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ABSTRACT?

Many mathematical operators capable of locating intensity edges in discrete
images have been proposed in the literature. We introduce a new operator, based
on the sample variance of a group of pixels, which exhibits two unique properties:
freedom from a predefined shape and a rigorous stochastic formulation. We
demonstrate the utility of the latter property in applying detection theoretic
principles to the task of edge detection and in theoretical predictions of experi-
mental performance measures.

YThis work was partially supported by the Center for Robotics and Integrated Maaufacturing, Robot Systems Divi-
sion, College of Engineering, University of Michigaa and the Air Force Office of Scieatific Research under Graat F40620-
82-C-0089.
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1. INTRODUCTION: EDGE DETECTION IN DIGITAL IMAGES

Detection of intensity edges, that is of local intensity discontinuities at the
boundaries of objects, is a low-level process of fundamental importance in image
processing. An edge operator is a mathematical operator of small spatial extent
which responds in some way to these discontinuities, usually classifying every
image pixel as either belonging to an edge or not.

The literature abounds with edge operators [1},[2]. Generally speaking
these operators tend to fall in one of three broad classifications: 1) gradient-
based; 2) template matching; and 3) parametric models. All of these operators
usually employ some global or adaptive threshold on their outputs as a decision
device to finally decide whether a given location is on an edge or not.

In this paper, we investigate the use of the sample variance of a local group
of pixels as an edge operator. The use of the sample variance in image boun-
dary detection is not new. It has been used for example to detect regions of
similar texture, changes in which are defined to be edges|3]. It has also been
used as an intensity edge operator [4]. We shall show that given an appropriate
image model the Sample - Variance operator has a rather simple probability
density function. The problem of edge detection can then be formulated using
classical detection theory based on a composite likelihood ratio test. Along with
another result which is presented in the Appendix, the optimum threshold for
the Pratt Figure of Merit, a common performance measure for edge detectors,
can be obtained.

2. DEFINITION OF THE SAMPLE - VARIANCE OPERATOR

The Sample - Variance (SV) operator will be defined as the sample variance
of a group of N pixels, i.e.:

s:_{Ngx-Nzx]z} (1)

where: N= number of pixels in operator.
X, = gray level value of the i* pixel in pixel group.

We note that an important feature of this definition is that no predefined opera-
tor shape is implied for the edge operator. In fact, the operator is a function of
an arbitrary group of pixels. These pixels may be chosen in any manner in the
spatial dimensions of a single image, through time in a sequence of images, or

Quantitative Analysis of a Moment Based Edge Opefator 3



RSD-TR-5-84

across several spectral channels (e.g. Landsat imagery) of image data.

3. IMAGE EDGE MODEL

The image model considered in this paper is a two-dimensional discrete
parameter random field [5]. Given a probability space (2,A,P), a measurable
function, £:(w) ; w € @ ; ¥ € I? is defined on this space as:

Fw) = g +nw :QxI* =R (2)

Here, g- is a deterministic discrete image consisting of two or more regions, each
of which is of constant gray-level over its extent. The boundaries or edges
between these regions have a ramp-like cross section as in Figure 1. The height,
width, and direction of a ramp are parameters of a given edge.

To this function g; is added a zero mean i.i.d. Gaussian distributed ran-
dom field n-(w). For fixed 7, the random variable £ () therefore has the density:

P

- 1 Tond
2 (7)== ¢ 253 . (3)

where: o = poise variance

4. PROBABILITY DENSITY FUNCTION OF THE S.V. OPERA-
TOR

" Given the image model of Section 2, the problem then is to apply the SV
operator and identify which pixels belong to an edge. We take a detection-
theoretic approach to this problem by first finding the probability density func-

" tion of the SV operator (i.e. find the pdf of 5 in Equation 1). We can then use
one of several well-known tests based on the likelihood ratio to obtain a decision
threshold.

