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Failure of Nielsen’s theorem in higher dimensions

By

Fraxg Rayymoxp and LEoxarp L. Scorr *)

The tfollowing is known for closed orientable surfaces. If H: M — M is a map
whose n-th power is homotopic to the identity, then H is homotopic to a homeo-
morphism K with K7 = identity. The result is known as Nielsen’s Theorem on
finite mapping classes. There are doubts (see [8]) as to the correctness of all parts of
Nielsen’s arguments in [6]. Different (using complex analysis and the Smith theorems)
and valid proofs have been given independently by Fenchel and Macbeath. Because
we are dealing with surfaces, each self homotopy equivalence is homotopic to a
diffeomorphism, and homotopic diffeomorphisms are diffeotopic. Consequently, Niel-
sen’s theorem may be equivalently stated as follows: If H: M — M is a diffeo-
morphism whose n-th power is homotopic to the identity then H is diffeotopic to a
diffeomorphism K with K» = identity. The theorem is extremely useful in studying
periodic maps on 3-manifolds, and there are obvious applications in surface theory.

The question has been raised as to what extent Nielsen’s theorem holds for
aspherical manifolds of dimensions greater than 2. An aspherical manifold is a closed
manifold whose universal covering is contractible. Aspherical manifolds are therefore
closed manifolds which are also K(z, 1)’s. An important and interesting class of
aspherical manifolds (generalizing the tori) are the nil-manifolds. A nil-manifold
is simply the quotient of a connected contractible nilpotent Lie group by a uniform
discrete subgroup.

We shall show that in dimensions greater than 2 there exist closed nil-manifolds
for which Nielsen’s theorem fails in a very strong sense. Specifically

Theorem 1. For each m > 2 there exist closed m-dimensional nil-manifolds, Mm,
and diffeomorphisms H: M — M so that H? is diffeotopic to the identity but H is not
homotopic to any homeomorphism K so that K2 = identity.

The method of proof is not restricted to period 2. In fact in Theorem 2 we shall
describe examples for any period k. In all of these examples the nil-manifolds are
fiber bundles fibered over the circle with fiber an (m — 1)-torus.

We would now like to put our negative results into perspective with some known
positive results.

*) Research partially supported by the National Science Foundation.
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Let H(X) denote the (topological) group of self-homeomorphisms of a closed
manifold X with the compact-open topology. Let £ (X) denote the H-space of self-
homotopy equivalences of X and y: E (X) — Out 71 (X, z) be the map which assigns
to each self-homotopy equivalence the outer automorphism induced on the funda-
mental group. If Eo(X) denotes the path-component of the identity of £ (X), then
E(X)/E¢(X) is a discrete group. (This discreteness may be deduced, for example,
from [5; Theorem 4.1].) Since |z, x, is trivial,  induces a homomorphism

Y2 B(X)[Eo(X) — Out(m1 (X, 2)) -
Let 9: H(X) SE (X) denote the natural inclusion. The composition
poj: H(X)— Outm (X, x)

is a homomorphism.

If X is a K(m1(X), 1) then ¢’ is bijective. If X is a nil-manifold it is known that
o is surjective. That is, every homotopy equivalence of a closed nil-manifold is
homotopic to a homeomorphism (in fact a diffeomorphism).

In [2] it was shown that for “most” bundles B, which fiber over the circle with a
k-torus T'% as fiber, the homomorphism

y: H(B) — Out(m; (B, b))

is onto and splits. That is, there exists a homomorphism y: Out(w1(B, b)) — H(B)
so that g o y = identity. Our examples will be bundles fibered over the circle with
fiber a torus. Therefore the “most” can not be improved to all. The theorem of [2]
has been extended to what is called injective Seifert fiber spaces, (T%, X, ¢). It is not
needed that X is even a manifold. A certain subgroup L of Out m; (X, ) is charac-
terized and it is shown that the homomorphism

y: H(X)—> Out 71 (X, 2)

has image containing L. In fact for any finite subgroup F of L we may actually lift
F back into H(X). See [3; §9, Th. 12, Cor. 1].

