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The Frattini module 

By 

ROBERT L. GBIESS and PET~ SCHMID 

1. Introduction. This note resulted from an effort to answer the following question 
of R. Baer. Suppose G is a finite group with a unique minimal normal subgroup N 
which is nonabelian. I f  p is a prime dividing IN[,  does there exist a (finite) faithful 
~:pG-module A admitt ing a group extension A ~-~ H - ~  G with A C ~b(H). This has 
been answered independently by W. Gaschiitz and the authors ; the answer is yes. 

Throughout the paper, K denotes a field of characteristic p and G is a finite group 
whose order is divisible by  p. All modules are finitely generated. I f  M is an irreducible 
(right) KG-modnle, then PM is the (principal) indecomposable projective KG-modnle 
with M in the head, i.e. with P M / P M J ~ M  where J=qSKa(KG ) is the Jaeobson 
radical of KG. K is always regarded as trivial KG-module. AK (G) denotes the kernel 
of a projective cover P1 -+> PKJ; AK (G) is uniquely determined up to isomorphism. 

We recall a theorem by  Gaschiitz. 

Result (Gaschtitz [4]). Let K = ~:p and A-----AK(G). Then there exists a Frattini 
extension A ~ r G, i.e. with A C ~)(G). Any other .Frattini extension o/ G by a 
(/inite) KG-module is an epimorphic image over G o/G. 

The maximal Fratt ini  extension A >-> G -~ G can be constructed via free presenta- 
tions. We give the necessary details in section 3. 

In  view of Gaschtitz's result, AK(G) is called the Fratt ini  module of G (with respect 
to K). I t  is known tha t  AK (G) ~ 0 (since the characteristic p of K divides I G I ; for 
a p ' -group H, AK (H) -~ 0) and that  AK (G) is indecomposable (Lemma 1). An irredu- 
cible KG-module M has nonvanishing 1-cohomology if and only if M occurs in the 
socle of AK(G); HP(G, M) #: 0 if and only if M occurs in the largest completely 
reducible factor module ("head") of AK(G) (Lemma 3). 

On the basis of these observations we establish first : 

Theorem 1. The centralizer in G o~ the socle o/ AK (G) is just the greatest p-nilpotent 
normal subgroup Op, p(G) o/ G. 

This already answers Professor Baer's question, because of Gasehiitz's result. 
The corresponding s ta tement  for the head of the Fratt ini  module is false, in 

general. A counterexample is provided by  the alternating group G-----Alt(5) and 
K = ~=2. On the other hand, if G is p-solvable, Op, p (G) is also the centralizer of all 
irreducible KG-modules with nonvanishing 2-cohomology. This is a consequence of 
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Theorem 2. I / G  is p.solvable, then dimH~'(G, M) ~ dimHl(G, M)/or  any irredu- 
cible KG-module M. 

The proof of Theorem 2 depends upon the famous Fong-Swan theorem and a 
cohomological proper ty  of liftable modules (see section 5). 

We are able to characterize the groups G for which AK (G) is faithful: 

Theorem 3. ,Let A =AK(G). Then either Cc(A) ---- Op,(G) or G is p-supersolvable 
with cyclic Sylow p-subgroups; the latter happen8 if and only i] dimA----1 (and so 
cG (A) = O~,~(G)). 

In  particular, A~ (G) is faithful if and only if Op, (G) ---- 1 and G is not metacyclie 
having a cyclic normal Sylow p-subgroup. 

2. )Iinimal resolutions. I t  is convenient to discuss the cohomological aspects of the 
Fratt ini  module within the context of minimal resolutions. Let  (P0, do) be a projec- 
tive cover of the trivial KG-module K and, inductively for n ~ 1, (Pn, dn) a pro- 
jective cover of the kernel :Yn-1 ~-- Ker  dn-1. Then the exact sequence 

9/K(G): "'--> P2 ~-~ PI-~ Po-~ K->O 

is called a minimal (KG-projective) resolution of K. By uniqueness of projective 
covers all Yn, Pn are uniquely determined (up to isomorphism). Clearly Po----PK, 
Yo ~ PI~J, and Yl ~ AK (G). By construction all Pn belong to the principal p-block. 

