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The Frattini module

By

RorerT L. GriEss and PETER ScHMID

1. Introduetion. This note resulted from an effort to answer the following question
of R. Baer. Suppose G is a finite group with a unique minimal normal subgroup & -
which is nonabelian. If p is a prime dividing | N|, does there exist a (finite) faithful
FpG-module 4 admitting a group extension 4>+ H - G with 4 C @(H). This has
been answered independently by W. Gaschiitz and the authors; the answer is yes.

Throughout the paper, K denotes a field of characteristic p and G is a finite group
whose order is divisible by p. All modules are finitely generated. If M is an irreducible
(right) KG-module, then Py is the (principal) indecomposable projective KG-module
with M in the head, i.e. with Pp/PpyJ =~ M where J = Dk(KG) is the Jacobson
radical of KG. K is always regarded as trivial KG-module. Ax(G) denotes the kernel
of a projective cover Py - PgJ; Ax(G) is uniquely determined up to isomorphism.

We recall a theorem by Gaschiitz.

Result (Gaschiitz [4]). Let K=F, and 4= Ag(G). Then there exists a Frattini
extension A>>G » G, i.e. with AC D(G). Any other Frattini extension of G by a
(finite) KG-module is an epimorphic image over G of G.

The maximal Frattini extension 4>>G — G can be constructed via free presenta-
tions. We give the necessary details in section 3.

In view of Gaschiitz’s result, 4 (G) is called the Frattini module of G (with respect
to K). It is known that Ax(G) == 0 (since the characteristic p of K divides |G|; for
a p'-group H, Ax(H) = 0) and that Ax (@) is indecomposable (Lemma 1). An irredu-
cible KG-module M has nonvanishing 1-cohomology if and only if M occurs in the
socle of Ag(G); H2(G, M) %= 0 if and only if M occurs in the largest completely
reducible factor module (“head”) of Ax(G) (Lemma 3).

On the basis of these observations we establish first:

Theorem 1. The centralizer in G of the socle of Ag(G) is just the greatest p-nilpotent
normal subgroup Op p(G) of G.

This already answers Professor Baer’s question, because of Gaschiitz’s result.

The corresponding statement for the head of the Frattini module is false, in
general. A counterexample is provided by the alternating group G = Alt(5) and
K = F2. On the other hand, if G is p-solvable, Oy »(G) is also the centralizer of all
irreducible KG-modules with nonvanishing 2-cohomology. This is a consequence of
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Theorem 2. If G is p-solvable, then dim H2(G, M) = dim H1 (G, M) for any irredu-
cible KG-module M.

The proof of Theorem 2 depends upon the famous Fong-Swan theorem and a
cohomological property of liftable modules (see section 5).
We are able to characterize the groups G for which Ax(G) is faithful:

Theorem 3. Let A= Ag(G). Then either Ca(4) = Op(G) or G is p-supersolvable
with cyclic Sylow p-subgroups; the laiter happens if and only if dimA =1 (and so
Ce(4) = Op »(G)).

In particular, 4x(G) is faithful if and only if O, (G) = 1 and G is not metacyclic
having a cyclic normal Sylow p-subgroup.

2. Minimal resolutions. It is convenient to discuss the cohomological aspects of the
Frattini module within the context of minimal resolutions. Let (P, do) be a projec-
tive cover of the trivial KG-module X and, inductively for n = 1, (P, d,) a pro-
jective cover of the kernel Y,_; = Ker d,—1. Then the exact sequence

U (G): = Pe 2 PL B Py R K 50

is called a minimal (KG-projective) resolution of K. By uniqueness of projective
covers all ¥, , P, are uniquely determined (up to isomorphism). Clearly Pyp= Py,
Yo= PgJ, and Y1 = Ag(G). By construction all P, belong to the principal p-block.

Lemma 1. All Y, are indecomposable, nonzero, and nonprojective.

Note our permanent assumption that the characteristic p of K divides |G]. A
proof of Lemma 1 is very accessible in Gruenberg [6] (see especially Theorem 2.9):
Y == 0 since K is not projective; Yo has no proper projective direct summand for this
were a direct summand of Pg contained in PyJ (projective KG-modules are injective;
apply then Nakayama’s lemma); Y is indecomposable by a result of Heller [8],
because K is indecomposable. Proceed by induction.

