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ABSTRACT

Nonlinear exchange procésses of energy and enstrbphy between a zonal flow
and a disturbance is studied by numerical integrations of a low order set of
equations approximating the barotropic vorticity equation, and by numerical
integrations of a model which allow for a more general type of flow than what
may be described by the low-order system. This last model, called the extended
one, uses gridpoints to represent the y-variation of the flow and a spectral
representation of the x-direction. Results from numerical integrations of the
two models are compared with each other. It is found that the exchange of en-
ergy and enstrophy between the zonal flow and the eddies depends on both the
shape as well as the wave length of the eddy flow. Both models are tested lin-
early for stability. By comparing the results from the linear analysis of the
different cases with the magnitudes of the two-dimensional wave numbers for
the same cases, it is found that the question of stability or instability of
the zonal flow is related to how the energy is cascaded when it is given up by
the zonal flow.
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INTRODUCTION

The purpose of this paper is to investigate nonlinear interactions in a
barotropic model atmosphere; with the emphasis on the exchanges of energy and
enstrophy between the zonal flow and the eddy flow. Also we shall explore
some of the properties of the two atmospheric models that we are going to use
for the study of nonlinear interactions.

Probably the most well-known work in the field of nonlinear interactions
is the work by Fjgrtoft (1953). 1In this work the so-called blocking theorem
for energy flow is derived. ILater this work was extended by Charney and Stern
(1962) who showed that a similar theorem could be derived for quasi-geostrophic
flow provided one made the gradient of the potential temperature vanish at the
ground.

The transfer of energy between the mean flow and a disturbance in a baro-
tropic nondivergent fluid has been investigated by Platzman (1952) and by Wiin-
Nielsen (1961). 1In the present paper we shall use the low-order system of
equations derived by Wiin-Nielsen in the above paper.

The use of low-order spectral systems was initiated by Lorenz (1960). He
also used his maximum simplified system of equations to study the transfer of
energy between the zonal flow and a disturbance. The method of using a low-
order system of equations to study energy transfer has been used extensively
by Baer (1970a, 1970b, 1971).

Diagnostic studies of nonlinear interactions using atmospheric data have
been carried out by Yang (1967) and by Steinberg (1971).

One of the purposes of the present report is to provide material which
can be used for instructional purposes. It was therefore decided to include
a review of some well established results and adapt them to the cases consid-
ered here. For the same reason, the mathematical derivations have been given
in detail in most cases where it was thought to be necessary.



CHAPTER 1
A SIMPLE EXAMPLE OF NONLINEAR INTERACTIONS

In order to see in a simple way what nonlinear interactions mean, at least
mathematically, we shall use the simple equation

B

u
% bx - O (-1)

With U, being a constant this is the linear advection equation. In this con-
text we shall regard u as a function of one space coordinate, x, and time, t.
Then at each time step u may be written as the sum of a Fourier series:

From this expression we obtain for the derivatives:

A
d
a o Tm i
ot m dt ’
%5 = iz mﬁm(t) ™,

Substituting these expressions for the derivatives in (1.1), we get

A
imx dum
— = . .
% e 3t 1uomu]n 0 (l 2)

In order to satisfy this equation the following relation must hold for every m

du

m
—_— = . %)
3 iu md 0 (1.3)

Thus we have obtained an equation for each of the time dependent amplitudes.
The set of equations (1.3) is called the spectral form of the equation (1.1).

If, on the other hand, we allow u, to become time and space dependent as.
it will be in the meteorological equatlons we get an expression for dum/dt



which is somewhat different from (1.3%). Making uj = u in (1.1) we get the non-
linear advection equation

U
X +u x 0. (1.4)

An extensive amount of work has been carried out in order to obtain analytic
solutions of (1.4) and equations related to it. One contribution to these in-
vestigations was given by G. Platzman in 1964 (Platzman, 1964). In this work
he points out that even for the more general equation

a, w2
3 Y X v 2
o0x

one may obtain an exact, general solution. Also he remarks that "—the nonlin-
ear term u(du/dx) contains the most rudimentary form of the mechanism whereby
the spectrum of motion is modified through inertial exchange between spectral
components of different scales." This interaction of all the different scales
may be showed mathematically if we substitute the spectral expressions for both
u and its derivatives into (1.4). Doing this we get:

A
du imx i
s— ™ i sl () e P
m dt

'X A ipx
. T pu (t) e = 0 1.5
58 z 2l (%) , (1.5)

p and p' are, like m, wave numbers in the x-direction. 1In order to simplify

the equation above we put p + p' = m. Assuming this relation (1.5) may be
written:
imx dGm
. A A
s e - i ﬁ% pup'(t)up(t) = 0, p' =m-p. (1.5a)

In order to satisfy (1.5a) we must have for every m
dﬁm
— +izh (t)A(t) = o, p' =m-p. (1.6)
at P

From this equation we see that when ug ii no longer a constant, but becomes
time and space dependent, the change of Uy is no longer determined by the am-
plitude of that wave number alone, but it depends on the sum of the products
4 .Gp. In other words, the change of the amplitude on one scale is no longer
independent of the other scales as in the linear case, but is given by a sum
of covariances expressing the interactions between the different scales.



CHAPTER 2

CONSERVATION OF ENERGY AND ENSTROPHY AND RESTRICTIONS
ON THE EXCHANGE OF ENERGY

In this chapter we will show that both total energy and total enstrophy
(mean squared vorticity) are conserved for the case of barotropic flow, pro-
vided certain boundary conditions are fulfilled. For this type of flow the
governing equation is the barotropic vorticity equation

Yo (EH) = 0. (2.1)

ol

Assuming that the velocity, 3, is nondivergent, it may be expressed in terms
of a streamfunction, V:

> >
v = kx W.

The vorticity, €, now may be written

Using these expressions we get an equation with one dependent variable, V:

e 2 N
atvwﬂs-{wxvvw}wax—o. (2.2)

Before going any further we will assume that the motion is taking place in a
B-plane channel bounded to the north and south by rigid walls. Moreover, the
flow will be assumed to be periodic in the east-west direction. With D being
the width of the channel and L, the wave length in the zonal direction, the
total kinetic energy per unit area is

LX
- 1
K = Df

XO

LY gyax . (2.3)

O — g
<:*|r
<;4,

Using the streamfunction (2.3) becomes



g D
K = oL D f f V‘JJ ¢ V\lf dydx o (2.3&)
X O O

The time rate of change of K is

% D 3 Ik

) N
[ [ V5 dvax LDf
O O X (0]

|
=

2 oY
W % dydx .

o — Y

The last integral has been obtained by using the identity

() ol

Integrating the term on the left, we get

L

x D > o>
[ v . (W N dydx = $drxk « (W N .
R ot o ot

C means the total circumference of the area we are integrating over, 6; is a
vector line element being tangential to the circumference. From this line in-
tegral we see that the integral on the left vanishes if, in addition to the
boundary conditions we have already, we also demand that BW/St = 0 along the
northern and southern boundaries. The condition of periodicity will make the
contributions from the western and eastern boundaries cancel each other.
Having made the assumption BW/at =0at y=0and y =D we now proceed to
evaluate the integral

LX D
I .
o O

LD ot
X

Using the equation of motion (2.1) this integral becomes

) LX D L LX D
T3 J Ty v(e)ayax = = [ [ w - (vE)dyax +
X O O X o O
L, D
- )
+Lfowadeydx
X O O
L. D L.D D
- L o Getayax-—= [ [e@Exoy) - v a dx+—6—foXﬁw2dxd
LD LD YT D 3 4
X O O X O 0 X O O



The first integral above may be transformed into

LD
X

6 or x k - (;WQ).

C

Along the northern and southern boundaries (6? X E)' v =0at all points.
Hence, we get no contributions to the integral from here. Along the eastern
and western boundaries the contributions cancel in pairs because of the peri-
odicity condition. The second integral above is zero because

1l
O

(K x 70) - 9y

Finally, the third integral is zero because of the periodicity condition.
Hence, we conclude that:

— =0 (2.4)

L
X

- 1

Vo= — ]
o

T D dydx . (2.5)
X

By a procedure similar to the one used to obtain (2.4) one may show that

ai

= = o. (2.6)

Hence, for the type of flow we are studying both total kinetic energy and total
enstrophy is conserved.