Lemma 1. All Yn are indecomposable, nonzero, and uonprojective. 

Note our permanent  assumption tha t  the characteristic p of K divides ]G I. A 
proof of Lemma 1 is very accessible in Gruenberg [6] (see especially Theorem 2.9) : 
Y0 ~- 0 since K is not projective; Y0 has no proper projective direct summand for this 
were a direct summand of P0 contained in PoJ (projective KG-modules are injective; 
apply then Nakayama ' s  lemma); Y0 is indecomposable by a result of Heller [8], 
because K is indecomposable. Proceed by  induction. 

I t  is known tha t  for a projective KG-module P socle and head are isomorphic. 
(I t  suffices to handle the case where P is indecomposable. A proof in this situation 
is outlined in Serre [10], Exercise 14.6.) We make use of this in proving 

Lemma 2. The socle soc(Yn) is isomorphic to Pn/PnJ  (n ~ 0). 

P r o o f .  The claim is evident i b r n  ---- 0; so let n ~ 1. We have to show tha t  any  
minimal submodule M of Pn is contained in Yn- Let  P ~-- -PM be the associated pro- 
jective direct summand of Pn. Assume M ~ Yn. Then P (~ Yn ~ 0 since M is the 
unique minimal submodule of P. I t  follows tha t  P is isomorphic to a submodule of 

Pn/Yn _~ Yn--1 ~ Pn--1 J .  

Since P is injective, P is isomorphic to a direct summand of Yn-1, contrary to Lem- 
ma 1. (Of course, one m a y  also argue directly by means of :Nakayama's lemma.) 

Let  M be a completely reducible KG-module. Then, because of Yn-1 C__ Pn-1 J, the 
map HOmKG (Pn-1, M) --~ HomKG(Yn-1, M) is zero. Since Pn/PnJ ~--- Yn-1/Yn-1 J, 
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by definition of cohomology via projective resolutions we have thus, for n _--> 0, 
K-isomorphisms 

(*) Hn(Go M) ~-- Hom/~G ( Pn , M) ~ HomK~( Pn/ Pn J, M) . 

This is not new (see for instance [6], Lemma 2.11). Since Yl~--P2/Y2 is the Fratt ini  
module A -= A K  (G), (r together with Lemma 2 yields : 

Lemma 3. Let M be an irreducible KG-module and D -= HomKa (M, M). Denote by 
r and s the multiplicities o / M  in soc(A) and A / A J ,  respectively. Then there are D-iso- 
morphisms H 1 (G, M) ~--- D (r), H 2 (G, M) _~= D (s). 

Changing the field carries minimal resolutions to minimal resolutions. We include 
the basic argument.  

Lemma 4. Suppose L is an extension/ield o/ K. I / M  is an irreducible KG-module, 
then M L ~-- M Q~: L is a completely reducible LG-module and 

dimLHn(G, M L) = dimgHn(G, M) (n >= 0). 

P r o o f .  The existence of a (finite) splitting field (of characteristic p) shows tha t  
KG/J is a separable algebra. Observe also tha t  D ---- HomKG (M, M) is a (commutative) 
field which is separable over K. We may  conclude that  JL  --_ j (~)K L is the Jacobson 
radical of  LG .= KG QK L. 

I t  is now clear that  M L is completely reducible. (In the important  case tha t  L /K  
is a finite Galois extension, M L is a direct sum of irreducible LG-modules conjugate 
under the Galois group, each isomorphism type appearing with the same multiplicity.) 
Moreover, we see tha t  

. . .  - +  - +  - 7  P0 L - +  0 

is a minimal (LG-projective) resolution of L. Using the natural  isomorphisms 
HOmLG(Pn ~, M L) ~ -  H o m ~ ( P n ,  M) L we have thus, in view of (.), isomorphisms of 
L-vector spaces 

Hn(G, M L) ~___ HOmL~ (pn z, ML) ~___ Hn(G, M) QI~ L 

for n >_-- 0. This proves the lemma. 
As ~ K ( G )  L ----- ~ L ( G )  is a minimal resolution of L, for any extension field L of K, 

we may  infer that  all kernels Yn are indeed absolutely indecomposable. In  particular, 
AK(G) is absolutely indecomposable. The (exact) scalar extension functor - -  (~KL 
takes AK (G) to AL (G), preserving the Loewy structures. Essentially we m a y  restrict 
ourselves, therefore, to the s tudy of the Fratt ini  module of G over the prime field 
K---- F~. 