It is known that for a projective KG-module P socle and head are isomorphic.
(It suffices to handle the case where P is indecomposable. A proof in this sitnation
is outlined in Serre [10], Exercise 14.6.) We make use of this in proving

Lemma 2. The socle soc(Y ) ts isomorphic to Py/P,J (n = 0).

Proof. The claim is evident for n = 0; so let » = 1. We have to show that any
minimal submodule M of P, is contained in Y. Let P = Py be the associated pro-
jective direct summand of P, . Assume M ¢ Y,. Then PN Y, = 0 since M is the
unique minimal submodule of P. It follows that P is isomorphic to a submodule of

Pnlyn:’"——_ Yn—lan—lJ-
Since P is injective, P is isomorphic to a direct summand of Y ,—;, contrary to Lem-
ma 1. (Of course, one may also argue directly by means of Nakayama’s lemma.)

Let M be a completely reducible KG-module. Then, because of ¥ ,—3 C P,_1J, the
map Homgg (Pr-1, M) — Homge (Y -1, M) is zero. Sinee Pp/Ppd o2 Y1/ Y p-1J,
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by definition of cohomology via projective resolutions we have thus, for n = 0,
K-isomorphisms

(%) H(G, M) > Homge (Pp, M) o2 Homgg (Pa/Pnd, M) .

This is not new (see for instance [6], Lemma 2.11). Since Y12¢ Py/Y; is the Frattini
module 4 = A (G), (%) together with Lemma 2 yields:

Lemma 3. Let M be an irreducible KG-module and D = Homgg(M, M). Denote by
r and s the multiplicities of M in soc(A4) and A]AJ, respectively. Then there are D-iso-
morphisms HY(G, M) o= D, H2(G, M) =~ D',

Changing the field carries minimal resolutions to minimal resolutions. We include
the basic argument.

Lemma 4. Suppose L is an extension field of K. If M is an irreducible KG-module,
then ML= M Ry L is a completely reducible LG-module and

dimz Hn (G, ML) = dimg H* (G, M) (n = 0).

Proof. The existence of a (finite) splitting field (of characteristic p) shows that
KG|J is a separable algebra. Observe also that D = Homge (M, M) is a (commutative)
field which is separable over K. We may conclude that JL = J ®g L is the Jacobson
radical of LG = KG ®g L.

It is now clear that ML is completely reducible. (In the important case that L/K
is a finite Galois extension, ML is a direct sum of irreducible LG-modules conjugate
under the Galois group, each isomorphism type appearing with the same multiplicity.)
Moreover, we see that '

g (QL: - —>PL Pl Pt L 0

is a minimal (LG-projective) resolution of L. Using the natural isomorphisms
Hompg(PE, ML) = Homge(Py, M)X we have thus, in view of (%), isomorphisms of
L-vector spaces

H™(G, MY) =~ Homc(Py, M%) = H*(G, M) ®x L

for » = 0. This proves the lemma.

As U (G)L = UL (G) is a minimal resolution of L, for any extension field L of K,
we may infer that all kernels Y, are indeed absolutely indecomposable. In particular,
Ag(G) is absolutely indecomposable. The (exact) scalar extension functor — QgL
takes Ag (@) to 41,(G), preserving the Loewy structures. Essentially we may restrict
ourselves, therefore, to the study of the Frattini module of ¢ over the prime field
K =TF,.

3. Relation modules. We fix a free presentation R »+ F — G with F of finite rank
d(F). Let P be a maximal projective submodule of the KG-module RX = R/R" @ K,
and let 4 = RX[P. Clearly RE~ P (® 4, and 4 possesses no proper projective sum-
mand.

Using the above notation, we have the following
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Lemma 5 (Gaschiitz [4]). 4 #s isomorphic to Ag(G), and
P @® Pix~ Px @ (KG)@H~1

where P is the projective cover of PgJ.