Next we want to show that the exchange of energy between the different
scales of the motion is restricted. This was first done by Fjﬁrtoft (1955).
His analysis was based on barotropic motion on & sphere. Below we will repeat
parts of this work using a p-plane geometry instead of a sphere. 1In order to
separate the energy and enstrophy into their components on each scale of the
motion, we write the streamfunction

w(X;y;t) = %%wmn(t) € . (2.7)



% % means that we sum over all wave numbers in the x-, and in the y-direction
that we want to include in our model. For all practical purposes the number
of waves included will, of course, be finite.

Using the expression (2.7) for the streamfield we find that (2.3a) and
(2.5) may be written:

(2.8)

=i
1]
NOR
SM
=M
==
=]
+
=]
N—r

(2.9)

<
I
ol i
BM
jming!
<
E)
3

provided we are able to satisfy simultaneously the boundary conditions that we
have imposed on the flow and the conditions of periodicity which are required
in order to arrive at (2.8) and (2.9). For the zonal direction there is no
problem because we assume that the flow is periodic in this direction. One
way to assure that the normal velocity vanishes at every point along the south-
ern and northern boundaries is to make an expansion in only sine functions in
the y-direction and to restrict n to be integer multiples of n/D. With this
assumption the streamfunction is identically zero at all times along the south-
ern and northern boundaries. Moreover ¥ is periodic with a wavelength 2D in
the y-direction, but because we express it by sine functions only these func-
tions are orthogonal on the interval O <y < D. Hence, we know that ¥ may be
written in terms of functions which are orthogonal on the area we are inte-
grating over. This is what we need to form (2.8) and (2.9).

If we introduce the two-dimensional wave number q2 = m2 + n? we may write
(2.8) and (2.9) in the following way

- 1 A 2 1 ne 2
P~ — = — = 2. 8a

K 2L 2T E Ve 2K, (2.8)

- 1 - 1 2 _ a2 2 2

V = — = — = . .

LA 239 E V¥, o za K (2.92)
Here
1 2 A2 2 2 2
K = - = - .
q 2 a4 m Wmn’ . 4 o

Kq is the kinetic energy associated with the total wave number q. When we sum

over m we include only those @ﬁn for which n satisfies the relation n2 = q2-m2.

Depending on the relation between L, and D there will be one or more terms in
this sum for each value of (.



We may now make the following mechanical interpretation of the conditions
K = const. and V = const. This mechanical analogue of what we now call
"Fjdrtoft's blocking theorem" was first invented by Charney (1966). Imagine
that we have a weightless rod on which we suspend weights: Ky ,Kpye00, ete.,
at the distances q ,q2,..., etc. (Figure 2.1), and that these weights are bal-
anced by V. Equatlon (2.9) may also be written

2
v K =1V = 0 2.10
g q g ) | ( )

expressing the fact that the system we have made is in mechanical equilibrium
at any time. From our conservation theorems (2.4) and (2.6) together with
(2.10) we may now deduce that the total mass of the weights is the same at any
time, moreover these weights must always be arranged in such a way that the
system is kept in equilibrium.

> 2
qI q2 q3 qn
| I | I
Kil |K2| |Ks K,

v

Figure 2.1l. Mechanical interpretation of the equation %q?qu-l' v = o.

Returning back to the atmosphere we shall see how the energy exchange be-
tween the different parts of the flow becomes restricted because of the conser-
vation of energy and enstrophy. We will assume that there is an exchange of
energy going on between parts of the flow hav1ng total wave numbers a5 9o,
and qz . Also we will assume that q% < q5 For this simple system the conser-

vation of energy and enstrophy may be written

Ky, + Mg, + Kq, = 0,

(2.11)

l
O

MKy *a° MKq. * a5 K
4 ARy T 9y Mgy T A5 Mgg

A means the difference between the kinetic energy associated with a certain
wave number at the present time and a previous time. The system of equations
(2.11) may be solved for two AK's in terms of the third one. Solving for Aqu
and AKq5 we get:



q2 q2
3 2
= - K
by 2 2 Map’
q5 a4,
qe i qz
2 1
= - AK .
AK% 2 2 T4
9 - 9y

Based on these solutions one may ask: Under what conditions will Aqu and AKq_3
have a sign opposite to the sign of Aqu? For this to occur we must have

q2 q2 q2 _ q2

3 2 2 1
_E____E > 0, and > > > 0,
q3 4 q5 9

simultaneously. In order to satisfy both inequalities we must have

From this we conclude that no part of the flow can be a source or a sink of
energy unless it is at an intermediate scale. Hence, energy cannot flow con-
sistently in one direction. Any flow of energy from smaller to larger scales
must be balanced by flow in the opposite direction.



CHAPTER 3

DERIVATION OF THE EQUATIONS FOR TWO LOW-ORDER SYSTEMS

In this chapter we will derive two different sets of equations which may
be used for the numerical integration of the barotropic vorticity equation.
The first set of equations will approximate the barotropic vorticity equation
in a very crude way. The second set will be more general, and hence, a better
approximation.

The first set of equations are derived following the analysis given by
Wiin-Nielsen (1961). In this case we restrict the zonal flowtobe of the form:

u(y,t) = B(t) +c(t) - B(t) cos(2y) - C(t) cos(lny) . (3.1)

The family of curves described by this function for given values B and C can
vary between streong westerlies in the center of the channel with easterlies
near the walls and, on the other extreme, strong westerlies near the walls
with easterlies in the center of the channel. The streamfunction corresponding
to (3.1) is:

V(y,t) = D(B+C) 1-L+ 2 sin(ony) + £ sin(i\y) . (3.2)
D| o L

For the perturbation flow we will use a streamfield of the form:

E. (t) E (t)
V' (x,y,t) = lk sin(\y) sin(kx) + ‘QE"‘ sin(3\y) sin(kx) +
F, (t) F3(t)
+ sin(\y) cos(kx) + sin(3\y) cos(kx) ,

k k
(3.3)

which allows for one wave number (k) in the zonal direction and two wave num-
bers (A and 3\) in the meridional direction. The complete streamfunction is
then given by the expression

W(X;y)t) = :V(Y;t) + ¥ (x,y,t) . (5-1")

Note that the boundary conditions that we had to choose in order to get con-
servation of energy and enstrophy are satisfied when we define our streamfield

10



by (4.2) and (4.3). Equation (3.4) may now be substituted into the vorticity
equation (2.1). By using the technique developed by Lorenz (1960) we get six
forecast equations for the six amplitudes: B, C, El, E3, Fl, FB' These six
equations will be a coupled set of ordinary differential equations because the
amplitudes are functions of time only. With the notations

2
Q = >_\'2- ) R = % )
K k
the set of equations is
iB
T - BT -ERT,
ac
& - XQER -EF],
B e o83 Mt -l R
ae 1T 2(e) PP T 2(em) P T 2(er) O T gL M1l
dE
2 - 3Q-1 159 -1 R
T k[(B*C)FB 2(9+1) P11 7 2(9071) 1 T g1 5
ar r
1 e L@=3 o _sa*1 o Te-1 o _R_
a k_CEl 2(Q+1) BE 2(Q+1) BE5 2(Q+1) CE5 +1 EJ’
s [ 35q.- 1 150 - 1 R
ol -k_(B+C)E5 5(00+L) BB~ 2(00r) %1 " 3941 B ¢ (3.5)
We notice from the first two expressions in (3.5) that
< (mc) = o (5.6)
dat B , >

Hence the changes in time of B and C are not independent of each other. Phys-
ically (3.6) expresses that the total zonal momentum of the system is conserved.

From the streamfield (3.2) and (3.3) we see that our system of equations
(3.5) describes the changes in a barotropic flow which contains the spectral
components O and 1 in the zonal direction and 0, 1, 2, 3, and 4 in the latitu-
dinal direction. Hence, any flow pattern that we get by integrating (3.5) is
made up of these spectral components.

We will next show how one may derive a system of equations which describes
the changes with time of a flow having the same two components in the zonal

11



direction, but which is completely arbitrary in the south-north direction.
I.e., which has infinitely many spectral components in this direction. However,
the values of the dependent variables have to be calculated using gridpoints in
the north-south direction. This then puts a practical limit to the number of
degrees of freedom that we can allow the model to have.