Under the assumption of Section 2, each X, of the SV operator (Equation 1)
is a random variable with density function as in Equation 3 i.e. the X,’s are i.i.d.
Gaussian random variables with variance s and means:

E{X,} = g (4)

4 Quantitative Analysis of s Moment Based Edge Operator
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where 7, is the position vector of the i pixel. Letting:

- 1 X X -X
we can rewrite Equation 1 as:
st N
=z E v? (8)
where:
1 1 & '
E(v} = L (E(x}- L+ 3 EX}) Var(Y,) = 1
o N 2
2
Thus, the variable ﬂazs— of Equation 8 is the sum of squares of normal, unit

variance random variables with unequal means. This is known to have a non-
central chi-square distribution of N-1 degrees of freedom [8]. One degree of free-
dom is lost due to the fact that the sample mean is subtracted from each X, in
Equation 7 instead of the actual mean. The non-centrality parameter, ©, is
given by:

N
© = Y (E(Y,}f (7)
=)
We will denote the density of Ns? by X¢e) i.e. chi-square with » degrees of

0.2
freedom and non-centrality parameter ©.

5. APPROXIMATIONS TO THE DENSITY FUNCTION

2 -
The variable ﬁ;— is distributed as a non-central chi-square. Unfortunately,

there is no closed form for the probability density of X¢e, [7]. We therefore
investigate suitable approximations for the density of X{ ).

(1) First, we approximate X(e) by a central chi-square variable, pX( %), where
the constants » and ) are chosen so that X and pX(3 have the same
mean and variance (8]:

Quantitative Analysis of a Moment Based Edge Operator (]
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2
\ = v+

p=1+

v+9 v+20
So:
X 2
.(;'ee) is approximately X2 o ] 8)
— Yefpe— 0
1+ ) 420

(2) Second, we approximate the newly formed X’'? variable as a normal vari-
able. The standard approximation is [8]:

[2X'] = N((2»-1)1) (9)
Putting Equations (10) and (11) together, we have:
EPI‘;L’] ~ N(@-1)1)
or:
~ pa® | o
s =~ N[ {(zx-l)?ﬁ],-é-ﬁ (10)
where:
©_ o= L)
p=1+ v+0 = !
e? v == N-1
A=y + Y

This approximate density for S is used for all calculations of error probabil-
ities, etc. Numerical justification of this approximation has been tabulated by
Patnaik(8], Wilson[9] and others. The approximation is fairly good at N=10 and
converges rather rapidly as N increases. ,

6 Quantitative Analysis of a Moment Based Edge Operator
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6. EDGE DETECTION

We now address the original problem of identifying edges in the image. We
would like to use our knowledge of the operator’s density function to obtain a
classification threshold based on a statistical test.

From Equation 10 we see that the SV operator has an approximately nor-
mal density function whose mean and standard deviation are a function of the
noise power, ¢% the non-centrality parameter, 8, and the number of pixels in the
operator, N. © in turn depends on the proximity of an edge in the operator
window. Examination of Equations 4, 8 and 7 reveals that © is a measure of the
variance of the deterministic image elements, g-, in the operator window. Thus,
when the operator window is located at a region of the image in which there is
no edge, ©® will be small. On the other hand, when the window is centered on
an edge, the parameter has a high value since both low and high element values,
g are present. Further, ® varies smoothly between these two extremes as the
ratio of high to low element values changes between one half and either zero or
one, i.e. as the window goes from a centered position over the edge to one side
or the other.

This is illustrated in Figure 2 for a 3x3 window and a ramp edge model
with height to width ratio of 2. The contours in Figure 2 are loci of edges with
equal parameter ©, normalized to that of a vertical edge through the center of
the window. That is, an edge whose midline is tangent to the 0.5 contour, for
example, has a © value 0.5 times that of a vertical edge through the center
pixel. Edges near the center of the window have a high ® value and the param-
eter falls off with increasing distance from the center. The response is nearly
isotropic and very similar to the square-root Sobel (3x3) operator whose magni-
tude response contours are shown in Figure 3 for comparison.