For a proof we refer also to Gruenberg [6], Theorem 2.9.

Gaschiitz has handled the (crucial) case K = F, only. Here we may identify
RE = R[R' B». Write bars for factor groups modulo R'R?. If M>>H G is a
group extension with M a (finite) KG-module and d(H) < d(F), then there exists
always an epimorphism ¢: F—H “over G, i.e. making the diagram

B Fa@

v ode |
M>>H @G

commutative ([6], Proposition 6.14). This provides an approach to Gaschiitz’s other
result mentioned in the introduction. One verifies that 4 > F/P -» G represents the
maximal Frattini p-extension of G. This extension may also be described by taking
any minimal supplement of R in F.

Remarks. Gruenberg has extended the Gaschiitz theory to more general coefficient
rings. Consider for instance the Z@-lattice R/R’. Let R/R = P @ A be a projective
excision, i.e. P is ZG-projective and A has no proper projective summand. (Note,
however, that the Krull-Schmidt theorem does not hold for ZG-lattices.) Then 4 is
a faithful ZG-module, provided G is not eyeclic ([6], Proposition 5.12). This result
has stimulated Theorem 3.

If 4 =Ag(G) for K a field, as usual, dim H2(G, 4) = 1 by a theorem of Tate (cf.
[5], § 11.3), and any nonsplit extension 4 ~> G - G represents the (unique) maximal
essential extension in the category (£€) discussed in [5], § 11. “Essential”’ means that
any supplement of 4 in G which intersects 4 in a KG-module coincides with G.

Lemma 6. Let H be a subgroup of G. Then, as a KH-module, Ag(G) =~ Ax(H) ® Q
for some projective KH-module Q.

Proof. Consider the free presentation R>+ F —» G; let Fy denote the inverse
image in F of H. By Schreier’s theorem, B>> F¢ -» H is a free presentation of H
with Fy of finite rank. From Lemma 5 it follows that there are a projective KG-
module P and a projective KH-module Py such that

Ag(G) @ P = R[R' Q K= Ax(H) D Po

as KH-modules. Since P is also KH-projective and since Ax(H) has no proper
projective summand (Lemma 1), application of the Krull-Schmidt theorem gives the
assertion.

If G is a p-group, the minimum number of generators d(G) = dim H1(G, K) equals
the dimension of the soecle of 4 = Ag(G), and dim 4/4J = dim H2(G, K) is the
minimum number of KG-generators dgg(4) of 4. In this case Px = KG, and

dimd4 =1+ (d(6) —1)|¢].

17%
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Proposition 1. Let G be a Sylow p-subgroup of G. Then dim Ag(G) =14 k|G| for
some integer k = d(Gp) — 1.

Proof. Straightforward from Lemma 6.

4. Socle and head of Ax(G). By a theorem of Brauer [3], O, (G) is the centralizer
(kernel) of the principal p-block (ideal). Since the Frattini module 4 = 4k (G) belongs
to the principal p-block, we have thus

() Op (G) C Ce(4).
It follows that Oy (G) is contained in the centralizer of both soc(4) and 4/4J.

Theorem 1. Oy, (G) = Ca(soc(4)).

First Proof. Let ¢ = Cg{soc(4)). By Lemma 3 C is the centralizer of the
irreducible KG-modules with nonvanishing 1-cohomology. We know C 2 Oy ,(G).
Assume C is not p-nilpotent. Let H =0?(C) be the smallest normal subgroup of ¢
with p-factor group. Since H is not a p’-group, application of Shapiro’s lemma and
the exact cohomology sequence gives the existence of an irreducible KX H-module B
with HY{H, B) 0. Since H!(H, K) = Hom(H, K) = 0, B is nontrivial.

The same argument yields a KG-composition factor M of the coinduced module
Homgy (KG, B) with HY(G, M) = 0. By Clifford theory, Cx (M) is the intersection
of some conjugates in G of Cy(B). Since B is a nontrivial KH-module, this implies
Ce(M)2 H = 0?(C), a contradiction.