Since our examples are injective Seifert fiberings our homeomorphisms H will
have image in Qut 7; (X, z) outside of the subgroup L. In fact, the obstruction to a
Nielsen theorem in each of our examples is forced algebraically by the obstruction
to a certain group extension. If one considers fiberings over the circle where the
fundamental group of the fiber has trivial center, this algebraic difficulty is avoided.
Recently, J. Tollefeson has found the following generalization of Nielsen’s theorem
in dimension 3, [7]: Let p be a prime and M3 a closed 3-manifold with Hi (M3; @) =@
and which fibers over the circle with fiber a closed surface having negative Euler
characteristic. Then, if A: M — M is a map so that A2 is homotopic to the identity,
there exists a PL homeomorphism K: M — M so that K? = identity.

In the remarks following Theorem 1 we shall examine further the differences
between our examples and Tollefson’s positive results. Now let us turn to the

Proof of Theorem 1. We shall describe the case m = 3 and then indicate how
the description can be extended to all dimensions greater than 3.
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Let 7z be a group presented as follows

T = <v1,vz,n[[vl,vg] =1, no1n 1= vlvg,nvzn‘l =wy).

We may think of 7z as the semi-direct product (Z; X Z2) o Z. The v; are the generators
of the infinite cyclic groups Z;, and = is the generator of Z. The defining action of the

2 1
On = we wish to describe an automorphism ¢ so that {2 = conjugation by n. Put

10
generator n on Zy X Zs is given by the matrix( >

tw) =vrloyl, ) =07t tn)=v2n.

This defines an automorphism ¢: 5t — 7 since the relations are preserved. On Z; X Z3

_ 1) . Now £2 is the antomorphism of x given by conjugation

it restricts to(

by = since
12(v1) = {7t vg ) = v1 0%, t2(v2) = w2, 2(n) =mn.

Moreover, ¢ itself is not inner because ¢ acts non-trivially on vs which generates the
center of 7. Therefore ¢ generates an element ¢’ of order 2 in Out x.
Define an injection

w: Z[2Z - Out

by sending the generator of Z/2Z onto ¢'. This defines an abstract kernel (Z/27, 7, ).
We claim that

Proposition. T'he abstract kernel (Z{27, w, p) has no extension.

Proof. Suppose such an extension E exists, then we have the commutative
diagram:
1—-Imn—>Autn—Outz—1

4 i tv
1> — E —Z/2Z —1.

There exists an element ¢ € £ whose image is exactly £. Let s = 2. Then s € # and
t(s) = ee2 el = ¢2 = 5. Now the image of s in Aut % is conjugation by s and it
must also equal conjugation by n. Thus s = ¢n, for some central element ¢ of 7.
Since ¢(n) == n, this element ¢ is non-trivial.

The general form of the action of £ is

t(2vEne) = (vt vg 1) vz ¢ (mwe)d = w0 vE 00 na .
For a fixed point of ¢ we have

b=—b, ¢c=a—b—c or b=0, 2c=a.
Thus the fixed point group of ¢ is (wan2). Hence s € {van?> could not possibly be
equal to ¢n, and so no extension exists corresponding to the abstract kernel defined
by ¢'. This completes the proof of the proposition.

Let us now describe M3 so that sty (M3, *) = n. M3 will be defined as a bundle
over the circle with fiber a 2-torus 7'2. We may describe it as the quotient of 72 X R?
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by the diagonal action of Z given (on a generator) by
(21,22,7’) - (zlz 2%22,7'— 1) >

where z; € 81, r € R. Denote elements of the orbit space M3 = T2 X ; RI by ((21, 22,7)).
Define H: M3 — M3 by
—~1

(21,22, 7)) = ((zg *, 27 25 1 €207, 7))

This is well-defined since it can be defined on 72 x R so that it commutes with the
action of 7:

(21522)7) —> (2172252277'_1)
H \L .
} (Zflz21_121"222_162””(7‘1),1’—- 1)
v . N

L e tele?™ ) —> (27t 27227 ey et p — 1),

Now, H2 is given by
(21,22, 7)) = ((21, 23 22, 7)) -

We observe that the point @ = ((1, 1, 0)) € M3 is left fixed by H, and H, induces
the automorphism ¢ on 73 (M, a). Furthermore, it is clear that H2 defines, on M3,
a diffcomorphism which induces on 71(M, @) the inner automorphism given by
conjugation by %. In fact H2 is diffeotopic to the identity. We may define the isotopy
by

Oy ((21,22,7) = (21,2322, 7 — ) , 0= Z 1.