3. Relation modules. We fix a free presentation R ~-> F -+ G with F of finite rank 
d (F). Let  P be a maximal projective submodule of the KG-module .R E = R/.R' (~ K,  
and let A ---- RK/p. Clearly RI~-- P Q A, and A possesses no proper projective sum- 
mand. 

Using the above notation, we have the following 
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Lemma 5 (Gaschfitz [4]). A is isomorphic to AK(G), and 

P ~ P1 ~-~ PK ~ (KG) (a(P)-~) 

where P1 is the projective cover o /PK J. 

For a proof we refer also to Gruenberg [6], Theorem 2.9. 
Gaschtitz has handled the (crucial) case K---- U:p only. Here we may  identify 

R K ----R/R' Rp. Write bars for factor gToups modulo R' RP. I f  M ~-~ H-+> G is a 
group extension with M a (finite) KG-module and d(H) ~ d(2"), then there exists 
always an epimorphism ~:/V--~H "over G", i.e. making the d i a ~ a m  

/) ~-~ F -~ G 

M ~-> H -~ G 

commutat ive ([6], Proposition 6.14). This provides an approach to Gaschiitz's other 
result mentioned in the introduction. One verifies tha t  A >-+ IV/P -+> G represents the 
maximal  Fratt ini  p-extension of G. This extension may  also be described by taking 
any minimal supplement of R in F. 

Remarks. Gruenberg has extended the Gaschtitz theory to more general coefficient 
rings. Consider for instance the FG-lattice .R/R'. Let  R/R '  = P ~ A be a projective 
excision, i.e. P is 7]G-projective and A has no proper projective summand. (Note, 
however, tha t  the Krull-Schmidt theorem does not hold for 7]G-lattices.) Then A is 
a faithful 7]G-module, provided G is not cyclic {[6], Proposition 5.12). This result 
has stimulated Theorem 3. 

I f  A ----AK (G) for K a field, as usual, dim H 2 (G, A) ---- 1 by  a theorem of Tare (cf. 
[5], w 11.3), and any  nonsplit extension A ~-> G -->> G represents the (unique) maximal 
essential extension in the category (~;~) discussed in [5], w 11. "Essential" means that  
any supplement of A in G which intersects A in a KG-module coincides with G. 

Lemma 6. Let H be a subgroup o/ G. Then, as a KH-module, AK (G) ~--- Az~ (H) 0 Q 
]or some projective KH-module Q. 

P r o o f .  Consider the free presentation R>--->2,--~G; let F0 denote the inverse 
image in 2' of H. By Schreier's theorem, R >-+ 2"0 -+> H is a free presentation of H 
with F0 of finite rank. From Lemma 5 it follows tha t  there are a projective KG- 
module P aud a projective KH-module  Po such tha t  

AK(G) Q P~-- R /R '  (D K~-~ AK(H) Q Po 

as KH-modules.  Since P is also KH-projective and since AK(H) has no proper 
projective summand (Lemma 1), application of the Krull-Schmidt theorem gives the 
assertion. 

I f  G is a p-group, the minimum number  of generators d (G) = d i m H  1 (G, K) equals 
the dimension of the socle of A = AK(G), and dim A / A J  = dimH2(G, K) is the 
minimum number  of KG-generators dK~(A) of A. In  this case PK = KG, and 

d imA = 1 ~- (d(G) --  1)IG] .  

17" 
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Proposition 1. Let G r be a Sylow p-subgroup o/G. Then dimAK(G) = 1 --~ k IG~[ /or 
some integer k ~ d(Gr) -- 1. 