The set of equations for this model is obtained in the following way: We
start from a streamfield of the form

W(X;Y)t) = Al(Y)t) + Ae(Y)t)COS kx + AB(Y;t)Sin kx . (3-7)

This then gives the following expression for the vorticity:

62Al 82A2 5 3°h 2
C - 3 + > -k A2 cos kx + 23 -k A5 sin kx . (3'8)
dy oy dy

From these two expressions we calculate d(/dt, -B(d¥/dx), and —E‘é?vag). This
gives us an expression for each term in the vorticity equation. Combining them
all together we find that in order to satisfy the vorticity equation we must have

2 2 2
9 E& _ ko, _a_ii s | - —a—{\-‘g Ko
- - - )
3\ 3,2 2oy |72\ 52 3 3\ &8 2
2 2 3
_a_ .a_..;A_g_ - k2A = k _a_A_ - sz E[i]_‘ - A i_jil: - BKA
%\ 52 2 e ) w3 \y)2 3
2 2 3
a_i E_AS - kgA = =k ‘a"'AE—2 - k2A2 %‘A‘]:‘ - A2 iA_l + BKAE ]
3y ’ 3y ’ o (3.9)

The velocity of the mean flow is given by u = -(aAl/By). We will now integrate
the first equation above, writing u instead of -(dA;/dy), and using the bound-
ary conditions

%% = 0 at y = 0,

Ay = 0 at y = 0,

A3 = 0 at y = 0, (3.10)

12



we get

e

k
% ° "3 A, =% - A T3 (3.11)

From the relation

2 2
d 8 3, 3 [A aA5 AAQJ

BT Tyl TSy

we see that this equation may finally be written

- A QA
ou k 9o 3 2
<, = - = A ~ - A -~ . -ll
dt EBy!VQBy 3 oy (5.11a)
Next we define
v, o= kAE,
v, = k_A5 ) (3.12)
and -
2
d Vs 2
ws N & Vs’
oy
2
d VC 5
wc = 5 - k Vc. (3.13)
oy
If (3.12) and (3.13) is now substituted into (3.1la) and the last two equations
of (3.9), we get these three equations written in the form
2 2
% 1 ; d v, ; d v
- - )
aws - (: 82€>
— = -kwW -ki(p-—%)V,
ot c ay2 c
W o
c - !
—_— = + - — o
= ki + k <5 2> v, (3.14)



When (3.1L4) is integrated numerically we also have to include (3.13) in our set
of equations. This is because we compute only the time changes of i, Wy, and
W, from (%3.1L), but on the other hand the values of Vg and V. are necessary in
order to compute the time derivatives in (3.14). Hence, at each time step we
must solve the equations '

aEVS 5
N K Vs B ws ’
oy
agvc 5
-k = .
S - kv, =W, (3.13a)
oy

for Vg and V, regarding W, and W, as known quantities.

The numerical integration of this model will be carried out with the fol-
lowing set of boundary conditions

Vv =0 at y =0 ad 7y = D. (3.15)

14



CHAPTER k4

ENERGETICS OF THE MODELS

When we derived the equations governing the motions in the very simple
model we made a distinction between the zonal flow, or mean flow, and the x-
dependent part of the flow. This distinction came about when we specified the
streamfunctions of the zonal flow and the x-dependent flow separately. Hence,
the amplitudes B and C are related to the zonal flow while Ey, EB’ Fy, and F5
are related to the x-dependent part of the flow or, as it is also being called,
the eddy flow. Because all these amplitudes are calculated separately we are
able to see how both parts of the flow change during the integration and how
they influence each other.

For the second model we made no explicit statement regarding these two
separate parts of the flow (zonal flow and eddy flow). However, as one may
see, part of the streamfunction does not depend on x. This then is the part
of the streamfunction which describes the zonal flow. Moreover, in this model
we have the magnitude of the zonal flow as a dependent variable. Hence, here
too we are able to follow the changes in the two parts of the flow separately
and also to see how they interact. Studying the nonlinear interactions between
the zonal flow and the eddies is one way of obtaining information about the dy-
namics of the model. Because of that this chapter will be devoted to the deri-
vation of some energy formulae that we need for this study. In Chapter 6 we
will investigate the dynamic stability of the flow. Here too, the distinction
between the zonal flow and the eddies will be essential.

To obtain the desired energy formulae we want we start with (2.2) which
may be written

%+3-v§+5% = 0. (k.1)

Fach of the quantities in this equation will now be separated into a zonal
mean value and the deviation from this mean value.

¢ = E""C')
v = x7+x7',
Vo= vy

15



v

By definition then £ = ¥' = ¥' = 0, and df/dx

Bg/ax = QU/3x = 0. If we put
V= VY + W' in (2.3%a) this formula becomes

b D Ly

— l - - '

K = = [W « wWdy + ffW-W'dxdy=K+K
2D 7z S

X

This separates the total kinetic energy into the kinetic energy of the zonal
flow and the kinetic energy of the eddy flow. Using the separation indicated
above (L.1) becomes

Lol Gy @em)ep L - o,
.@.; _L __E. -__g__ _a_g. _>v. 1 B\lf' —
St tig it axay+v VeSS = 0.

The term u(df/dx) = O because { is not a function of x. If we take the zonal
mean of the last equation, we get:

%+\7'.v€' = 0. (l‘-o2)

Using the fact that the wind is nondivergent v V¢' may be written

—>1 ! = . l-) - __a__ 1! - _,_a_ v@_l;
v 'v§ =V (C V) ay (C v ) ay (V By) b
or, by the derivative of a product
RN ¥ > T, o
-gy‘(jf —a;)=-;(u v') o+ 'a;( g)-

The continuity equation is du'/dx + ov'/dy = 0. Multiplication of this by u'
gives

% éi (u')2 +tu'=— = 0

Finally, by taking the zonal mean of this equation we get
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2 - S (yrv'). | (h.2a)

If in this formulae, too, we separate the streamfunction into its zonal mean
and the deviation from this mean value and get

ak g w0 3t B 3!
% - "1p vy -5 f L avax. (.3)
X o O X o O

From Chapter 2 we know that dK/dt = 0. The first integral on the right-hand
side evidently represents the change in time of the zonal kinetic energy and
the second one the change with time of the eddy kinetic energy. Because the
total kinetic energy is conserved, these changes have to be equal in magnitude
but opposite in signs. Hence, a formula for the conversion of eddy kinetic
energy into zonal kinetic energy or vice versa may be obtained from either one
of these integrals. Taking the first one, we get

dK D =

2 - _ly398

R R
o

Using (L4.2) this becomes

& 12 82(u'v')- 12 d(u'v')

T T pIVT W s mplaTg T
o) oy 0

at

From these results we see that the conversion of zonal kinetic energy into eddy
kinetic energy is given by
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D
(K, K} = %fﬁ 5 - (L.k)
O

This expression tells us that if the zonal wind is positively correlated with
the convergence of momentum transport there is a conversion from eddy kinetic
energy to the mean flow kinetic energy, while negative correlations between
these two quantities give rise to the opposite conversion. '

The zonal velocity is u = -(J¥/dy) (v = (/&x)¥ = 0. We will now show
that under the boundary condition aw/at =0at y =0and at y = D the mean
value of ﬁ, calculated in the y-direction, is time independent. This mean
value 1s given by

Which shows that ﬁM is independent of time because @D and @O are. This conser-
vation in time of Oy implies that only a certain fraction of the zonal kinetic
energy may be converted into eddy kinetic energy. The amount available for
conversion is found in the following way: Starting with

u o= u +u'. (4.5)

The zonal kinetic energy is

D
_ L2
KZ = 2D£udy. . (4.6)

This equation has also been used by Platzman (1952) in his investigation of the
. transfer of energy between the mean flow and a disturbance for the same kind of
flow as we are dealing with. Using (4.5) we may separate the integrand in (L4.6)
into two terms

150 - -2 1 -2
= — 4+ 13! d = -
& op | (wtu')dy > T o

o — g

D
s 7 ()%,

The first term on the right-hand side does not change with time, hence this
part of the energy cannot be converted into eddy kinetic energy. The available
part is given by the second term. Using (L4.5) once more this term becomes
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D
K = = [ (a-u0)%y. » (4.7)
(0]

= dydx . (2.5)

This, too, may be separated into two parts, one depending only on the zonal
flow and another depending on the eddy flow. These parts we will call Vy and
Vg, respectively. We get the expressions for them by writing

=B

If this expression is substituted for { in the integral above we get

D ;2 Ly D 2
= 1.5 (¢')
= dy + dydx = +V_.
Vo= gl ey [ Vg T Vg
(0] X O O

The formula giving the conversion of zonal kinetic energy into eddy kinetic
energy or vice versa may be obtained by forming dVZ/dt or dv. /dt The simplest
seems to be to use dVZ/dt.