This map Oy is well defined and yields the desired isotopy.
Now if there exists a homeomorphism K: M3 — M3 homotopic to H with K2 =
identity, then there exists an extension of the form:

lo>m((M,a)>E—>Z[2Z - 1.

One may think of £ as acting on the universal covering space M3 ~ R3 of M3. In
fact, an explicit construction of the action (&, M3) is given in [1; § 2]. Furthermore,
the abstract kernel associated to this extension is precisely our (Z/2Z, z=, ) which
we know can not exist. Thus, K2 can not be the identity.
Finally, that M3 is a nil-manifold (the quotient of an analytic nilpotent Lie group
by a uniform discrete subgroup) is well known. In fact the Lie group here is just the
1 * %
group of real upper triangular matrices of the form | 0 1 * | . This completes the
proof of Theorem 1 for m = 3. 001
Let us now describe how the result can be extended to all dimensions greater then 3.
We replace M3 by M3 x Tm—3. We define ¢ on 7 X Z™~3 by letting it act trivially on
Zm=3 and as before on 7. We may carry out the remaining part of the argument
completely analogously to the case m = 3. This completes the proof of Theorem 1.

Remarks. 1. Generalizing Theorem 1 to even periods. We would like to thank the
referee and Darryl McCullough who kindly pointed out that slight modifications of
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our construction in Theorem 1 also yield 3-dimensional nil-manifolds for which
Nielsen’s theorem fails for any even period. We shall describe their generalization now.
Let § and % be arbitrary positive integers. In strict analogy to the construction of

Theorem 1 put

7= {v1,v2,n|[v1,v2] = 1, no1 0l = vy 03, nugn-l = v5).
Let t: w — 7 be defined by

to)) =o7tvg?,  twe) =03, tn)=wvam.
It follows that

124 (v;) = vy 039, 124 (vg) = vz, £2¢(n) = n,

t2q+1 (vl) i vl_l U;(2q+ 1),'i, t2q+1 (UZ) — 02—1 s t2q+l (n) =von,

and #2% is the inner automorphism x — nzn—1. It is easily checked that " is not an
inner automorphism for all r, 0 << r << 2%.

Let y: Z/2k Z — Out = be the monomorphism defined by assigning to £ its outer
automorphism class.

Proposition. The abstract kernel (Z|2Z, n, w) has no extension.
The proof is the same as in the earlier proposition.

We construct M3(k, j) as a bundle over the circle with fiber a torus with mono-
dromy (4;; ). The formula for H is ((z1, 22, 7)) — (1'%, 2777 2571 €27%, 7). Once again
((1,1,0)) = a is left fixed and H, induces the automorphism ¢ on m; (M, a). H2 is
diffeotopic to the identity via

Ou: ((21,22,7) = (21, 285 25,7 — &),

and H is not homotopic to any homeomorphism K so that K2k = identity. We
obtain examples in higher dimensions by multiplying by a torus as before.

Using our methods, J. Tollefson has suggested other 3-dimensional aspherical
manifolds for which Nielsen’s theorem fails. P. E. Conner informs us that he was also
aware of important aspects of our examples.

2. M3(k,j) as a Seifert manifold. For k= §j =1, M3(k,7) is the manifold of
Theorem 1. It may be useful for the reader to observe that M3(k, j) can also be
viewed alternatively as a classical 3-dimensional Seifert fiber space. In particular,
it is a principal circle bundle over the torus 7'2 with first Chern class — (2k7) times
the fundamental cocycle in H2(T'2; Z). The “canonical”’ presentation of m; (M3) as
a Seifert fiber space is

{v1,v2,n|[v1,vs] =1, [n,v2] = 1, noyn-lo]t = o2y .