P r o  of. Straightforward from Lemma 6. 

4. Soele and head of A~:(G). By a theorem of Brauer [3], O r, (G) is the centralizer 
(kernel) of the principal p-block (ideal). Since the Frattini module A ---- AK (G) belongs 
to the principal p-block, we have thus 

(**) O~,(G) C CG(A). 

I t  follows tha t  0r ,  p (G) is contained in the centralizer of both soc (A) and A/AJ .  

Theorem 1. Op, r (G) = C~ (soc (A)). 

F i r s t  P r o o f .  Let  C = C~(soc(A)). By  Lemma 3 C is the centralizer of the 
irreducible KG-modules with nonvanishing 1-cohomology. We know C ~= Or.r (G). 
Assume C is not p-nilpotent. Let H ~  Or(C) be the smallest normal subgroup of C 
with p-factor group. Since H is not a i f-group,  application of Shapiro's lemma and 
the exact cohomology sequence gives the existence of an irreducible KH-module  B 
with H 1 (H, B) -~ 0. Since H 1 (H, K)  = Horn (H, K) = 0, B is nontrivial. 

The same argument yields a KG-composition factor M of the eoinduced module 
HOmKH (KG, B) with H 1 (G, M) ~= 0. By Clifford theory, CH (M) is the intersection 
of some conjugates in G of CH(B). Since B is a nontrivial KH-module,  this implies 
Cv (M) ~ H = OP (C), a contradiction. 

S e c o n d P r o  o f. The following argument is more direct and avoids the use of Sha- 
piro's lemma. Assume again that  H = Or (C) is not a p '-group. Then A~ (H) ~= 0 by 
Lemma 1. By Lemma 6 AK(H) is isomorphic to a KH-submodule  of A--A~:(G). 
Let B be a minimal KH-submodule of A occuring in the socle of A K (H). Let  • == ~ B g. 

g e q  

Since H is normal in G, .Bg is a KH-module  being G-conjugate to B (g e G). (Compare 
with Clifford theory.) 

Let  M be a minimal KG-submodule of B. Then M is centralized by H. On the other 
hand, M is a direct sum of irreducible KH-modnies  conjugate to B. Consequently 
B ~ K is a trivial KH-module  and so by  Lemma 3 Hom (H, K) = H 1 (H, K) ~ 0, 
contradicting Or (H) ---- H. 

The situation for 2-cohomology, i.e. for the head of the Frat t ini  module, is quite 
different. To illustrate this we give an example. 

Example 1. Let G = Air(5) be the alternating group of degree 5. 

(a) K = ~:2. 
There are 3 distinct types of irreducibleKG-modules, say K, P, X. P is the reduc- 

tion of the (absolutely) irreducible QG-module of dimension 4 coming from the per- 
mutat ion representation of G on 5 letters; P is the Steinberg module and thus pro- 
jective (cf. [10], w 16.4). X decomposes over ~:4 into 2 distinct absolutely irreducible 
modules of  dimension 2 which are conjugate under a field automorphism. (Note 
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G ~ SL(2, 4); X is a composition factor of the indecomposable permutat ion module 
obtained from the 2-transitive representation of G ~-~ PSL(2, 5) on 6 letters.) We 
have KG = PK @ P(~) @ p(4) . 

By direct calculation (or looking a t  the Cartan matr ix  given in [10], w 18.6) one 
gets the following Loewy sections for Pn, Px: 

PK: K , X , K  @ K , X , K ,  

Px: X , K  @ K , X , K  @ K , X .  

Hence A = An (G) has dimension 5, and A/AJ  ~ K, soc (A) ~ X. In  particular, X is 
the only irreducible KG-module with nonvanishing 1-cohomology, K the only one 
with nonvanishing 2-cohomology. 

(b) K = hrs. 

Here An(G) is (absolutely) irreducible of dimension 4. 

(c) K = hrs. 

Besides the trivial module and the Steinberg module, there is only one irreducible 
KG-module Y (dim Y = 3 ) .  Socle and head of An(G) are isomorphic to Y, and 
dim An (G) =- 6. 