The mean of the density function of the random variable S is a function of
the parameter 8. Referring to Equation 10, we see that a large value of © (edge
present) gives rise to a density function with a large mean as compared to
smaller values of © (no edge). Thus the density function of S conditioned on the
presence of an edge in the operator window has a different mean from that of §
conditioned on the absence of an edge (Figure 4). Our job is to chose a decision
threshold, S,, so as to minimize errors.

The choice of S; cannot be based on a simple likelihood ratio test because 8
can take on a range of values. Let the H, hypothesis be the event, denoted ¢,,
that no edge is present in the window and H, be the event, ¢,, that an edge is
present. Under H, then, © may lie in some range ¢ € [a,b] where a is the max-
imum value of @ (vertical centered edge) and b is appropriately chosen from
Figure 2 (e.g. b = 0.5 * a). Under H,, ¢€ (b,0]. In other words the H,
hypothesis is that an edge falls inside the b/a contour of Figure 2, the H,

Quantitative Analysis of a Moment Based Edge Operator 7
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hypothesis is that the edge falls outside that contour. A composite likelihood
ratio test [10] on the variable S for deciding whether or not an edge is present is

then:

J p(eleabo) p(do) db, do
1€ >

T | (11)

A(s) =
f p(e]ey,6,) p(8,) do, d<‘
heD
where:
Q, = [a,}] Q = (8,0]
d, = decide e, is true do = decide ¢, 12 true

" In the case p(¢) is not known a priori, one simplifying assumption is that
edges are uniformly distributed i.e. no particular edge location or orientation is
any more likely than any other. One may then calculate p(¢) for this case from
Figure 2 by means of differential area. That is, p(¢) is proportional to the area

. bounded by the contours corresponding to ¢ and ¢ + d¢. Equation 11 can then
be evaluated numerically to obtain a decision threshold, S;, for s. If T =1, the
resulting test is maximum likelihood. Other possibilities include MAP

(T = -P_S:("e‘—d—:%ﬂ ), Neyman-Pearson, Bayes Risk, and Minimax tests. The pro-

bability of error can also be calculated. An example of this procedure will be
given in the next section.

7. PREDICTING THE PRATT FIGURE OF MERIT

The Pratt Figure of Merit [11] for edge detectors has been used in the
literature as a means for making performance comparisons among edge detec-
tors. It is an experimental tool to quantify the performance of edge detectors in
an effort to make such comparisons less subjective. It penalizes for both Type I
and Type II errors as well as for displacements of detected edge points from true
location. In use, an artificial image is constructed with a single vertical ramp
edge of height 4, width two pixels, and with added iid noise of variance s>. The
edge detector’s output from this image is then used to form the figure of merit
defined by:

8 Quantitative Analysis of a Mmoht Based Edge Operator
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Ip

Faﬁg——‘—- (12)

smn] 1+ al,2

where:

' Iy = max (ID vll)

I; = number of ideal edge points

Ip = number of detected edge points

I, = displacement of the i* detected edge
point from the ideal edge.

a = scaling parameter

In the past, the merit value for an edge detector was found by experimentally
changing the magnitude threshold for the detector until the best merit value
was obtained. This experimental optimization had to be performed with a new
artificial image for each value of signal-to-noise ratio of interest. However, since
the SV Edge Operator has a known probability density, we can establish apriori
what the Pratt Figure of Merit is as a function of signal-to-noise ratio, and what
the optimum threshold on § should be in order to attain that merit value. The
ability to do this is crucially dependent on the following Theorem which is
proved in the Appendix.