Here the generator vz represents the generator of the fundamental group of the
circle fiber.

3. Out 73 M3(k, j). We may identify our automorphism ¢ and its outer outer-
morphism class among the full group of automorphisms and outer automorphisms
of 7y M3(k, ). In [1, § 8] it is shown that

Aut (721 (M3(E, §))) = (Z @ Z) 0 GL(2,Z),
Out (71 (M3 (K, 7)) = (Z/2kj Z) D (Z/2kj Z)) o GL(2, Z) .
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Every homotopy equivalence of M3 (k, j) can be deformed to a (Seifert) fiber preserv-
ing diffeomorphism (see [2]). The automorphism ¢ actually has projections onto both
parts of the semi-direct product in Out 7. However, it is more relevant for our
examples to regard M3(k, ;) as a fiber bundle over the circle. Every outer auto-
morphism of sz which arises from an automorphism which is invariant on the group
generated by v; and vo and which induces the identity on the guoiient group (for
example our #) can be realized by a diffeomorphism which moves only along the
toral fibers, such as our H, (see [3; § 7]). The subgroup of such outer automorphisms
is isomorphic to

(ZDZ2kjZ)o ((Z]2k]Z) X (Z/2Z))

which follows from [1; 4.5]. In terms of an obvious coordinate representation y (f) =
= (0, 1) o (j X e), where § X ¢ = (:71 _Y) and the action is the usual action. What we
believe is significant here is that v (f) has coordinate projections on each factor of
the semi-direct product. If y(f) were an element of either factor, then the abstract
kernel would determine an extension and we would also be able to find diffeomor-
phisms K so that K2¥ = identity.

(In Tollefson’s positive results ([7]) the outer automorphism group of my (M3) is
really, in some sense, simpler than encountered in our examples. For it arises solely
from the normalizer of the mapping class of the monodromy homeomorphism in
the outer automorphism group of the fundamental group of the fiber, see [1; § 4].
Consequently, two homotopy equivalences of M3 which induce the same outer
automorphism on a fiber are homotopic. One may, as Tollefson successfully does,
try to extend a periodic map on a surface to M3. In our examples, the diffeomorphisms
H and H': {z1,22,1) = {z{ L, zl“j z7 %, r> agree on the fiber over (1,1, 0>, but H
and H' are not homotopic in M.)

4. Poincaré Complexes. We may also ask if it is impossible to find a periodic
homeomorphism K on some Poincaré complex X having the homotopy type of M=,
Actually, we have shown even more: If X is @ space so that w1 (X, xo) == 71(M™, a)
and t is the automorphism used in the theorem then there exists no homeomorphism K
with K2k = identity and K, representing the same outer automorphism represented by t.
For, if there were such a homeophormism K, then we would be able to construct
the extension from the abstract kernel (Z/2k 4§ Z, =, v) by [1; § 2].

Periods greater than 2. The generalization from M3 to M3(k, j) does not appear
to work for odd periods. To obtain failure for all periods another modification of the
method of Theorem 1 will be used in the proof of Theorem 2.

Theorem 2. For each k > 1, there exist closed (2k — 1) dimensional nil-manifolds M
and diffeomorphisms H: M — M so that H¥ is diffeotopic to the identity (and H! is not
homotopic to the identity for 0 << 1 << k) but H is not homotopic to any homeomorphism K
with K¥ = identity.