R e m a r k .  Baer 's  problem as formulated at  the very beginning can be settled 
easily if the (unique, nonabelian) minimal normal subgroup N of G has a nontrivial 
irreducible module X over hrp with H 2 (N, X) ~= 0. In  general, since h r is not p-nil- 
potent,  the Frobenius p-nilpotence criterion and Shapiro's lemma gaaarantee the 
existence of an hrpN-module Y such that  H2(N, Y) ~ 0 and Ho(N, Y) = 0. The 
coinduced module M = HomN(hrpG, Y) satisfies Hn(G,M)~-~-Hn(N, Y) for all 
n > 0 (Shapiro). Let  M ~-> H -~ G be any nonsplit extension. Then every minimal 
supplement of M in H represents a faithful :Frattini extension of G, as desired. 

I f  G is p-solvable (and K a field of characteristic p, as usual), there is always a 
nontrivial irreducible KG-module with nonvanishing 2-cohomology, provided G is not 
p-nilpotent.  This will be shown in the next section. Here we handle the following 
special situation. 

Proposition 2. I f  the Sylow p-subgroups o/ G are cyclic, socle and head o/ A = AK (G) 
are irreducible, and Op, p (G) ~ Ca (A/AJ). 

P r o o f .  Since the Sylow p-subgroups of G are cyclic, by a result of Alperin and 
Janusz [1] every projective KG-module Pn appearing in the minimal resolution 
?/n (G) o f K  is indecomposable. Hence from Lemmas 1 and 3 it follows that  soc (A) 

P1/P1J and A/AJ_~ P2/P2J are irreducible. (An(G) is even uniserial here!) 
Let  H = C~(A/AJ). By (**) H~= Op, p(G). Assume H is not p-nilpotent. Since the 

Sylow p - sub~oups  of H are cyclic, we know tha t  socle and head of AK(H) are 
irreducible. :From Theorem 1 it follows Hi(H, K)-----O, hence Op(H)= H and 
E x t  (H/H', K) = O. :Furthermore p does not divide the order of the Sehur multiplier 
H2(H) of H.  From the universal coefficient theorem for cohomology we may  infer 
tha t  H 2 (H, K) = 0. But  AK (H) is isomorphic to a factor module of A (Lemma 6). 
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Since H is a normal subgroup of G centralizing A / A J ,  Lemma 3 yields the contra- 
diction H 2 (H, K) ~ O. (Clearly one may  also argue using Shapiro.) 

5. p-solvable groups. By a p-adic field we mean a field of characteristic 0 which is 
complete with respect to a discrete valuation and whose residue class field is of 
characteristic p. t tasse and Schmidt have proved tha t  there are p-adic fields with 
prescribed residue class fields (eft [7], p. 10). We fix a io-adic field E with residue 
class field K. Let  S be the valuation ring of E, p its maximal ideal (K = S/p). A 
KG-module M is called liftable (to S or E) if there is an S-free SG-module I]i whose 
reduction modulo p is M (M = 3~ (Ds K). 

Proposition 3 (Scott [9]). I / M  is an irreducible KG-module which can be lifted, then 
dim H 2 (G, M) > dim H 1 (G, M). 

P r o o f .  Scott 's proof deals with Brauer characters, assuming that  E is a splitting 
field for G. We give an alternative approach avoiding characters. I t  is well known 
tha t  the minimal resolution 9~K (G) of K (section 2) can be lifted to a minimal (SG- 
projective) resolution 

9Xs (G) : ""-->P2-'->P1-->Po--->,S--+O 

of S (see for instance [10], w 14.4). By hypothesis there is an S-free SG-module 2~r 
such tha t  M=~]~ (~zK .  Write bars for the corresponding EG-modules. Since 
Homsr  (-Pn, ~l~) is S-free, we have natural  isomorphisms 

Homs~ (Pn, M) |  E = HomzG (Pn, -~) 

and HomsG (Pn, -~) Q s  K = HomKG (Pn, M ) .  