Second Proof. The following argument is more direct and avoids the use of Sha-
piro’s lemma. Assume again that H = O?(C) is not a p’-group. Then Ax(H) =0 by
Lemma 1. By Lemma 6 4x(H) is isomorphic to a KH-submodule of 4 == Ag(G).
Let Bbe a minimal K H-submodule of 4 occuring in the socle of Ag (H).Let B == z Byg.

ge@
Since H is normal in G, Bg is a KH-module being G-conjugate to B (g € G). (Compare

with Clifford theory.)

Let M be a minimal KG-submodule of B. Then J/ is centralized by H. On the other
hand, M is a direct sum of irreducible KH-modules conjugate to B. Consequently
B = K is a trivial KH-module and so by Lemma 3 Hom (#, K) = H}(H, K) = 0,
contradicting O? (H) = H.

The situation for 2-cohomology, i.e. for the head of the Frattini module, is quite
different. To illustrate this we give an example.

Example 1. Let G = Alt(5) be the alternating group of degree 5.

(a) K = Fsa.

There are 3 distinct types of irreducible KG-modules, say K, P, X. P is the reduc-
tion of the (absolutely) irreducible @G-module of dimension 4 coming from the per-
mutation representation of G on 5 letters; P is the Steinberg module and thus pro-
jective (cf. [10], § 16.4). X decomposes over [, into 2 distinct absolutely irreducible
modules of dimension 2 which are conjugate under a field automorphism. (Note
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@ =~ SL(2,4); X is a composition factor of the indecomposable permutation module
obtained from the 2-transitive representation of G &~ PSL(2,5) on 6 letters.) We
have KG = Px @ PP @ PW.

By direct calculation (or looking at the Cartan matrix given in [10], § 18.6) one
gets the following Loewy sections for Pg, Px:

Py: K. X, K®K X, K,
Pyx: X, KK, X, KK, X.
Hence 4 = Ag(G) has dimension 5, and A/4J ~K, soc(4) ~ X. In particular, X is

the only irreducible KG-module with nonvanishing 1-cohomology, K the only one
with nonvanishing 2-cohomology.

(by K = F3.
Here Ag(G) is (absolutely) irreducible of dimension 4.
(C) K= [Fs.

Besides the trivial module and the Steinberg module, there is only one irreducible
KG-module Y (dim ¥ =3). Socle and head of Ag(G) are isomorphic to Y, and
dim Ax (G) = 6.

Remark. Baer’s problem as formulated at the very beginning can be settled
easily if the (unique, nonabelian) minimal normal subgroup N of G has a nontrivial
irreducible module X over F, with H2(N, X) == 0. In general, since N is not p-nil-
potent, the Frobenius p-nilpotence criterion and Shapiro’s lemma guarantee the
existence of an FpN-module Y such that H2(N, Y) == 0 and HO(V, ¥) = 0. The
coinduced module M = Homy (F,G, Y) satisfies H"(G, M)~ H®»(N, ¥) for all
n = 0 (Shapiro). Let M+ H - G be any nonsplit extension. Then every minimal
supplement of M in H represents a faithful Frattini extension of G, as desired.

If @ is p-solvable (and K a field of characteristic p, as usual), there is always a
nontrivial irreducible KG-module with nonvanishing 2-cohomology, provided G is not
p-nilpotent. This will be shown in the next section. Here we handle the following
special situation.

Proposition 2. If the Sylow p-subgroups of G are cyclic, socle and head of A= A (&)
are irreducible, and Oy ,(G) = Ca(A]4J).

Proof. Since the Sylow p-subgroups of & are cyclic, by a result of Alperin and
Janusz [1] every projective KG-module P, appearing in the minimal resolution
Ux () of K is indecomposable. Hence from Lemmas 1 and 3 it follows that soc(4)
o~ Pi/P1J and A[AJ =~ P3/PyJ are irreducible. (Ag(G) is even uniserial here!)