Actually, the dimensions of M are larger than necessary. We may modify the
construction to bring the dimensions down to at least 3 - (£ — 1). Asin Theorem 1,
once one produces an example, one gets examples for that k in all higher dimensions.
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Sketch of Proof. The construction and argument is a generalization of that
used in Theorem 1. We take

V= 2Zk-1=Fk — 1 copies of Z,

V2=Zk_l3
V=VixTVs.
We form 7 as the semi-direct product of ¥ with Z = <{n), where n acts on ¥V by
I 0
EI I).
We define £ on V by
c 0
c 0/,
2k —
where C is the companion matrix of -1 That is,
(0 1 0... 0)
0O 0 1...
C =
. 0 1 0
0 0 ...0 0 1
-1 —1 e et

Its characteristic polynomial is = . We put {(n) = wn where we V3 generates

V2 as a Z[(] module. —1
We claim £ is an automorphism of 7z because the action of ¢ on ¥ commutes with

that of n, and the element wn = ¢(n) acts as » on V and also generates a com-

plementary copy of Z to V in 7. C O\F I 0
Now t on V is conjugation by =, since ( o 0) = (k I I) . Also,

tE(n) = t-1(w)---t(w)wn=(Ct1 4 - 1) (W) n=mn.

Therefore ¢% is conjugation by n on all of 7.
Once again we want to show that the 3 (x)n contains no element of & fixed by ¢,
where B () denotes the center of . Let v € V3, vg € Va, then

$(v1v2 n%) = vy v O
if and only if
t(v1) C(ve) w? = vy vs.

Then, {(v1) = v1 (mod V2) which implies C'(v1) = v1 (mod V3) and so C(v1) = vy.
This forces vy == 0 since 1 is not an eigenvalue of C. Now we have

we = v (—1(vg) = (1 — C) (vg) .
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E—1
Put vg = (Z 2i Oi) (w) where the z;’s are integers. Such an expression for an element
i=0

E—1
of V3 is unique up to the addition of an expression (m > C’i) (w), m an integer (con-
i=0
sider the homomorphism from the group algebra for the cyclic group of order k
onto Z[C]). We have
r—1
(@ C0) (w) = ws = (1 — C) (ve) = > (& — zi-1) C¥ (w)
i=0

where z.3 = 2z_1. Thus there is an integer m with ¢ = 29 — 23 -+ m and

O=z—zp+m=-=1251 —2zp2+m.

Adding all these expressions together we get @ = km. Thus a is divisible by %, and
in particular @ &= 1 so 3 (%)% contains no element of z fixed by ¢. Consequently, we
have shown that the abstract kernel (Z/kZ, V o Z,y) has no extension, where
yw: (Z/kZ) — Out (Vo Z) is induced by the automorphism .

The geometric construction proceeds as in the proof of Theorem 1. Corresponding
to the group = V o Z, we take M2k-1 = (T%-1 x Tk-1) x , R, where this is the
quotient of 724-2 x R! by the diagonal action of Z given on a generator by

(21505 201, Y5 oo s Y1, 1) = (21, -0 20-1, 20 BY1, o0, 21 By, 7 — 1)
2, ¥j €81, r € R. We express w in terms of our standard basis for ¥, by
W= wivg,1 -+ W12, 1.

We now define H on M2¥-1 so that the induced automorphism on the fundamental
group is given by ¢ by using the 2% — 1 matrix:

) | o
c 0 :
0
w1
c ¢ ;
Wk-1
0... ...0 1

0 1
[For example, if k¥ =3, then C =( 1 1) . For this case we may choose
w = v3,1 € Vo. Then we define -

H((z1,22, 91, ¥2,7) = (22, 27 L2578, 20 Y2 €277, (z1 22 y1 y2) "1, 7)) . ]

The diffeomorphism H* may be isotoped to the identity in a manner similar to that
employed in the proof of Theorem 1 because

Hk((z].J "'7zk—1>y1: "'7‘7/76—1:7)) =
= ({21, --+s2k-1,21 Fy1, ..., 251 FYp1,7)) .

Of course, H is not homotopic to any homeomorphism K so that K* = identity, for
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otherwise we would have to have an extension for our abstract kernel (Z/kZ, Vo Z, y)
as in the proof of Theorem 1. This completes the proof of Theorem 2.

We have seen that the lack of a Nielsen theorem in our examples is forced alge-
braically by the lack of an extension. It would be very interesting to find an example
of a closed aspherical manifold M with centerless fundamental group so that either

a) there exists a self homotopy equivalence ¢: M — M which generates an element
of order k in Out 71 (M), or

b) there exists a homeomorphism H: M — M so that H, generates an element
of order k in Out (71 (M),

and ¢ (or H) can not be deformed (or isotoped) to a homeomorphism X: M — M
with K% = identity.