From (.) i~ follows dimKHn(G, M) ~ dime HomE~(-Pn, Pier) (n > 0). 
By  Maschke's theorem Pn is completely reducible. Let  an denote the multiplicity 

of the (irreducible) EG-module _~r in -Pn, bn that  in Yn---- s  (~s E ( s  
and let c ----- d imHomgq(M,  M). Then dim Hn(G, M) ---- can and bn ~ an+l ~ bn+l 
( n ~ 0 ) .  I f  M ~ K  is a trivial module, a0--b0----1 and H ~  I f  M is 
nontrivial, a0 = b0 and H ~ (G, M) ---- 0. Thus for any integer r > 1 

~( ~ - 1)n dimH~(G, 3/) ---- (-- 1)rcbr. 
n = l  

Specializing to r = 2 gives dimH2(G, M) - -  d imHl(G,  M) = cb2 ~ 0, as desired. 
I t  is obvious tha t  the trivial module M -~- K can be lifted. In  this ease Proposition 3 

may  also be deduced from the universal coefficient theorem. One obtains more 
precisely 

dim H 2 (G, K) = dim H 1 (a, K) + dim/-I2 (G) @ K .  

Theorem 2. Assume G is p.solvable. Then the socle o] the Frattini module A = AK(G) 
is isomorphic to a direct summand o/ A / A J .  

P r o o f .  According to Lemma 3, the claim of Theorem 2 is equivalent to the state- 
ment  tha t  dimH2(G, M) > d i m H  I (G, M) for every irreducible KG-module M. This 
will be derived from the preceding proposition. 
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By the classical result of Hasse-Schmidt there is a p-adic field E with residue 
class field K. Let  F be the field obtained from E by adjoining the [G]-th roots of 
unity. F is again p-adic and its residue class field L is a finite extension of K.  By 
Lemma 4 M L ~  M (~KL is a completely reducible LG-module and dimgHn(G, M) 
= dimLHn(G, M L) for all n ~ 0. By the Fong-Swan theorem (for a lucid proof see 
[10], w 17.6) every irreducible summand of ML can be lifted. Now apply Proposition 3. 

Corollary 1. I / G  is p-solvable, Op, ~ (G) = CG (A/A J). 

P r o o f .  Immedia te  from ( . , )  and Theorems 1 and 2. 

In  case G is p-solvable, soc (A) can be described very elegantly. Denote by  A0 the 
direct sum of all complemented p-chief factors of G, counting multiplicities with 
regard to some fixed chief series of G. I t  is known tha t  an irreducible U:~G-module 
M has nonvanishing 1-cohomology here if and only if M is isomorphic (as G-module) 
to a complemented p-chief factor of G, and that  H I (G, M) ~--- Hom~ (C~ (M), M). For 
a proof based on the Hochschild-Serre sequence we refer to [2], Lemmas 3 and 4. 
I t  follows that  A0 is isomorphic to the socle of the Fratt ini  module of G over 0=p. 

Applying Theorem 2 and Gaschiitz's result s tated in the introduction, we have 
therefore the following 

Corollary 2. Suppose G is p-solvable and Ao is the direct sum o/ all complemented 
p-chie/ /actors o~ G, as above. Then Ao is isomorphic to the socle o /AK (G) (K = ~:~), 
and there is a tZrattini extension Ao ~-~ H -~ G o/ G. 

6. p-supersolvable ~oups.  Recall that  G is p-supersolvable ff and only if G/Op,~ (G) 
is an abelian group whose exponent divides p - - 1 .  In  particular, p-supersolvable 
groups are of p - l a u g h  1. Because of Brauer 's  theorem, G is p-supersolvable if  and 
only if every irreducible module in the principal p-block is of dimension 1 (cf. [2] ; 
it suffices to study the case K -~ U:v). 

Proposition 4. Assume G is p-solvable o/p-length 1. Then the restriction/rom G to a 
Sylow p-subgroup Gp o/G takes 9~: (G) to ~[tr (Gp), preserving lower and upper Loewy 
series o/any projective Pn. 