&

av
Z d
3t

—z _ 1
dt D

o — g

By using (L4.2a) and performing an integration by parts we get

QU AUV ) 4y | (4.8)

We see that if the integral is positive we get an increase of zonal enstrophy.
This increase must be compensated by an equal decrease of eddy enstrophy. Hence,
we may obtain the conversion of zonal enstrophy into eddy enstrophy from the
formula

D 2- —
et (1.9)
o dy

19



We found above when we worked with the kinetic energy that the boundary
condition d¥/dt = 0 at y = 0 and y = D implies that the mean zonal velocity
will be time independent. From this we deduced that the kinetic energy of the
zonal flow consists of two parts, one which is time dependent and one which is
not. Only the time dependent part may be converted into eddy kinetic energy.
Hence, there is a lower bound to the amount of energy that may be transformed
into eddy kinetic energy. We shall now see that if we require Bu/at =0 at
y = 0O and y = D this implies that the mean zonal vorticity is time independent,
and that, in a way similar to what we did with the kinetic energy, we may use
this time independence to establish a lower boundary on the amount of zonal
enstrophy that may be converted into eddy enstrophy.

Ul
Il
(el o
o — g
vl
O,
o
1l
1
(R e

(el o

L1l )y - 1{E) @ =i{%“%}
at A Y7 D w7\t D .

Hence, if the zonal velocity does not change with time at the boundaries then
dfy/dt = 0. The zonal enstrophy is

1
v, o= =

)
. m T ay. (4.10)

— U

o

Writing € = E, + ', we see that this integral separates into
M

D D
1 :2 1 z.\2 1 - -2 1 z.\2
- = + — 1 = — - + — 1 .
v, o= St i (€)ay = o5 (ap-u) 2D£ (¢')7ay . (k.108)
From this expression we conclude that
D
: 1 2 oz \2 :
= — - av . .
Uy = o0 cf) (£-¢,)ay (k.11)

Hence, Vyay # Vy whenever the zonal velocity at the southern and northern
boundary is different and these velocities are kept constant in time. If they
are constant in time and equal §y = 0 and Vg, = Vg, which means that all of
the zonal enstrophy may be converted into eddy enstrophy.

In both of the models which were constructed in the previous chapter the
zonal velocities are kept constant along the two rigid boundaries. Moreover,
the value of the velocity along the northern boundary is, in each model, the
same as it is along the southern boundary. Hence, from the formula (4.11) we
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see that for both models Vopy = Vg- Later we shall show that the condition
dﬁM/dt puts a further restriction on the transfer of both energy and enstrophy
in the case of the simple model so that both the amounts of available energy
and enstrophy are actually smaller than what we get from the formulas (L4.7)
and (L.11).

We have already applied formula (L4.11) to the two models that we derived
in Chapter 3. This we may do because the streamfunction that we have used in
the current chapter is quite general except that it has to satisfy certain
boundary conditions. The boundary conditions that we have imposed on our
models are equivalent to the boundary conditions that we have used in this
chapter. Hence, both models are special cases of the general one that we have
worked on in this chapter and all formulaes derived here apply to the two
models of Chapter 3.

Using (3.2) and (3.3) we get for the simple model

- 1L 2,1 .2, .2
K, = 3 (B+)™ + " (B=+C7), (h.12)
2 2 2. .2
_ 1 (a"+k 2.2y, 1[0\ +k 2,2
g = 8< 2 > (B +F) +8< 2 > (B5+r5) (1)
\2
{KZ,KE} = - (B-C)(Elﬁé -E%Fl) , (4.1L)
B =y
Koy = 3 (B#C7), (k.15)
v, = 2B + uxece, (4.16)
1§x2+k%2 2,2 1((902+k%2 2,2
v, o= 3 (EZ+F7) +3 (B, +F.) , (4.17)
E 8 2 1 "1 8 2 3 3
k k
xg 2 2
{VZ,VE] = -7 ((2n)"B - (W) C)(ElFB'-EBFl) , (4.18)
.22 22
VZAV = A"BT + W\¢T = v, - (4.19)

For the second model we get by using (3.7):
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D
I S
K =3 g u dy , (4.20)
D AV \2 av>2
LA =L) L2 2,42
£ T ng{ke(a:) +k2<8y +Vc+VS} dy , (k.21)
1 D | |
(K, Ky} = ﬁgu{VSWC'VCWS]dy; (k.22)
D
N N |
bav T £ (-, )"dy (4.23)
D /37\2
. L _a_>
v, = 2D£<_ay dy (4.2h)
v o= 27 e (1.25)
E  Ipk Vs el y
_ . L b
T o A R AR AU (4.26)
D -
S S T CHEN
Voav T 2 £ <8y> dy = V- (k.27)

In Chapter 2 we saw that the energy and enstrophy may be separated into
the amounts of energy and enstrophy on the different wave numbers. Also we
found that the total enstrophy is given by the sum of the products of the en-
ergy components and their corresponding two-dimensional wave numbers. This
separation of energy and enstrophy into wave number components and the rela-
tion between total energy and total enstrophy is easily demonstrated for the
simple model. As we have said already we have in this model the two wave num-
bers 0 and 1 in the zonal direction and O, 1, 2, 3, 4 in the north-south direc-
tion. Hence, using subscripts to indicate wave numbers, equation (4.12) may
be written

7 0,0 0,2 0,4’ (k.122)

where

_ 2 _
KO’O = (B+)", K

n |-

Likewise, (4.13) may be written:
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K, = K1,1+K1,5 o 5 (4.13a)
K _ 1("+k (E2+F2)
1,3 8 K2 %

In the same way (4.16) and (L4.17) become
vV,oo= (ex)2 K.+ (Lo\)2 K (4.16a)
z 0,2 0,4’ ’
2.2 2. .2
v, = (N +k )Kl,l + ((3\)" +k ) Kl,B. (4.17a)

We will now return to the questions about how much of the zonal energy is
available for conversion into eddy energy and how much zonal enstrophy is avail-
able for the same conversion. By the principle that only the time dependent
part of the zonal kinetic energy is available for conversion we have found that
for the simple model

2,2

K = (B~+C7) . (4.15)

ZAV

e

To get at this formula we had to establish that GM is independent of time.
In the case of the simple model Uy is given by

aM = B+C. (4.28)

Hence, the changes in time of B and C are not independent. Due to this we may
assume that Ky py may have a minimum value which is different from zero. In
that case KZAV in the way it is now defined is not the proper zonal available
energy. The actual amount will be the difference between KZAV as it is now
defined and the minimum value of this quantity. The minimum value is obtained
by using the calculus of variation:

1

5 = = (B3B +
- > (BSB +CBC)
8 = -8B,

8K . (B-C)3C
ZAV 2 ’

23



Hence, BKypy =0 when B = C = §y/2. The minimum value of Ky, when B = C is
ﬁM/8. This gives for the amount of zonal energy that is really available for
conversion into eddy energy

no

M

- 2 ..
K —M(B+C) 8

ZAV

Using (L4.28) this may be written
(B"C) . (Ll'c 29)

Note that (4.29) is a redefinition of Kyjy and does not correspond to (k.15).
In a similar way we shall also show that (L4.28) imposes a minimum value which
is different from zero on Vy,y &s it is defined by (4.19).

2 2
o) = ®B + o)
VZAV N\ 2B5B + 8\ CdC ,
60 = "6B k)
BV = 2>\2(B- 4c)se .
ZAV

Hence, &V, ,y = O when B = LC = (h/5)ﬁM. Again using (L4.28) we find that Vopy
should be redefined to be

2
A 2

VZAV =5 (B-Lc)™. , (4.30)

From that we have just done we see that the fact that the total zonal mo-
mentum in the simple model is expressed only in terms of B and C puts an extra
constraint on the transfer of energy in this model in addition to the constraint
we get from the conservation of total zonal momentum. With more degrees of
freedom for the zonal flow this additional constraint will not come into play.

