Cutpoints in the conjunction of two graphs

By

PAUL HAFNER and FRANK HARARY

1. Definitions and examples. Let G = (V, E) be a graph with vertex set V and edge set E; similarly let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$. The conjunction $G = G_1 \wedge G_2$ is defined by $V = V_1 \times V_2$ and $\{u, v\} = \{(u_1, u_2), (v_1, v_2)\} \in E$ if and only if

 $\{u_1, v_1\} \in E_1$ and $\{u_2, v_2\} \in E_2$.

This binary operation on graphs was introduced by Weichsel [6] and later termed conjunction by Harary and Wilcox [4].

Weichsel proved that $G_1 \wedge G_2$ is connected if and only if both G_1 and G_2 are connected and one of them contains an odd cycle. If both G_1 and G_2 are connected and bipartite, their conjunction G consists of two connected components constructed as follows. Color both V_1 and V_2 red and green. Then one component of G contains all vertices (u_1, u_2) where u_1, u_2 have the same color and the other component contains the pairs of vertices of opposite color.

We now develop some definitions and examples leading to a criterion for $G = G_1 \wedge G_2$ to be 2-connected, in other words, nonseparable or a block. Following the notation of [2], we write C_n for the cycle of length n, and P_n for the path with n vertices which we now label 1, 2, 3, ..., n starting at one endpoint and moving to the other. If u is a point of graph H we will denote the points of $H \wedge P_n$ by u1, u2, etc. Terminology not defined here may be found in [2].

Weichsel remarked that the conjunction $K_{1,r} \wedge K_{1,s}$ of two stars has the two connected components $K_{1,rs}$ and $K_{r,s}$. One acquires familiarity with the operation

Fig. 1. Three conjunctions of a triangle and a path

Archiv der Mathematik 31

by verifying that $C_n \wedge P_2 = C_{2n}$ if n is odd and $H \wedge P_2 = 2H$ if H is bipartite; it is also instructive to construct $C_n \wedge K_{1,m}$. As another illustration Figure 1 shows $C_3 \wedge P_m$ for m = 2, 3, 4. One sees at once that the conjunction of a cycle and a path has no cutpoints (although it may be disconnected as $C_{2n} \wedge P_3$).

Fig. 2. Three conjunctions of a graph with a path

Vol. 31, 1978

We will find that the typical behaviour regarding the occurrence of cutpoints in a conjunction is seen in the diagrams of Figure 2 which show $H \wedge P_2$, $H \wedge P_3$, $H \wedge P_4$ when $H = C_3 \cdot C_4$ is the graph obtained by identifying a point of C_3 with a point of C_4 .

If u is a cutpoint of the connected graph H then the removal of u disconnects H, leaving a number of connected graphs H_1, \ldots, H_r . The subgraphs F_1, F_2, \ldots, F_r of H induced by u and H_1 , u and H_2 , \ldots are called the branches of the cutpoint u. Note that u is not a cutpoint of any F_i .

2. A necessary condition.

Proposition. Let G_1 and G_2 be connected graphs and assume $G = G_1 \wedge G_2$ is connected. If (x, y) is a cutpoint of G then x is a cutpoint of G_1 and y is a cutpoint of G_2 .

Proof. Denote by F one of the branches of (x, y) in G and by H the union of the remaining branches of (x, y). Let $(a_1, b_1), \ldots, (a_r, b_r)$ be the vertices of F adjacent to (x, y) in G and $(c_1, d_1), \ldots, (c_s, d_s)$ the remaining vertices adjacent to (x, y) in G. We shall prove that in G_1 any path from a_i to c_j goes through x provided a_i is not terminal, and similarly in G_2 . (If a_i is terminal then obviously x is a cutpoint of G_i .) So we assume that there exists a point $a'_i \in V(G_1)$ adjacent to a_i with $a'_i \neq x$. Then $(x, y), (a_i, b_i), (a'_i, y), (a_i, d_j)$ is a path in G which avoids (x, y) and hence (a_i, d_j) $\in V(F)$; this proves that $a_i \neq c_j$ for all j. Now let $a_i, p_1, p_2, \ldots, p_i, c_j$ be a path in G_1 which avoids x. If t is odd we get a path $(a_i, b_i), (p_1, y), (p_2, d_j), \ldots, (p_t, y),$ (c_j, d_j) in G which contradicts the fact that in G the point (c_j, d_j) can only be reached from (a_i, b_i) via (x, y). If t is even then G_1 contains an odd $C: x, a_i, p_1, \ldots, p_t, c_j$. We now consider the path b_i , y, b_j or b_i , y in G_2 depending on whether $b_i \neq b_j$ or $b_i = b_j$ and denote it by P_3 or P_2 respectively. Clearly $C \wedge P_3$ and $C \wedge P_2$ have no cutpoints as seen earlier in Figure 1. Hence there is a path in G connecting (a_i, b_i) and (c_i, b_j) which avoids (x, y). As this is a contradiction, it follows that every path in G_1 joining a_i and b_j meets x, i.e., x is a cutpoint of G_1 . If b_i is not terminal (in which case y is trivially a cutpoint) one finds that y is a cutpoint of G_2 in the same fashion.

Now we know that if we want to find a cutpoint of G it is sufficient to consider the pairs of cutpoints of G_1 and G_2 . The following section shows, however, that this produces cutpoints only in rare cases.