It is definitely possible to state a positive algebraic result which is the algebraic
analogue of the result alluded to earlier in [3].

Theorem 3. Suppose V is a torsion free normal subgroup of a group K. Assume
that every element of K centralizing V and K|V lies in V.
Let G be a finite group and ¢: G — Aut K a function such that

1) @(G) centralizes V and K|V ;
2) the map w: G % Aut K — Out K is a homomorphism.

Then there exists an extension corresponding to the abstract kernel (G, K, v).

We have included a (purely algebraic) proof of this result in an appendix. It may
be noted from the first lemma that part of the hypothesis may be dropped when G
is cyclie. Also the proof of the theorem shows that its conclusion may be strengthened
when ¢ is a subgroup of Out K : there exists an extension F with an abelian subgroup
whose image is ¢ under £ — G. See statement (*) in the proof for more details.

Appendix. The notation and terminology for the proof of Theorem 3 is taken
from [4].

Lemma 1. Suppose V is a torsion-free normal subgroup of a group K. Let G be a
finite cyclic group and @: G — Aut K a function such that

1) @(G) centralizes V and K|V ;

2) The map v: G % Aut K — Out K is a group homomorphism.

Then there exists an extension corresponding to the abstract kernel (G, K, ).

Proof. Let & +— & denote the map K — K = Inn K c Aut K.

Let z € (@) be a generator for K ¢(G)/K, of order r in the quotient. Thus 27 = &
for some ke K.

Let z(k) = vk where ve V. Then &k = k{(k) = a7 (k) == v"k. Hence ™ = 1 and so
v = 1 since V is torsion-free. Thus z fixes k.

It follows that there is an extension £ of K by Z, such that E = (K, &>, % acts
by conjugation on K like the automorphism z, and & = k [4; th. 15.3.1, p. 225].
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To get an extension corresponding to (G, K, y) just take the pullback of G and E
with respect to the common quotient Z,.

Lemma 2. Suppose V is a normal subgroup of a group K. Then the group of all au-
tomorphisms of K which fix each element of V and K|V s naturally isomorphic to the
group of 1-cocycles ZL(K|V, 3(V)). In particular, this group is abelian.

Proof. Let x be such an automorphism and put z(k) = y (k) % for k€ K. Thus
yk)eVand y(v)=1forveV.

From z(k1ks) = z (k1) (k) we have y(kiks) = y(k1)k1 y (k2)k; ! In particular
y(kv) =y (k)b y(w)k~1 = p(k) for ve V and ke K. Also

yk)=y@uvyk)vi=vyk)o1.

On the other hand y(vk) = y(k k~1v k) = ¢ (k). Hence y (k) belongs to the center
of ¥, and y(k) is independent of the coset representative for £V = Vk. That is,
y is an element of ZL(K |V, 8(V)).

Conversely, any such y gives rise to an automorphism of the specified type, and
it is clear that the correspondence is an isomorphism of abelian groups.

Proof of Theorem 3. Choose a function @: 9(G) — ¢(G) C Aut K such that
the composite ¥: p(F) — Aut K — Out K is the inclusion map. Then ¢(G), ¢ satisfy
the hypothesis and it is enough to show that the abstract kernel (p(G), K, %) has
an extension (see the last line of the proof of Lemma 1).

Hence we may assume at the start that G C Out K and that v is the inclusion
map. In this situation we can prove a slightly stronger result (and indeed it is essential
to do so0):

There exists an extension E corresponding to the abstract kernel (G, K, y)

(*) such that the associated map E — G has a section x — & with 2§ =%
for all z, y € G, and & inducing @ (z) in the action of 2 by conjugation on
KCH.

We shall prove (*) by induction on the order of G. If @ = 1 this is trivial so we
may assume G == 1. By Lemma 2, G is abelian; in particular there exists a subgroup
G4 of prime index in G. By induction there exists an extension E; of K satisfying (*)
with respect to G1, @y, 1 Where @1, 1 denote the restrictions of ¢, v to Gy.