From formulaes (4.4) and (4.9) we see that the quantity (3/dy)(u'v') is
essential for both the exchange of energy and enstrophy between the eddies and
the zonal flow. This quantity expresses the divergence of the zonally averaged
momentum transport. By using the streamfunction for the simple model we find
that the divergence of momentum transport in this model may be written

2k



2
Ty - 2 -
- (u'v') ” (E1F5 E5

Fl)(cos(EKy)- cos(lny)) .

For later use the term E1F5-E5Fl will be denoted by M. From the expression
we have just obtained we see that the sign of M determines where we will have
convergence or divergence. Formula (4.1L4) may now be written:

x2

(K - (B-C)M . (4.1ka)

K =
7’ E}

This formula tells us that the direction of the energy flow in the simple model
is determined by the signs of the two terms B-C and M. We see that when B > C
we must have M < O to get a conversion of zonal energy into eddy energy. If

B < C we must have M > O in order to get the same conversion. The reason for
this may be explained as follows: When B > C the zonal velocity field will
have a more or less pronounced single jet structure. How pronounced this struc-
ture is depends on how much greater B is than C. On Figure 4.1 we have showed
a graph of the function

F(y) = cos(2\y) - cos(bry) .

I | I I
-2 -1 0] I 2

Figure 4.1. Graph of the function cos(2\y) - cos(kny).

When M < O we see from the graph that there will be a divergence of momentum
transport at the center of the channel and a convergence to the north and the
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south of the center, thus indicating that momentum is being transported away
from the zone where the zonal wind is strongest. The zonal wind here decreases
and it increases to the north and to the south. The zonal wind field is thus
changing its shape and the value of the zonal wind is everywhere getting closer
to its mean value. This implies that the zonal kinetic energy is decreasing,
because it is the deviation of the zonal wind field from its mean value that
determines the amount by which the zonal kinetic energy exceeds its mean value.

When C > B the zonal wind field will have a more or less pronounced double
jet structure. There will be one jet to the north of the center of the channel
and one to the south. From what we have already said it is easily recognized
that the sign of M must now be opposite to what it was in the previous case if
we want the same conversion of energy to occur, because now we want a transport
of momentum towards the center. As in the previous case this transport of mo-
mentum will reduce the deviations of the zonal wind from its mean value, which
implies that the zonal kinetic energy will decrease, which in its turn implies
an increase of eddy kinetic energy.

Some information on how this transport of momentum comes about may be ob-
tained if we calculate the slope of the trough and ridge lines. 1In the simple.
model the streamfunction describing the eddy flow is

V! (X;Y)t) =

bl Lo

{El(t)sin Ay + EB(t)sin Z\y}sin kx +

+ i {Fl(t)sin Ay + F5(t)sin 3\y)cos kx .
Let us for simplicity write this streamfunction as
V' (x,y,8) = Lo(y,t)sin(kx) + Le(y,t)COS(KX) .

1

At the trough and the ridge we must have

v o= %%: = k{Ll cos(kx) - L, sin(kx)} = 0.
Hence, we have the equation
Ll
—= - tan(kx) = O (4.31)
L2

By differentiating this we get

26



d 2 d k
M Q‘Vldy- > x = 0,
L cos (kx)
2
or
k
iy o e
dx 2 dL dL
cos (kx) 1 2 L

—_— 1 -
dy 2 dy 1

After we have substituted for cos®kx from (4.31), expressing cosgkx in terms
of tg%kx, and also calculated the term (dLl/dy)L2 - (dLy/dy)L; from the defi-
nition of Ly and L2, we find that dy/dx may be written:
3, 2, .2
k +
dy (Ll 'LE) 1

ax  2(l-cos(2y)) M sin(ay) (.52)

From this expression we see that the sign of dy/dx depends only on M and
sin(2vy) (sin((27/D)y)). The first case we discussed above had M < 0. In
this case the streamline pattern will look as it does on Figure 4.2. With

Figure 4.2. Streamfield when M < 0. The eddy flow is superposed
on a zonal flow defined by u(y) = 15(1 - cos(iry)).
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this tilt of the ridge and trough lines the eddy flow will transport momentum
away from the cénter of the channel. There is a northward transport of momen-
tum north from the center of the channel because northward-moving air particles
are associated with a greater west-wind component than are southward-moving par-
ticles. At the southern side the transport is caused by the southward-moving
particles having a greater westward-wind component than northward-moving parti-
cles. In the case when M > O which was the case when we needed a momentum
transport toward the center of the channel in order for the eddy kinetic energy
to grow, the streamlines will be similar to what they are on Figure L4.%. Here

Figure 4.3. Streamfield when M > 0. The eddy flow is superposed
on a zonal flow defined by G(y) = 15(1 - cos(k\y)).

one finds that the southward-moving particles have the greatest westward-wind
component in the northern half of the channel, and the northward-moving parti-
cles have the greatest westward-wind component in the southern half of the
channel, thus giving rise to a net transport of momentum towards the center of
the channel.

To sum up, we have found that the conversion of zonal kinetic energy into
eddy kinetic energy is accomplished by the transport of momentum by the eddies.
For this transport to occur it is essential that the trough and ridge lines are
tilted, i.e., their orientation is not strictly along the parallels.
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In the above discussion we have concentrated on the conversion from zonal
to eddy kinetic energy. Of course, the same kind of mechanism that we have '
just outlined is responsible also for the opposite conversion to occur.
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CHAPTER 5

. DERIVING AN ALTERNATIVE SET OF EQUATIONS FOR THE SIMPLE MODEL

In Chapter 4 we defined the quantities Kl,l’ Kle, and M; where Kl,l and
Kl,3 are the energies on the wave numbers 1,1 and 1,5 of the eddy flow, respec-
tively, and M is proportional to the divergence of momentum transport. From
the system of equations (3.5) we may now derive an equivalent set of equations
where Kl,l’ Kl;B’ and M are among the dependent variables. This new set of
equations is:

dB

ap e

ac

a A,

dK r

A R 79-1

dat k [ 2(1+Q) B 2(1+) C} M
?—Kj— = -k _2Q-1 p. XL iy
at [2(1+9q) = 2(1+9a) ’

o )139-1 ., 15Q-1 Q+l . 79-1
k{[l+9QB 1+99 % %.+[1+Q B+ 1+q C]K5

- -
pl 2Ly, g N},

[2(1+) (1+99)(1+)
an _ ., [3e-1 8 ] |
e T RS [Ty N R (>-1)

Here Q = A%/k, R = p/k°, and N = B)E; + FiF;. For simplicity we have written
K; and K5 instead of Kl,l and Kl,i‘ Also in later chapters we shall stick to
this notation, except in cases when it may give rise to confusion. Comparing
(3.5) and (5.1) we see that the latter is simpler. It also gives us directly
the quantities we are interested in. For these reasons we will rather use (5.1)
than (3.5). We notice that the first two equations are the same in (5.1) as
they are in (3.5). In the previous chapter we found that B + C = ﬁM, and also
that dﬁM/dt = 0. Hence, one of these equations may be replaced by a diagnostic
equation which simply gives B (or C) as the difference between &y and C (or B).
One can also show that the dependent variable N may be calculated from a diag-
nostic equation, and that it is in fact, not independent of the other eddy vari-
ables. This we may do in the following way: The four equation for the eddy
quantities may be written:
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7;% = - % kaM,

d_:g_ , --;-kaM,’

%% = -k{sKl-+aK5'*7N],

(_i.f_ - : (5.2)

where

(- B

P - T T O

) R TR 2

In general, o = a(t), p = B(t), and y = y(t) because B = B(t) and C = C(t).
Under these general conditions one may write:

dK
kM dat ’
d
B = __2—_%_
kM dt ’
1 dN
Y - kMdt’ (5')4')

Substituting from these expressions for &, B, and y into the third equa-
tion of (5.2) we get

du 2 % 2 % 1 dn
— = k(K === -K =—=+N=—
dt 1 kM dt 3 KM dt KM dt

which also may be written:

a dK
o x —K-3-+2K —=

at 1 dt 5 a6 N at



or

2 2 |
L A TLE (5.5)

N should therefore be considered as a convenient dependent variable, but
it does not have a separate dynamical meaning or interpretation. As a matter
of fact (5.5) could be used to disregard one of the four equations for the eddy
variables although we did not do that in our minimum integrations.