Let H= Cg(4/A4J). By (sk) H2 Op p(G). Assume H is not p-nilpotent. Since the
Sylow p-subgroups of H are cyclic, we know that socle and head of Ax(H) are
irreducible. ¥From Theorem 1 it follows Hi(H, K) = 0, hence O?(H) = H and
Ext(H|H', K) = 0. Furthermore p does not divide the order of the Schur multiplier
Hy(H) of H. From the universal coefficient theorem for cohomology we may infer
that H2(H, K) = 0. But Ax(H) is isomorphic to a factor module of 4 (Lemma 6).



262 R.L.Grizss and P. ScuMID ARCH. MATH,

Since H is a normal subgroup of G centralizing 4/4J, Lemma 3 yields the contra-
diction H2(H, K) % 0. (Clearly one may also argue using Shapiro.)

5. p-solvable groups. By a p-adic field we mean a field of characteristic 0 which is
complete with respect to a discrete valuation and whose residue class field is of
characteristic p. Hasse and Schmidt have proved that there are p-adic fields with
prescribed residue class fields (cf. [7], p. 10). We fix a p-adic field £ with residue
class field K. Let S be the valuation ring of E, p its maximal ideal (K = S/p). A
KG-module M is called liftable (to S or E) if there is an S-free SG-module 7 whose
reduction modulo p is M (M = M ®gs K).

Proposition 3 (Scott [9]). If M is an irreducible KG-module which can be lifted, then
dim H2%(G, M) = dim H1(G, M).

Proof. Scott’s proof deals with Brauer characters, assuming that Z is a splitting
field for G. We give an alternative approach avoiding characters. It is well known
that the minimal resolution g (&) of K (section 2) can be lifted to a minimal (SG-
projective) resolution

S21:,5‘((}): »ngplif’oﬁ;s»o
of 8§ (see for instance [10], § 14.4). By hypothesis there is an S-free SG-module M

such that M =M ®sK. Write bars for the corresponding EG-modules. Since
Homgg (P, M) is S-free, we have natural isomorphisms
Homsg (P, M) ®s E = Homge(Py, 1)
and Homsg(Pn,M) ®SK=HomK(;(Pn,M).
From (x) it follows dimg H?(G, M) = dimg Homgg (P, , M) (n = 0).

By Maschke’s theorem P, is completely reducible. Let a, denote the multiplicity
of the (irreducible) EG-module 7 in Py, b, that in ¥, =Y, Qs E (¥Y,=Kerd,),
and let ¢ = dim Homgg(M, M). Then dim H2(G, M) = ca, and by = apt1 — byt
(n=0). If M~ K is a trivial module, ag —bg=1 and HV(G, M)~ K. If M is
nontrivial, ap = by and H%(G, M) = 0. Thus for any integer r =1

ET;(—-— Drdim H?(G, M) = (— 1) cb,.
n=1

Specializing to r = 2 gives dim H2(G, M) — dim H1(G, M) = cbs = 0, as desired.
It is obvious that the trivial module M = K can be lifted. In this case Proposition 3
may also be deduced from the universal coefficient theorem. Omne obtains more

precisely
dim H2(G, K) = dim H1 (G, K) + dim H2(G) @ K .

Theorem 2. Assume G is p-solvable. Then the socle of the Frattini module A = Ag{G)
is isomorphic to a direct summand of AjAJ.

Proof. According to Lemma 3, the claim of Theorem 2 is equivalent to the state-
ment that dim H2(G, M) = dim H! (@, M) for every irreducible KG-module M. This
will be derived from the preceding proposition.
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By the classical result of Hasse-Schmidt there is a p-adic field E with residue
class field K. Let F be the field obtained from E by adjoining the |G|-th roots of
unity. F is again p-adic and its residue class field L is a finite extension of K. By
Lemma 4 ML= M ®xg L is a completely reducible LG-module and dimg H" (G, M)
= dimz H=(G, ML) for all » = 0. By the Fong-Swan theorem (for a lucid proof see
[10], § 17.6) every irreducible summand of M can be lifted. Now apply Proposition 3.

Corollary 1. If G is p-solvable, Op 5(G) = Ce(4/AJ).

Proof. Immediate from (x%) and Theorems 1 and 2.