Let (,) be the factor set associated with the section z + Z. That is,

Tf=(z,y)xy, = yecGr.

The elements (z, y) belong to the subgroup K of E;; moreover they even belong
to V by hypothesis, since (z, ¥) centralizes V and K|V, by the equation above and
the fact that conjugation by any & induces ¢ (x) on K.
Next choose an element s € G, s ¢ Gy; thus ¢ = (G, s>. Define a map ¢: By — E1
by
okz)=q@)k)z (keK,xeGy).
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Then ¢ is in fact an automorphism of E;: (We abbreviate ¢(s) = ¢.)
o (k1 Z1) o (ka&s) = t (k1) T1t(ks) To =
= t(k1) 1t (ka) T ! (21, ) F1%2 =
= t(ky) ¢ (F1 ko TL L) (21, 22) T1 %2 =
(since conjugation by £ induces @ (x1) on K, and ¢(z;) commutes with ¢(s) = ¢ by
Lemma 2)
= t(k1) H(E1 k2 Z7 1) (21, 2)) T1%2 =
(since (x1, z2) lies in V)
= t(kl f]_ kz Z-i—i (xl N Zz)) r1Zy =
= o (ky &1 ko Z7 1 (w1, %2) 77%3) =
= ¢ (k1 Z1 ko T3) -
Futhermore we claim that if s” lies in @1 then o7 is an inner automorphism of By :

We have o7 (kE) = @ (s7) (k)Z. Since the projections of ¢ (s)” and ¢(s”) have the same
image y(s)r = p(s") in Out K, we have
@ (s)r @ (s7)~1 = conjugation by v
for some v € K; in fact v € V since ¢ (s) and @(s7) centralize V and K/V. Observe that
vEIvl=ofv i li=vex)(v)E=vv1Z=27;
also st £ s7~1 = & by (*). Hence
(&) kF(vsr) l=vsrkslyvlE=
=vps)(k)v1T=
=g(s)T (k) 2=
=o"(k %),
and so ¢7 is an inner automorphism of £; as claimed.

Define a function ¢z: G/G1 — Aut E; by sending the image of s¢ in GGy to o,
0 < < |G/G1], and let 3 be the composite G/Gy — Aut By — Out E1. The map s
is & homomorphism of groups by the preceding paragraph. The hypotheses of Lemma. 1
are clearly satisfied, and so there exists an extension Fs of F; corresponding to the
abstract kernel (G/Gy, E1, p2).

Now let # be the map E3 — Aut E; induced by conjugation. By construction
n{Ez) = {n(E1), 6>. Next consider the map u: <{n(£1), 6> = Aut K induced by
restriction to K. By construction of E; we have u(n(E1)) = ¢(G1) Inn K; also we
have by definition of ¢ that u(s) = @(s).

" Since G = {Gy, s> we have an epimorphism E; — ¢(G) Inn K — G with kernel
containing K ; in fact the kernel must be equal to X since

|Eo/K | = | Bo/By| | E1[K| = |GIG1] |G1]| = |G .
Obviously the diagram

G L Ooutk

0 0
Eg —Aut KX
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is commutative, since the composite u#n: Ez — ¢(G) Inn K sends each element of
E3 to the element of Aut K it induces by conjugation on K. Thus £ = Es is an
extension of K corresponding to the abstract kernel (@, K, ).

It remains to produce a section for £ —- ¢ satisfying (*). Let § € Es be chosen so
that § induces ¢ by conjugation on Ey; it follows that §25 1 = ¢(Z) =z forz e G;.
Obviously the group S =<3, &|zeG1) is commutative and induces {@(G))> by
conjugation on K. Now just pick Z, for z € G, to be an element of S which induces
@(z); these choices may even be made consistent with previous notation though
that is not required. The map = — &, z €, is automatically a section for £ — @
since the image of x under Bz — ¢(G) Inn K is ¢ (z) and the image of ¢(z) under
¢ (G) Inn K — @ is z. Clearly this section satisfies (*). Q.E.D.
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