Theorem: When p(s|e,) and p(s]e,) are normally distributed, then the threshold
for s that maximizes F is the threshold S, such that:

- P(do,e,) = P(d,,e) (13)

The corresponding optimum figure of merit is : |

~ P(dlrel)

F o= W AN (14)

We will use this Theorem along with the material developed in the previous
section to predict the Pratt Figure of Merit for a 3x3 SV operator. We first
expand the joint probabilities of Equation 13:

P(dge,) = P(ey) f f p(sley,0,) p(6,) d6, de
S hem

Quantitative Analysis of s Moment Based Edge Operator 9
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S

P(dyeq) = P(eo) [ , !ﬂo p(s|eo,00) p(8o) db, ds (15)

Now since the edge is vertical of width two pixels and the operator is a 3x3
square, only three values of © are possible. The first corresponds to the window
centered on the edge:

6 € 0, = {(3b/20)°}

The other two possibilities of © correspond to: 1) the window being centered one
pixel to either side of the edge midline; and 2) the edge is completely outside the
window:

b € Qo = {(h/20F0}

2 . .
where %2— is defined to be the signal to noise ratio. Furthermore, if the test

image is square of size MxM, these three values of © have a priori probabilities
in the ratios 1:2:M-2. Consequently, Equations 15 become:

P(do,e,) = -;'i sf?(’l‘n”x'(:‘!"/z”)z) ds
1 S - my
=M ’Q[—;,—]

5 8

M-
[ ploleatom(b/20f) ds + 22 [ p(s]eoby=0) ds
-Q0 -00

B2a — St M-2 B2y - S
oot - o]

P(dlreO) =

x|

(16)

xe

where p,,0, are calculated from Equation 10 for 4,=(34/20)?, etc. Substituting
Equation 16 into Equation 13, we have:

St - B2s — S B2y — St
Q[ ~ ] - 20[ ] + (M-2) Q[ o ] (17)

1 O2a

10 Quantitative Analysis of a Moment Based Edge Operator
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which may be solved numerically for the threshold, S;. Equation 14 is then used
to find the resulting Figure of Merit.

Figures 5 and 6 illustrate these results. They compare the theoretical fig-
ure of merit and optimum threshold verses snr (solid lines) to the experimental
data (stars). The experimental points were obtained by iteratively changing the
threshold until the highest figure of merit was obtained, a procedure universal
to the literature. The accuracy of the probability model for the SV operator
and the above Theorem clearly allows us to predict the outcome with assurance.

8. CONCLUSION

In this paper we have shown that the Sample - Variance operator is useful
for detecting intensity edges in discrete images. Under the hypothesis of addi-
tive, Gaussian distributed i.i.d. noise, the operator’s probability density func-
tion may be very accurately approximated by a normal density. This allows the
use of a composite likelihood ratio test to determine a decision threshold for the
operator. In this way we can implement a variety of classical detection schemes
such as Maximum Likelihood and MAP.

We have also proved a theorem concerning predicting the optimum decision
threshold for the Pratt Figure of Merit. The predicted optimum threshold for a
3x3 SV operator was found to be virtually identical to the actual value obtained
by the usual experimental method. This demonstrates the power of the detec-
tion theory approach to finding edges in images.

Quantitative Analysis of a Moment Based Edge Operator 11
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10. APPENDIX

Theorem: When p(s|e,) and p(s]e,) are normally distributed, then
the threshold for s that maximizes ¥ is the threshold s, such that:

P(do,e 1) - P(dl,CQ)

This Theorem will be proved in several parts, and only for F > 0.5. For F less
than this, only a weaker statement can be made.

(i) Lemma (1):
If s, is chosen such that P(dqe,) = P(d,,¢,),
Then: I, =1 =1I,. (See Equation 12)
proof:
Let I; = total number of image points. Then:

I = I Ple)) = Ir| Pléoe)) + Pldyey) (18)

= Ir{Pdued + Pldye,)
=IPdy) =D

" Iy = max(ly Ip) = I = Ip

Let F; = F resulting from S, =T chosen as above.
Let F, = F resulting from threshold s, == ¢

(ii) Lemma (2): F,<Fr 42T
proof:
Ip = Iy P(d,) and P(d,) is a monotonically non-increasing function of t.
Furthermore: t=T7T == [, =1 (Lemma (1))

Ip <1, ; ¢2T
Thus:

Quantitative Analysis of a Moment Based Edge Operator 13
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1 2 1
F _— Y —_— ;62T
t =T §1+al,2 =

is a monotonically non-increasing function of ¢, since I; is a constant. The
lemma follows.