In case G is p-solvable, soc(A) can be described very elegantly. Denote by 4, the
direct sum of all complemented p-chief factors of G, counting multiplicities with
regard to some fixed chief series of G. It is known that an irreducible [F,G-module
M has nonvanishing 1-cohomology here if and only if M is isomorphic (as G-module)
to a complemented p-chief factor of G, and that H1 (G, M) o~ Homg(Ce (M), M). For
a proof based on the Hochschild-Serre sequence we refer to [2], Lemmas 3 and 4.
It follows that 4g is isomorphic to the socle of the Frattini module of & over Fp.

Applying Theorem 2 and Gaschiitz’s result stated in the introduction, we have
therefore the following

Corollary 2. Suppose G is p-solvable and Aq is the direct sum of all complemented
p-chief factors of G, as above. Then Ag is isomorphic to the socle of Ag(G) (K = Fp),
and there is a Frattini extension Ao~ H - G of G.

6. p-supersolvable groups. Recall that @ is p-supersolvable if and only if G/0y »(G)
is an abelian group whose exponent divides p — 1. In particular, p-supersolvable
groups are of p-length 1. Because of Brauer’s theorem, @ is p-supersolvable if and
only if every irreducible module in the principal p-block is of dimension 1 (cf. [2];
it suffices to study the case K = Fp).

Proposition 4. Assume G is p-solvable of p-length 1. Then the restriction from G to a
Sylow p-subgroup Gy of G takes g () to Uk (Gy), preserving lower and upper Loewy
series of any projective Pp,.

Proof. Let M be a KG-module all of whose composition factors are in the principal
block. We show that MJ = [M, Gp]. This means that M/MJ is also the largest
completely reducible factor module of M viewed as a KGp-module. The proof that
soc(M) = HY(Gp, M) is the group of fixed points under G, is quite similar.

By hypothesis Oy 5(G) = 0p(G) Gp. Applying Brauer’s theorem therefore yields
[M.Gpl=[M,Op (]S MJ. On the other hand, M/[M, G;] is a completely redu-
cible K[G[Op p(G)]-module (Maschke). Consequently MJ = [M, G,], as desired.

It is now evident that Uk (G), viewed as a sequence of KGp-modules, is a minimal
K@ ,-projective resolution of K.
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Corollary 1. Let G be of p-length 1, and let A = Ax(G) as usual. Then
dimA4 =1+ (d(Gp) —1)|Gp|, dimsoc(d)=d(Gp) and
dim A/AJ = dim H2(G, K) .
Moreover, dimA/AJ > }(dimsoc(d4))2.

_ Proof. Only the final statement needs some comment. It follows from the Golod-
Safarevié theorem which says that

. d(Gyp)?
dim H2(Gp, K) > 3
(ef. [5], §7.3).
) : 4(Gp)® :
Corollary 2 (Gaschiitz). If G is p-supersolvable, dgg(A) > ik where h is the

order of @[O0y »(G).

Proof. Since the irreducibles in the principal p-block have dimension 1, by
Nakayama’s lemma and Lemma 3

ng(A) = ng<A/A J) = max {dlmHZ(G, M)} )

where M runs through allirreducible modules occuring in 4/4 J. By Brauer’s theorem,
the number of these modules does not exceed b = | Hom (G/0y »(G), Fy)|. (In fact,
h is just the number of distinct irreducibles in the principal p-block.) Thus dge(4)

1
= W dim A4/4J. Apply Corollary 1.

Corollary 3. dim 4 =1 if and only if G is p-supersolvable with cyclic Sylow p-subgroups.

Proof. If dimA =1, G has cyclic Sylow p-subgroups by Proposition 1. Further-
more, then Cg(A4) = 0y ;(G) according to Theorem 1, and G/C¢(A) is cyelic of order
dividing p — 1.

Conversely, if G is p-supersolvable having eyclic Sylow p-subgroups, dim 4 =1 by
Corollary 1. (In the solvable case the result of Alperin-Janusz becomes obvious!)

We see that the Frattini module is trivial if and only if @ is p-nilpotent with
cyclic Sylow p-subgroups.