P r o o f. Let  M be a KG-module all of whose composition factors are in the principal 
block. We show that  M J  ~ [M, G~]. This means tha t  M / M J  is also the largest 
completely reducible factor module of M viewed as a KG~-module. The proof tha t  
soc (M) --~ H0(Gp, M) is the group of fixed points under G~ is quite similar. 

By hypothesis Op,~(G) -~ Op,(G)G~. Applying Brauer 's  theorem therefore yields 
[M, Gp] = [M, 0~, ~ (G)] C MJ. On the other hand, M/[M, G~] is a completely redu- 
cible K[G/O~,~ (G)]-module (Maschke). Consequently M J  = [M, Gp], as desired. 

I t  is now evident tha t  ?/K(G), viewed as a sequence of KG~-modules, is a minimal 
KG~-projective resolution of K. 
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Corollary 1. Let G be o/p-length 1, and let A = AK (G) as usual. Then 

dimA ---- 1 + (d(Gp) --  1)IGp[, dimsoc(A) ---- d(G~) and 

dim A/A  J ---- dim H 2 (Gp, K) .  

Moreover, dim A/A  J > �88 (dim soc (A))2. 

P r o o f .  Only the final statement needs some comment. I t  follows from the Golod- 
Safarevi6 theorem which says that  

d(Gp) 2 
dim H 2 (Gp, K) > ----4--- 

(cf. [5], w 7.3). 

d(Gp) 2 
Corollary 2 (Gaschtitz). I] G is p-supersolvable, dKG(A) > . . . . . . . .  where h i,~ the 

order o/G/Op, p (G). 4 h 

P r o o f .  Since the irreducibles in the principal ~o-block have dimension 1, by 
Nakayama's lemma and Lemma 3 

dKG(A) ---- dKa(A/A J) = max {dim H2(G, M)},  

where M runs through allirreducible modules occuring in A/A  J. By Brauer's theorem, 
the number of these modules does not exceed h = I Hom(G/O~,~ (e), ~*)]. (In fact, 
h is just the number of distinct irreducibles in the principal p-block.) Thus dKv (A) 

1 
> - -  dim A/A  J. Apply Corollary 1. 
~ - h  

Corollary 3. dimA : 1 i/ and only i /G is p-supersolvable with cyclic Sylow p-subgroups. 

P r o o f .  I f  dimA = 1, G has cyclic Sylow p-subgroups by Proposition 1. Further- 
more, then Ca (A) -~ O~,p (G) according to Theorem 1, and G/Ca (A) is cyclic of order 
dividing p -- i. 

Conversely, if G is p-supersolvable having cyclic Sylow p-subgroups, dim A ~- 1 by 
Corollary 1. (In the solvable case the result of Alperin-Janusz becomes obvious!) 

We see that  the Frattini module is trivial if and only if G is p-nilpotent with 
cyclic Sylow p-subgroups. 

7. Faithful Frattini modules. Theorem 3 is a consequence of Theorem 1, the pre- 
ceding Corollary 3, and the following 

Proposition 5. Suppose the dimension o/ A -~ AK (G) is at least 2. Then 

CG(A) = O~,(G). 

P r o o f .  By (~,g,) Ca(A)~= O~,(G). Assume Ca(A) ~ Op,(G). Then there is a cyclic 
p-subgroup H~=I  in Ca(A). Clearly AK(H) ~ K. By Lemma 6, A ~ K @ Q as a 
KH-module whereQ is KH-projective (KH-free). Since dimA ~ 2 ,  Q ~ 0 .  ~ o w Q  is 
a direct sum of some copies of the regular module K H  and thus faithful for H. I t  
follows CH (A) ---- 1, a contradiction. We are done. 



Vol.30, 1978 The Frattini module 265 

Corollary. The Frattini module AK (G) is ]aith/ul i /and  only i/Op,(G) = 1 and G i~ 
not metacyclic having cyclic Sylow p-subgroups. 

P r o o f .  Clear. 

I n  particular,  AK (G) is faithful when G is a noncyclic p-group.  I n  this case one 
can construct  an  explicit Frat t in i  extension of  G by  a faithful D=pG-module as follows. 

