Fu the rmore  we claim tha t  if  s r lies in G1 then  a r is an  inner au tomorphism of  E l  : 
We have r (k~) = ~o (s r) (k)~. Since the projections of  go (s) r and q (s r) have the same 
image ~o (s) r = ~v (s r) in Out  K,  we have 

(s) r ~0 (st) -1 = conjugat ion b y  v 

for some v z K ;  in fact  v e V since ~(s) and ~o(s r) centralize V and K I V .  Observe t h a t  

v ~ v -1 - -  v �9 v -1 ~-1 ~ - -  v ~ (x) (v -1) ~ ---- v v-~ ~ ---- � 9  

also ~7 ~ 7 - ~  = ~ b y  (*). Hence 

(v~)  k ~(v-~)-~ = v ~ k ~ - l  v-~ ~ = 

= v ~o (~') (k) v-~ �9 = 

= ~o (~)~ (~) �9 = 

= o ~ ( ~ ) ,  

and so a r is an inner automorphism of  E1 as claimed. 
Define a funct ion ~0~: G/G~-+ Aut  E~ b y  sending the  image of  s~ in G/Gx to  ~ ,  

0 <= i < I GIG~], and  let ~v~ be the  composite G/Gx ---> A u t  E~ --> Out  E~. The map  ~ 
is a homomorphism of  groups by  the  preceding paragraph.  The hypotheses o f L e m m a  1 
are clearly satisfied, and  so there exists an  extension E~ of  E1 corresponding to  the  
abs t rac t  kernel (G/G~, Ex,  ~ ) .  

Igow let ~ be the  map  E 2 - +  Aut  E~ induced by  conjugation.  B y  eonstrnet ion 
~/(E2)----<~(Ex), a>. Nex t  consider the m a p  g :  <~(Ex), a > - + A u t K  induced by  
restriction to K. B y  construct ion of  E~ we have #(~(E1)) -= ~ (G1) Inn  K ;  also we 
have b y  definition of  a tha t /~ (a )  = ~0(s). 

Since G-----<Gx, s> we have an  epimorphism E 2 - +  ~0(G)Inn K - +  G with kernel 
containing K ;  in fact  the  kernel mus t  be equal to  K since 

I E~IKI = I EUEI l IE:/-gl = I G/G~ l I G~ I = I GI �9 
Obviously the d iagram 

G Z~ 0 u t  K 

E~ --> Aut  K 
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is commuta t i ve ,  since the  composi te  #U:  E 2 - +  ~ ( G ) I n n  K sends each e lement  of  
E2 to  t he  e lement  of  A u t  K i t  induces  b y  conjugat ion  on K.  Thus  E -~ E2 is an  
ex tens ion  of  K corresponding to  the  a b s t r a c t  kernel  (G, K ,  ~). 

I t  r ema ins  to  p roduce  a sect ion for E --> G sat is fying (*). Le t  $ e E2 be chosen so 
t h a t  $ induces  ~ b y  con juga t ion  on E l ;  i t  follows t h a t  ~25 -1 ---- ~(~) ---- �9 for x e G1. 
Obvious ly  the  gTOUp S = <~, ~ ] x e G 1 }  is c o m m u t a t i v e  and  induces  (~0(G)} b y  
con juga t ion  on K.  ~Now jus t  p ick ~, for x e G~ to be an e lement  of  S which induces  

(x); these  choices m a y  even be m a d e  consis tent  wi th  previous  n o t a t i o n  though  
t h a t  is no t  required .  The  m a p  x - +  2, x e G, is a u t o m a t i c a l l y  a sect ion for E - +  G 
since the  image  of  x unde r  E2 --> ~ (G) I n n  K is ~ (x) a n d  the  image  of ~ (x) under  
~(G) I n n  K - + G  is x. Clear ly  th is  sect ion satisfies (*). Q.E.D.  
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