3. The scarcity of cutpoints in G.

Lemma. Let G_1 be connected and not bipartite and assume x is a cutpoint of G_1 .

(a) x1 is a cutpoint of $G_1 \wedge P_2$ if and only if x has a branch which is bipartite.

(b) x1 and x3 are not cutpoints of $G_1 \wedge P_3$. Also x2 is a cutpoint of $G_1 \wedge P_3$ if and only if x has a branch which is bipartite.

(c) x3 is a cutpoint of $G_1 \wedge P_4$ if and only if x is adjacent to a terminal vertex.

Proof. Clearly (a) is implied by (b); also (a) follows from the construction given in Figures 1 and 2.

We now prove (b). As 1 and 3 are not cutpoints of P_3 , the Proposition implies that x1 and x3 cannot be cutpoints of $G_1 \wedge P_3$. To study x2, let X_1, X_2, \ldots, X_n be the branches of x in G_1 and recall that x is not a cutpoint of any of them. If X_i is bipartite then $X_i \wedge P_3$ has 2 connected components, one containing x1 and x3and the other containing x2. The removal of x2 will disconnect the latter component from the rest of $G_1 \wedge P_3$. If every branch X_i contains an odd cycle then all $X_i \wedge P_3$ are connected and x2 is not a cutpoint of any of them (since x is not a cutpoint of any X_i). Now $G_1 \wedge P_3$ can be obtained by identifying the vertices x1 in $X_1 \wedge P_3, X_2 \wedge P_3$ etc., and the same with x2 and x3. When the vertex x2 is removed the remainder of the $X_i \wedge P_3$ still hold together thanks to x1 and x3.

To prove (c), if x is adjacent to the terminal vertex u then u4 is terminal and adjacent to x3 in $G_1 \wedge P_4$; hence x3 is a cutpoint of $G_1 \wedge P_4$. If on the other hand all vertices adjacent to x are nonterminal we show that x3 is not a cutpoint. Assume u and w are adjacent to x, and $v \neq x$ is adjacent to u, $z \neq x$ is adjacent to w. Typical paths across x3 are

- (i) $u_2, x_3, u_4,$
- (ii) u2, x3, w2,
- (iii) u_2, x_3, w_4 .

But one can always bypass x3 as follows:

- (i) $u_2, v_3, u_4,$
- (ii) u2, x1, w2,
- (iii) u2, x1, w2, z3, w4.

We may summarize these observations by saying that the connected conjunction $G = G_1 \wedge G_2$ has no cutpoints provided G_1 has an odd cycle, every vertex of G_2 is contained in a path P_4 , and not both G_1 and G_2 contain terminal vertices. The latter condition is a trivial one and is therefore incorporated into the hypothesis of the following criterion.

Theorem. Let G_1 and G_2 be both connected, not both bipartite, and not both containing terminal vertices. Then $G = G_1 \wedge G_2$ has a cutpoint if and only if one of G_1 and G_2 is a star and the other has a bipartite block.

Proof. Assume G has a cutpoint and G_1 contains an odd cycle. The remark just before the theorem excludes any possibility apart from G_2 being a star $K_{1,n}$, $n \ge 1$ (since G_2 must have a cutpoint and no P_4). The Lemma then forces the condition that G_1 has a bipartite block, as G_1 must contain a cutpoint having a bipartite branch.

If, on the other hand, G_2 is a star and G_1 contains a vertex with a bipartite branch, and (since G is assumed connected) also contains an odd cycle, then the proof of part (b) of the Lemma implies the existence of a cutpoint in G.

4. Unsolved problems.

A. Connectivity. Weichsel [6] found the conditions for $G = G_1 \wedge G_2$ to be connected. In the Theorem above, we derived a criterion for G to be 2-connected. When is G *n*-connected ?

Vol. 31, 1978

B. Digraphs. The conjunction of two digraphs was defined by McAndrew [5]; its connectedness categories were determined in Harary and Trauth [3]. What is the generalization of our Theorem to digraphs?

C. Factorization under conjunction. Some binary operations on graphs enjoy a unique factorization, but the conjunction does not. This is seen at once by the example $G = K_{2,2} \wedge P_3 \cong K_{2,4} \wedge P_2$. There exist also examples of connected graphs with nonunique factorization. Dörfler [1] has shown how to obtain all "prime" factorizations from a given one. Which graphs have a unique conjunction-factorization?

References

- W. DÖRFLER, Primfaktorzerlegung und Automorphismen des Kardinalproduktes von Graphen. Glasnik Mat. 9, 15-27 (1974).
- [2] F. HARARY, Graph Theory. Reading 1969.
- [3] F. HARARY and C. A. TRAUTH, Connectedness of products of two directed graphs. J. SIAM Appl. Math. 14, 250-254 (1966).
- [4] F. HARARY and G. W. WILCOX, Boolean operations on graphs. Math. Scand. 20, 41-51 (1967).
- [5] M. H. MCANDREW, On the product of directed graphs. Proc. Amer. Math. Soc. 14, 600-606 (1963).
- [6] P. M. WEICHSEL, The Kronecker product of graphs. Proc. Amer. Math. Soc. 13, 47-52 (1962).

Eingegangen am 1. 12. 1976

Anschrift der Autoren:

Paul Hafner Department of Mathematics University of Auckland Auckland, New Zealand Frank Harary Department of Mathematics University of Michigan Ann Arbor, Michigan, U.S.A.