Example 2. Le t  K = D:~ and G be a p-group ~Sth d --. d (G) > 1. Let  {xl . . . .  , xa) 
be a minimal set  of  generators for G and  {exl x e G} a K-basis of  KG. G acts on KG 
by exy-----exy. Consider the s u b ~ o u p  H = ((e~,, xi)]i ----- 1 . . . . .  d> of  the semidireet pro- 
duct  of KG and  G (which is the regular wreath  produc t  K~ G). Le t  B = {(z, 1) t (z, 1) e l l ) .  
Then H/B ~--- G, and from d(H) = d(G) it follows B C r  I t  is s t raightforward 
tha t  B is indeed a faithful module for G. 

By  Gaschiitz 's  result, B is an  epimorphic image of  A = AK(G). Note  tha t  
dim B < ] G ] < dim A. One m a y  ask for a faithful KG-module B of  least dimension, 
/(G), admit t ing  a Frat t in i  extension B ~ H -~ G. We give an  upper  bound for /(G). 

I f  G contains a noncyclic maximal  subgroup N which is not  a direct  factor, 
](G) < p �9  by Shapiro 's  lemma. I f  no such N exists, G is either e lementary 
abelian or a quaternion group of  order 8. When  G is e lementary abelian of  rank 
r ---- d = 2 and p odd, it is easy to show tha t  ](G) ---- 3 by  construct ing an example H. 
For  arb i t rary  r we ge t / (G)  < 3 [(r+l)/2] by  taking a subgroup of  index 1 or p in the 

direct product  of  - .  2 .... copies of  tha t  group H. I n  general, if G is a p-group,  p odd, 

containing an e lementary abelian subgroup of  order pr, then 

/ (a )  <__ p-~ I a l  �9 3 I(~+~)/-"~ . 

This is quite a bit  less than  dim A -= 1 + I G 1 (d - -  1). I n  ease p --= 2, one obtains 

l(e) < 2-~lVl (5E(~§ ~ ) ,  

where ~ ~- 0 if  r is even and  5 ~ 1 otherwise. 

Example 3. Le t  G = S.L (2, 5) and  K---- 0=2. By  the above corollary and  Gaschiitz 's 
result there is a faithful KG-module  B of  least dimension admit t ing  a Frat t in i  ex- 
tension B~-~ H - ~  0. Of course, B is an  epimorphic image of  AK(G). We claim tha t  
B is uniserial o f  dimension 9. 

Let  Z (0) ~ <z) and G ---- G/(z),  the al ternat ing group of  d e ~ e e  5. By  minimality,  
X ---- [B, z] = soc(B) is an  irreducible K0-module .  Let  C = H~ B) and D be the 
inverse image in H of  (z) .  Then  B/C -~- X and D ~ r (H). Since G is the full covering 
group of  G, B/C is a nontr ivial  KG-module.  We m a y  conclude t h a t  X -= D' C q~ (D) C C 
and tha t  ~b (D)/X is of order 1 or  2. 

Now D/qS(D)~-> H/~)(D)-+>G is a Frat t in i  extension. Thus from Example  1 it 
follows t h a t  r (D) ~-- C, D/C ~ AK (G), and  X ~-- B/C is the 4-dimensional KG-mo- 
dule with nonvanishing 1-cohomology. 
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Assume C ---- X.  Then  B is a free module  for (z ) .  B u t  then  H n ( (z) ,  B) ---- 0 for 
all  n ~ 1. I n  par t i cu la r ,  D spl i ts  over  B and  the  complements  a re  conjugate .  I f  L 
is a complement  to  B in D, b y  a F r a t t i n i  argalment  we ge t  

H = NH (L) B = NH (L) ,  

because B C qb (H). However ,  th is  would  imp ly  t ha t  D is abel ian.  Consequent ly  
C/X _~ K is of  order  2. B is an  uniser ia l  K ~ - m o d u l e  wi th  Loewy sections X,  K,  X 
and  d im B = 9, as asserted.  
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