It is naturally also possible to show (5.5) by direct algebraic manipula-
tions, i.e., to prove the identity

(2 +F°)

2 2
- - = 4

13 13 7

=
o -

Ll 2, R
o By ¥ F5) - (B)Fy - By

as is easily done.
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CHAPTER 6

LINEAR STABILITY ANALYSIS

In this chapter we will carry out a linear stability analysis of both mod-
els. Also we shall demonstrate that stability in the linear sense seems to be
related to the nonlinear properties of the models. In the case of the extended
one the stability analysis will only be an approximative one, This because we
are not going to allow the flow to have a completely general variation in the
y-direction, but rather restrict its variation to be made up from only a few
Fourier-components. For the gonal flow we assume a profile of the form (3.1);
which is, as one can see, the same zonal wind profile as we have for the simple
model. The eddy flow we allow to have three wave numbers in the y-direction:
N, 3\, and S5\. Thus the only difference between this model and the simple one
is the wave number 5\ of the eddy flow. For the sake of brevity the linear
stability analysis of the model including the wave number 5\ will be called the
analysis of the extended model, understanding that it is an approximation.

For the linear stability analysis of the simple model we take as our
starting point the equations (5.1). The linearization is done by leaving out
the first two equations and by regarding B and C as independent of time in the
rest of the equations. Using the notation we have defined in (5.3) we get

dK
1

. _ ka
w0 "2 W
dx
3 . By,
dt 2 7’
aM
— = =k + +
" (BK, 0K, yN) ,
dN _
d't - k.'yMu (6-1)

These equations are all linear because Q, B, and y are all independent of time.
The equations (6.1) may be combined into a single one by taking the second de-
rivative of M with respect to time and then substitute for dKl/dt, dK5/dt, and
dN/dt from the other equations. The single-equation that we then get, is

)
d 2, 2
—< +k(y -ap)M = 0

dt2
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This equation, we know, will have trigonometric solutions if
2
Y > 0B, (6'2)

in which case the flow is said to be stable. If, on the other hand,

72 < 0B, - (6.3)

we will get exponential solutions; and the flow is said to be unstable. From
(6.2) we see that a sufficient condition for stability is that

ap < 0. ‘ (6.4)

This is the condition that will enable us to relate stability in a linear sense
to the nonlinear properties of the flow. Note that (6.L4) would be the exact
condition if we neglected the variation of the Coriolis-parameter in the model.

In the case that the flow is stable we define the period of its motion to
be

2n

kN7 - op .

When it is unstable, the e-folding time of the perturbations is given by:

T =

1
T =

o2

Results from this stability analysis are presented in Table 6.1 and on
Figures 6.1-6.3. In the figures we show the combinations of L and Ly (Ly==2D)
which give instability for given values of B and C. Isolines are drawn through
points having the same e-folding time.

Comparing the Figures 6.1, 6.2, and 6.3 we see that the region of insta-
bility changes from one case to the other.  Regarding «, B, and y as functions
of Ly and L _makes it possible to relate the positions of the stability zones
to the magnitude of the two-dimensional wave numbers of the simple model. If
we use the criterion of < O for the case shown on Figure 6.1 with B = 30 m/s
and C = 0 m/s, this criterion indicate stability whenever Q < 1/3; and as one
can see from Figure 6.1 the region of instability is situated well below this
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TABLE 6.1

SHOWING FOR WHICH COMBINATIONS OF B AND C INSTABILITIES
OCCURRED IN THE SIMPLE AND IN THE EXTENDED MODEL

B(m/s) C(m/s) Simple Model Extended Model
30 0 instabilities instabilities
25 5 no instabilities instabilities
20 10 no instabilities instabilities
15 15 no instabilities instabilities
10 20 no instabilities instabilities

5 25 instabilities instabilities
"0 30 instabilities instabilities

line, corresponding to values of Q being greater than 1/5. We may now compare
the value Q = 1/5 to some of the values listed in Table 6.2. Here we have
listed the magnitudes of the two-dimensional wave numbers (in units of A) for
different values of Q (the two-dimensional wave number O not included). Com-
paring the three first lines of this table we find that Q = 1/5 is the value
that mekes VK2 +A2 = 2\, @ > 1/3 makes VK2 +A2 < 2\, and q < 1/3 makes

Jk2 +32 > 2. Since Vk2+ON2 will always be greater than both k2 +A2 and
2\, these results suggest that we will get stability when the wave number of
the zonal flow is smaller than the two-dimensional wave numbers of the eddies
that interact with it, and that, on the other hand, instability might be fa-
vored when the zonal wave number lies between the eddy-wave numbers.

TABLE 6.2

MAGNITUDE OF THE EDDY WAVE NUMBERS RELATED TO THE
ZONAL WAVE NUMBERS FOR DIFFERENT VALUES OF Q

Q 2 o [,z [e) 02 L/ Ty
/2 ov NEESN Jiin V2
/3 oo I 2 o sn V3
A2~ N Y J 5 V13 2
Y1 o o 24 2a 'y NI
/10  ov  la Ji1a Jion W10
/15 2 I o én V15
/20 2 NETRN Joon W19
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Remembering that C = O in this case, so that there is no initial energy on wave
number 4\ of the zonal flow, it is clear why the relation between the eddy wave
numbers and wave number 2\ of the zonal flow is important in this case.

In the next case, which has B = 5 m/s, C = 25 m/s, we find that there is
always stability when Q > 1/10 when Q < 1/18. These values are not as easily
related to the magnitude of the wave numbers. The reason for this being of
course that because we now initially have energy on both the zonal wave numbers,
there will be a cascade both up and down the wave number spectrum, even if the
eddy wave numbers are not symetrically placed around any of the two zonal wave
numbers.

The last case with the simple model has B = O m/s and C = 30 m/s; which
means that all the zonal energy initially is in wave number 4\. Here our as-
sumption that instability is favored when energy may be cascaded away from the
zonal wave number towards both a higher and a lower wave number, is confirmed.
The criterion ap < O gives us the values @ = 1/7 and Q = 1/15 for the stability
boundaries, and from Table 6.2 we find that 1/15 < Q < 1/7 corresponds to a
range in which the eddy wave numbers have values which make one of them larger
and the other one smaller than U\,

The approximate analysis of the extended model is carried out in the fol-
lowing way: The linearized version of the barotropic vorticity equation is

2-
29y - 9 , .2 au oy
—_— o = ") 4+ ==\ .
v 3t Y (V¥) Q% d 2:> X 0 (6.)
y
Here V' = V' (x,y,t) is the streamfunction of the perturbations, and 4 = u(y) is

the zonal flow; which is kept constant with time but allowed to vary with y.
In both models that we consider the variation in the x-direction is expressed
by one single Fourier-component. Using this we may write the perturbation
streamfunction in the following way:

Vy,t) = ofy) et (6.6)

Substituting this into (6.5) we get:

2 2- _
(u-c) d—g R é-%)oc =0 (6.7)
dy

Now the problem is reduced to a problem of finding for which profiles of u and
o we get complex values of c, and for which we get real values. In the numer-
ical integrations that we shall carry out later, we shall always start with the
same initial fields for both models. Hence, also for the extended model we are
going to assume that the zonal wind intially is given by:
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u(y) = B+C - B cos(2y) - C cos(lny) (6.8)

In the case when we integrate the linearized version of the models this profile
is, of course, not going to change during the integration. As mentioned ear-
lier we will restrict « so that it is defined by:

a = Zo sin(n\y) , n=1,35 (6.9)

By substituting (6.8) and (6.9) into (6.7) we get after a considerable amount
of manipulations: '

(ulc~+Rl)oi + REOB + R5a5 = 0
Rual + (uzc +R5)045 + R6Ot5 = 0
R7Otl + Rgoc3 + (u30 +R9)Ot = 0 (6.10)

)

Here the u's and the R's are defined by:

.y - I

ug - “2 + 9X2

= W2+ 258

o= 8- (D)) - 2 (-3
R, - '-';; (W2 +55) - 2 (u°-1Y)

R = 5 (wra)

R, = 2 (5o - 2 (195

R = b - () (i)

R = g(“2+217\2>
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_ 82 452
R7—2(u 15\7)
_ B 2,502
Rg = 2(u+5x)
o 2 2
Ry = B - (u +t25.7)(B*C)

For this system to have a nontrivial solution its determinant must equal zero.
Calculating the determinant and equating it to zero gives a third order equa-
tion in c:

/R. R_ R R R -RR -RR
Sy L 2,.28)2, (25 2k M BR’Y 68c+
- 4% 4% Usts
1 | _
+ ulug‘% (Rl(R5R9-R6R8)+R2(R6R7—RMR9)+R5(RAR8-R5R7)) = 0

Tnis equation has been solved numerically for different values of u, A, B, and
c. For each pair of values of B and C we allowed p and A to vary through their
whole range of values, thus obtaining diagrams similar to those that we got for
the simple model. The results from four cases are shown on Figures 6.4-6.7.
Also in Table 6.1 we have summarized all the cases that we worked out. First
we note from Table 6.1 that this analysis gave instability ‘in all cases, while
the analysis of the simple model only gave instability for some pair of values
of B and C. Secondly, from the graphs we see that for the same pair of values
of B and C the zones of instability are larger with the extended model than
with the simple one, indicating instability over a much wider range of Ly-
values for a given Ly-value. Thirdly, we see from Figure 6.7 that the zone of
instability in the case of the extended model may consist of two almost en-
tirely separated parts. :

On Figure 6.4 we have drawn the line Q = 1/5. The unstable region is well
below this line, indicating that as far as stability is concerned the two mod-
els may very well be subject to the same rules. In the case of the simple
model we related the stability to the condition 2\ < Vk2+A2. Also in the ex-
tended model we may get 2\ < dk2-+k2 or 2n > ~sz-+x§ depending on which
values of L, and Ly we use, furthermore 2\ < ~Jk§'+25k for any value of k.
Hence, the addition of a new wave number does not seem to have any importance
here, and it is reasonable therefore that Q = 1/5 is a common stability bound-
ary in both models. The larger region of instability in the extended model and
also that this region is further removed from the stability line, than it is in
the case of the simple model, indicate that the conditions for instability are
slightly different with the two models. However, still it is true that when we
have instability the zonal flow is cascading in both directions. Hence, it
seems that our main conclusions are still valid, and that the extra wave number
only has changed the results quantitatively.
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Figure 6.4. Approximate instability diagram for the extended model.

Zonal flow defined by B = 0 m/s and C = 30 m/s.
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Figure 6.6. Approximate instability diagram for the extended model.
Zonal flow defined by B = O m/s and C = 30 m/s.
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Figure 6.7. Approximate instability diagram for the extended model.
Zonal flow defined by B = 15 m/s and C = 15 m/s.
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In the next case, having B = 5 m/s and C = 25 m/s, we find that the sta-
bility boundary defined by Q = 1/18 which we obtained for the simple model also
fits the extended model. The other boundary, given by Q = l/lO, is obviously
irrelevant in the case of the extended model.

The last case that we want to discuss has B = 0 m/s and C = 30 m/s. As in
the previous case one of the stability boundaries fits both models. This bound-
ary is defined by Q = 1/15. The value Q = 1/15 corresponds to the value when
Jk2-+k§ = ). For smaller values of Q we see from Table 6.2 that the magni-
tude of all the eddy wave numbers are greater than Un. For any value of k,
JK2 +25.2 > . As in the case when B = 30 m/s and C = O m/s we have a value
of Q that, if it is surpassed, will ensure that all the eddy wave numbers are
greater than the zonal wave number. Hence, from the reasoning that stability
or instability depends on the magnitude of the wave numbers, the coincidence of
the stability boundary in the two models seems reasonable. From Table 6.2 we
see that qQ > 1/7 is the range of values for which both eddy wave numbers of the
simple model are smaller than»hx. Hence, one would expect stability for Q:>l/7
in the case of the simple model. In the case of the extended model it is im-
possible for all the eddy wave numbers to be smaller than bN. Hence, from the
point of view that we will get stability when the eddy wave numbers are either
all smaller or all larger than the zonal wave number in question, one should
not expect Q = L/7 to apply for the extended model.
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CHAPTER T

DISCUSSION OF SOME NUMERICAL INTEGRATIONS

For all the integrations to be discussed in this chaptér we used the fol-
lowing initial conditions:

B = 0 m/s

C = 30m/s
K. = 100 m2/52
l .
K, = 25 m2/s2
5

M = 0 m2/s2

N o= 100 ma/s2

These values of B and C give us an initial zonal flow that has a double jet
structure. At both maxima the velocity is 2C (i.e., 60 m/s). These maxima
are situated at y = D/4 and at y = 3D/L4. The parameters that varied from one
integration to another were L, and D (i.e., ). In all integrations we used
the value 1.6 ° lO'll l for the northward (y-) derivative of f, the Coriolis
parameter. ’ :

For the first four integrations we had L, = 3.75-10° m and D = 3.00- 1P u
With the initial values that we have listed above and the values of L, and D
that we have just mentioned the perturbation flow will initially carry anamount
of energy that is approximately 9% of tae total energy.

‘The first case that we integrated was a linearized version of the simple
model. Some of the results from this integration are shown in Figures 7.1-7.L.
Figure 6.3, which is for the linear stability analysis of this case, shows that
With Le = 3.75-10° m and D = 3.00 - 100 m this ‘type of zonal flow is stable.
This is confirmed by the numerical integration,'all the curves on the Figures
T.1-7.4 are either constant with time or they have a time variation which seems
to be expressible by trigonometric functions; none of the curves show signs of
either an exponential increase or decrease with time. The trigonometric nature
of the solution is most obvious from the diagrams in Figure 7..4 where some of
the results have been graphed for a longer period of time than that of the
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previous figures. Figure 7.l shows that there is a net feeding of energy into
the eddy flow during the first 14 hr of the integration. It also shows that
this energy is entirely used for the increase of energy on wave number 3 and
that wave number 1 is giving up energy during the same period of time. At the
end of this period (Kg,Ky} changes sign, indicating that the eddy flow is now
giving up energy. Figure 7.2 shows that M varies in a directly opposite manner
to {Kg,Ky}. This is what one would expect, knowing that these quantities in
this case are related to each other by the formula

{KE’KZ} = =-QkCM,

and also knowing that Q, k, and C are all time independent.

Figure 7.3 shows that Vg, the eddy enstrophy, also increases during the
first 14 hr. Finally, we note that Kypy, Ky, EZ,‘and Vypy @re all constant
with time. This is because they are all expressed in terms of B and C only,
which do not change with time in this integration.

Our next case was an integration of the nonlinear equations governing the
simple model. Some of the results from this integration are shown in Figures
7.5, 7.6, and 7.7. Again we notice that K; decreases K; increases to begin
with; this changes when {Kg,Ky} changes sign, so that when the eddies are
feedihg'the zonal flow this i1s done by K; giving up more energy than e} gains.
Figure 7.6 shows that. at any time the deviation of the zonal flow from its
mean value isfsmall. Hence, only a small fraction of the zonal kinetic energy
is transformed into eddy kinetic energy. The relatively small changes of the
zonal flow during the integration also manifest themselves by the close rela-
tion between the time variation of M and (Kg,Kz}. Knowing that the zonal flow
changes by only a small amount, we may expect the changes of the term B-C tobe
small also; hence, the time variation of (Kg,Ky} is mainly determined by the
time variation of M.

Comparing Figures 7.7 and 7.6 we see that the variation of enstrophy is
closely related to the variation of energy; when the zonal energy increases the
zonal enstrophy increases, and when the zonal energy decreases this is accompa-
nied by a decrease of zonal enstrophy. Moreover, because of this and the con-
servation of both total energy and total enstrophy, the changes of eddy energy
and eddy enstrophy have to be related in the same way.