(iii) Lemma (3): F.<Fr i t<T if Fr 205
First, we show that:
~ P(dlve l) .
Fy -_I—’-(T;)— it T (19)
proof: Iy =1Ip ; t< T (seeabove). Therefore:
Ip

b o 1+ al?

Now, if a detected edge point is a real edge point, ;, =0. - TTlaT =
1. The detected edge points that are not real edge points are randomly

scattered throughout the image (iid noise). So i is large on the average.

Therefore:
1 1
— < <L —
faise edge points 1 + al;? real edge points 1 + a‘nz
bd Ir P(dl,e 1)
Therefore:
1 1 1
F, = —— { 1 . 1 }
‘ Ip real u% points 1+ aliz Jaise cdz;‘: points 1+ al,’
= "—"_l""" {IrP(d,,e,)}
1r{ P(a)

; P(dl,el)

it <T
P(d,)

Next we prove the lemma by showing that:

14 Quantitative Analysis of a Moment Based Edge Operator
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dF,

— >0 for t<T if Fr 205 (20)

proof: Using Equation 19:
ﬂ d P(d),e,)

& & | P(dy
= 1= { P (ueaP(d) - P (4)P(ae)
IP(‘x)I,
So: o
ng P‘ (dl,e,) P(dl,cl)
e >0 < m=an> P (4} < P(dy) (21)
| since P’ (d,) = T;— P(d)) < 0
P (dy,e,) = % {P(dlr‘l)}
= % {P(':el)" = p(ee,)
And Similarly: P (dl) = p(‘,el) + p(',eo)
. dFt J— p(.vel) P(dlvel)
a2 0 Sm==> p(s,¢,) + p(o,¢0) P(dy,ey) + P(dy,e0) (22)
sy M0cd  Pldued

p(a,e,) P(‘h‘l)

Now, from Equation 19:
P(d,e,)
P(dy,ey) + P(dy,e0)

Fg-

P(dy,e0) 1

——————— R e— - l
P(‘nh) F

Quantitative Analysis of a Moment Based Edge Operator 15
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P(dbeO)

= P(dbex)

< 1 whenever Fy > 0.5 (23)

Examining Equation 22 in light of Equation 23, we see that Equation 20
and the Lemma will be proved if we can but show:

p(e,¢0)

But by definition, T is such that :

P(do,e,) = P(dy,e,)
T )
ie. [p(ae))ds = _{.p(:,eo)da

T o '
or.  Ple;,) [p(sle)ds = P{eco)[p(s]ec)de
or. P(‘l)Q["%—] = P(eo) Q[%

Now since o, > g, always for this operator (see Section 5 and Equation
10), Equation 25 therefore implies:

=3 P(e)) p(s=Tle;) < P(eo)p(e=T|e,) (26)

- P(eg)p(e=T]e,)
P(e,)p(s=T]e,)
p(e==T,ey)
p(s=T,ec,)

= 1 <

= 1 < (27)

p(’t‘O)

p(e,e1) P!

= 1 <

IA
o |

This proves Lemma 3. Lemmas 2 and 3 together prove the Theorem when
Fr > 0.5. Equation 19 gives the resulting Figure of Merit. If F_,, < 0.5, only
Lemma 2 holds; i.e. the optimum threshold occurs at T or less.

16 Quantitative Analysis of a Moment Based Edge Operator



Figure 1: A ramp edge in cross section. Here, the height is h and the width is
two pixels.
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Figure 2: Contours of equal parameter © for a 3x3 SV operator. The displace-
ment is in pixels.
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Figure 3: Coatours of equal magnitude for the 3x3 Sobel operator.
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Figure 4: The density function of S conditioned on the presence or absence of an
edge in the operator window.
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