7. Faithful Frattini modules. Theorem 3 is a consequence of Theorem 1, the pre-
ceding Corollary 3, and the following

Proposition 5. Suppose the dimension of A = Ag(Q) is at least 2. Then
Ce(4) = 0p(G).

Proof. By (xx) Cg(4)2 Op(G). Assume Cg(4) == Op/(G). Then there is a cyclic
p-subgroup H =1 in Cg(4). Clearly Ax(H) >~ K. By Lemma 6, A~ K @ Q as a
KH-module where @ is KH-projective (K H-free). Since dim4 =2, @ ==0. Now @ is
a direct sum of some copies of the regular module KH and thus faithful for H. It
follows Cy(4) = 1, a contradiction. We are done.
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Corollary. The Frattini module 4x(G) is faithful if and only if 0,(G} = 1 and G is
not metacyclic having cyclic Sylow p-subgroups.

Proof. Clear.

In particular, Ag(G) is faithful when & is a noncyclic p-group. In this case one
can construct an explicit Frattini extension of G by a faithful F,G-module as follows.

Example 2. Let K = [, and G be a p-group with d = d(G) > 1. Let {21, ..., 24}
be a minimal set of generators for G and {e;|x € G} a K-basis of KG. G acts on KG
by ezy = ezy. Consider the subgroup H = {(e,,, ;) | 1=1,...,d> of the semidirect pro-
duct of K@ and G (which is the regular wreath product K1 Q). Let B= {(z,1)|(z,1)H}.
Then H/B =~ G, and from d(H) = d(Q) it follows B C @ (H). It is straightforward
that B is indeed a faithful module for G.

By Gaschiitz’s result, B is an epimorphic image of 4 = Ag(G). Note that
dim B< |G| < dim 4. One may ask for a faithful KG-module B of least dimension,
(@), admitting a Frattini extension B> H - G. We give an upper bound for f(G).

If G contains a noncyclic maximal subgroup N which is not a direct factor,
f(G) < p-f(N) by Shapiro’s lemma. If no such N exists, G is either elementary
abelian or a quaternion group of order 8. When G is elementary abelian of rank
r=d =2 and p odd, it is easy to show that /(@) = 3 by constructing an example H.
For arbitrary » we get f(@) < 3L+ D2 by taking a subgroup of index 1 or p in the
i_gl copies of that group H. In general, if G'is a p-group, p odd,
containing an elementary abelian subgroup of order p7, then

f(G) Z pr [ G’[ . glr+1)2)

direct product of [

This is quite a bit less than dim 4 =1+ |G| (d — 1). In case p = 2, one obtains
f(6) < 2-r|G] (BRI — ¢,

where § = 0 if 7 is even and 6 = 1 otherwise.

Example 3. Let G = SL(2, 5) and K = 2. By the above corollary and Gaschiitz’s
result there is a faithful K G-module B of least dimension admitting a Frattini ex-
tension B>+ H -»G. Of course, B is an epimorphic image of Ax(G). We claim that
B is uniserial of dimension 9.

Let Z (@) = {(z) and G = G[{z), the alternating group of degree 5. By minimality,
X = [B, z] = soc(B) is an irreducible KG-module. Let ¢ = H9({z>, B) and D be the
inverse image in H of (z). Then B/C ~ X and D = & (H). Since G is the full covering
group of G, B/C is a nontrivial KG-module. We may conclude that X = D' C &(D)CC
and that @(D)/X is of order 1 or 2.

Now D/@(D)>> H|® (D) -G is a Frattini extension. Thus from Example 1 it
follows that @ (D) = C, D/C =~ Ak (@), and X ~ B/C is the 4-dimensional KG-mo-
dule with nonvanishing 1-cohomology.
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Assume ¢ = X. Then B is a free module for {z>. But then H?({z>, B) = 0 for
all » = 1. In particular, D splits over B and the complements are conjugate. If L
is a complement to B in D, by a Frattini argument we get

H=Ny(L)B=Ng(L),

because B C @ (H). However, this would imply that D is abelian. Consequently
C/X =~ K is of order 2. B is an uniserial KG-module with Loewy sections X, K, X
and dim B =9, as asserted.
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