The first integration of the extended model was done with the zonal flow
kept constant; i.e., we integrated a linearized version of the model. The re-
sults are shown in Figures 7.8-7.1l. ALl the curves are either straight lines
or they have a shape that indicates an exponential variation with time. The
linear stability analysis of this case (from Figure 6.6) tells us that the
zonal flow is unstable. This is confirmed by the exponential variation of the
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quantities graphed in Figures 7.8-7.11. The first thing that we note about
this integration is the steady increase of kinetic energy on all the eddy wave
numbers. Of course, this implies that the total eddy kinetic energy is in-
creasing and also that there is a steady conversion of zonal kinetic energy
into eddy kinetic energy; as can be seen from Figure 1.9. Figure 7.10 also
tells us the same as we learned from Figure 7.7, namely that the variation of
enstrophy is related to the variation of energy. Figure 7.9 shows a steady
increase of the eddy kinetic energy. Figure 7.10 shows a similar increase of
the eddy enstrophy. Figure 7.11 has been added simply to show that the numer-
ical solutions obtained for the eddy quantities are truly exponential.

The last case using the values of L, and D that we listed to begin with,
was a nonlinear integration of the extended model. Results from this integra-
tion are shown on Figures 7.12-7.1lhk. From the linear stability analysis and
from the previous integration we know that this integration is linearly unstable.

In the stable cases that we integrated with the simple model the linear
and the nonlinear version behaved in a way very similar to each other. In the
present unstable case we see that although there is a correspondence to begin
with the two integrations become entirely different after some time. This is,
of course, due to the constraints on energy and enstrophy that we have in the
nonlinear case, which prevent the dependent variables from becoming unbounded.

Looking at Figure 7.12 we see that the energy is increasing on all three
wave numbers to begin with. Also we notice that due to the addition of more
wave numbers in the y-direction we no longer find solutions which are simple
trigonometric functions of time.

Figure 7.13 shows that at the time when the eddy kinetic energy has its
maximum value the zonal available energy is almost zero. Comparing these re-
sults with the results that we obtained from the integration of the simple
model, we find that the variation of eddy kinetic enérgy and zonal available
energy 1s much greater in the present case than it was with the simple model.
This is possibly a way in which the instability that we found by the linear
stability analysis manifests itself in a nonlinear integration.

So far we have found a close correspondence between the variation of en-
ergy and enstrophy. Comparing Figures T7.13 and 7.1k we find that there is a
close correspondence to begin with in tane present integration also, but that
this similarity breaks down some time after 4O hr of integration. After that
the conversions of energy and enstrophy change signhs at different times and
they reach their minimum values at different times. This could be due to the
fact that there are more waves interacting at this later stage than during the
first part of the integration. On the other hand there is a possibility that
this could be due to phase errors resulting from the truncation in the time
integration scheme. In addition we may note that there is also a truncation
error due to the fact that we are using gridpoints in the y-direction. The
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effects of time truncations have been demonstrated for a truncated spectral
system by Baer and Simons (1970).

Our next case is a nonlinear integration of the simple model. For this
integration we changed the zonal wave length to be 2.00 + 10© m. All other pa-
rameters remained the same. From the stability diagram, Figure 6.3, we see
that the zonal flow for this case i1s dynamically unstable. Due to the 1+Q
and 1 +9Q coefficients in the expressions of the eddy energies the amount of
eddy kinetic energy that we now have initially is slightly different from the
amount we had before, when we had a different value of L,. With the present
value of L, it is approximately 6% of the total energy.

Results from this integration are shown on Figures T7.15-7.17. Comparing
these results with the results from the stable case we notice the large differ-
ences between the amplitudes in the two cases. The maximum amount of energy on
wave number 3, K5’ is about twice as large in the present integration compared
with the stable integration. Also we see from Figure 7.16 that in the present
integration the zonal available energy gets close to zero. In the previous sta-
ble integration it never got below 80 mg/sg. As we also saw in all previous in-
tegrations that were linearly unstable, there is an increase of energy on all
eddy wave numbers to begin with. At the time when the energy on wave number 3
reaches its maximum value the amount of energy on wave number 1 is close to
zero. At the same time the zonal available energy is close to zero. This
tells us that the zonal flow has given up almost all the energy it possibly
can, and that this energy now is in wave number 3, only. From the diagrams we
see that the maximum value of energy in wave number 3 is reached after 30 hr.
At the same time {KE,KZ} becomes positive, indicating that from now on and for
some time energy is given up by the eddies to the zonal flow. Looking at
Figure 7.16 we find that M changes sign at the same time, hence also in this
unstable case we find that M is the important factor as far as the sign of the
energy conversion is concerned. This is what one would expect knowing that the
sign of M gives the slope of the tfough and ridge lines and hence, the direc-
tion of the momentum transport. Comparing the graph of Ky py on Figure 7.16
with the graph of Vy,y on Figure T7.17 we see that the enstrophy has a similar
variation as the energy in this integration.

Our last case is a nonlinear integration of the extended model with the
same parameter values and initial values that we have used in the previous in-
tegration of the simple model. Results from this integration are shown in
Figures T7.18-7.20. The stability analysis tells us that this integration is
linearly unstable. As in the previous unstable cases we have studied, we find
in the present case also that there is an increase of eddy energy on all wave
numbers to begin with. Comparing this integration with the previous integra-
tion of the extended model (Figures 7.12-7.1L4), we see that in the present case
there is a much faster increase of energy on wave number 1 than what there was
in the previous integration. Also the maximum value that this energy reaches
early in the integration is much larger in the present case than the
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corresponding maximum value in the previous integration. In the previous unsta-
ble integration of the simple model we found that the zonal available energy be-
came almost zero at two times during the integration. Studying the graph of
Kypy on Figure 7.1 we see that here the available energy goes down to approxi-
mately 20 mg/se. Later it reaches a relative minimum of approximatelyék)mg/sg.
In the present case the available energy reaches minimum values of approximately
50 mg/s2 and approximately 100 m2/s2. The only difference between the present
integration and the previous simple integration is the number of wave numbers

in the eddy flow. Hence, we see that this is important as to how much of the
zonal energy is transformed into eddy energy. The only difference between the
two nonlinear integrations of the extended model that we have performed is the
zonal wave length of the eddy flow. Remembering that the amounts of zonal en-
ergy given up to the eddies were different in the two cases we realize that the
wave length of the eddy flow is important for the amount of energy that is

given up to the eddies. Finally, imagine that we made an integration of the
extended model with the same zonal wave length and the same width of the channel
as we are presently using, and with the values of the dependent variables at

4O hr in the present integration as initial values; then we would get a minimum
of the zonal available energy having the same minimum value of this energy as
the minimum at L47-48 hr in the last integration that we are now studying. The
minimum values of the zonal available energy at this minimum point and at the
minimum point at 17-18 hr are different. This is because the "initial" values
are different; the shape of the zonal flow, the eddy kinetic energy, and also
the distribution of energy among the different waves of the eddy flow are all
different at the two times. Hence, we see that the maximum amount of zonal en-
ergy that is transformed into eddy kinetic energy depends on what conditions

the flow starts from.

Comparing the graphs on Figure 7.20 with those on Figure 7.19 we find, as
we found in the previous integration of the extended model, that the energy and
enstrophy has a variation which is very similar in the beginning and that this
similarity breaks down towards the end of the integration.
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CONCLUSIONS

In this report we have studied the nonlinear exchanges of energy and ens-
trophy between the zonal flow and a disturbance. Both the zonal wave length
and the number of waves in the disturbance have been allowed to vary. The
study shows that the transfer of energy and enstrophy between the zonal flow
and the disturbance depends on both of these parameters. Also, we found that
they depend on the fraction of the total energy that initially is in the eddies.
This is in accordance with the conclusion arrived at by Platzman (1952), namely
that: "the form as well as the wave length, of the disturbance is a control-
ling factor in determining the initial energy transfer, and that conclusive in-
ferences cannot be made merely from the character of the mean flow."

By a linear stability analysis we found that a given zonal wind profile
may be stable for a disturbance which is made up from two wave numbers in the
y-direction and unstable if we add one more wave number in this direction.

When we compared the results from the linear stability analysis of the differ-
ent cases with the magnitudes of the two-dimensional wave numbers in these
cases, we found that the question of stability or instability of the zonal flow
seems to be related to how the energy cascades when it is given up by the zonal
flow.
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