
Optimization and Engineering, 4, 271–289, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands

Concurrent Implementation of the Optimal Incremental
Approximation Method for the Adaptive and Meshless
Solution of Differential Equations

MICHAEL KOKKOLARAS∗
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
email: mk@umich.edu

ANDREW J. MEADE, JR.
Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX, USA
email: meade@rice.edu

BORIS ZELDIN
Software Engineer, Vignette Corporation, Boston, MA, USA
email: bzeldin@email.msn.com

Received July 18, 2001; Revised May 22, 2003; Accepted June 17, 2003

Abstract. The optimal incremental function approximation method is implemented for the adaptive and meshless
solution of differential equations. The basis functions and associated coefficients of a series expansion representing
the solution are selected optimally at each step of the algorithm according to appropriate error minimization criteria.
Thus, the solution is built incrementally. In this manner, the computational technique is adaptive in nature, although
a grid is neither built nor adapted in the traditional sense using a posteriori error estimates. Since the basis functions
are associated with the nodes only, the method can be viewed as a meshless method. Variational principles are
utilized for the definition of the objective function to be extremized in the associated optimization problems.
Complicated data structures, expensive remeshing algorithms, and systems solvers are avoided. Computational
efficiency is increased by using low-order local basis functions and the parallel direct search (PDS) optimization
algorithm. Numerical results are reported for both a linear and a nonlinear problem associated with fluid dynamics.
Challenges and opportunities regarding the use of this method are discussed.
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1. Introduction

The purpose of adaptive grid optimization techniques in computational mechanics is to
generate an optimal node distribution according to some objective. The common charac-
teristic of these techniques is that a grid is generated and a solution is found. Based on the
solution, the grid is adapted and regenerated until the objective is achieved. Typical objec-
tives include minimization of the total potential energy of the system (Oliveira, 1971) or
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homogeneous distribution of the local approximation error over the elements (Demkowicz
and Oden, 1986).

Diaz et al. (1983) considered the minimization of an estimated upper bound on the po-
tential energy of the approximate solution. They classified their optimal node distribution
technique as a relocation (r ) adaptive method. Using finite element error analysis (Johnson,
1990), the error ε between the exact solution u(x̄) and its approximation is bounded
by

‖ε‖H m ≤ Cδhµ‖u(x̄)‖H s ≈ Cδ N−µ‖u(x̄)‖H s , (1)

where x̄ is the vector of independent variables, µ = min(p + 1 − m, s − m), Cδ is some
positive constant, p is the polynomial order of the used basis functions, h is the grid
spacing, N ≈ h−1 is the number of used basis functions, and s and m are the order of the
Hilbert space norms in the domain of interest. In h-methods, the grid spacing h is reduced
through the introduction of additional basis functions to improve the quality of the solution.
In p-methods, the polynomial order p of the basis functions is increased while h − p
methods combine the introduction of additional basis functions with an increase in the
order of existing and/or introduced bases. In the r -method, the location of the grid nodes is
adjusted to increase the accuracy by decreasing the value of the constant Cδ .

It is well-known that most of the computational time required by codes that utilize adaptive
techniques is spent on grid regeneration (Hassan et al., 1992; Eiseman et al., 1992). Oden
(1992) stated that the major challenges to adaptive methods in computational mechanics
include:

1. The use of unstructured meshes and their resulting elaborate and complicated data
structures.

2. The necessity of explicit or iterative solution techniques due to the poor performance of
direct solvers on dynamically evolving unstructured meshes.

3. Stability issues of the associated numerical schemes stemming from the continuous
changes in the data structures and polynomial order of the bases.

4. The computational overhead of the error estimation and the adaptation process.

Motivated by similarities observed in artificial neural network algorithms and adaptive
grid optimization in computational mechanics, Meade et al. (1997) formulated the concept
of sequential function approximation (SFA) for the solution of differential equations. Using
the closely related methods of weighted residuals and variational principles, appropriate
optimization problems were formulated, and incrementally built solutions were obtained
for one- and two-dimensional boundary value problems involving linear self-adjoint dif-
ferential operators associated with homogeneous Dirichlet boundary conditions. We refer
to the utilization of the SFA concept for building optimal approximations to solutions
of differential equations incrementally as the optimal incremental approximation (OIA)
method.

Since the above development, so-called meshless methods have attracted a good deal of at-
tention because many computational mechanics problems (e.g., simulation of manufacturing
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processes or crack propagation) are not well suited for the traditional finite element, finite
volume, or finite difference methods (Belytschko et al., 1996). Meshless methods attempt
to construct the approximate solutions entirely in terms of nodes.

In this paper, a concurrent implementation of the OIA method (presented in the next sec-
tion) is applied to a linear nonself-adjoint problem (one-dimensional convection-diffusion
equation, Section 3), and a nonlinear problem (two-dimensional velocity potential equation,
Section 4) with general boundary conditions. The efficient adaptive nature of the proposed
computational technique is illustrated by means of the numerical results. Since the obtained
solutions depend on basis functions with compact domains of support that are associated
solely with nodes, the OIA method can be viewed as a meshless method. A grid is neither
built nor adapted. In this manner, the OIA method features the advantages of adaptive tech-
niques without sharing their drawbacks. Generalization and possible extension issues are
addressed in Section 5. Conclusions are drawn in Section 6.

2. The OIA method

The algorithm for optimal incremental approximation is based on the artificial neural net-
work algorithm proposed in Jones (1990, 1992) and Barron (1993). The solution u(x̄) of a
problem of the general form H[u] − f = 0, where H[·] is a general differential operator, is
approximated by the series expansion

u(x̄) ≈ ua
N (x̄) = u0 +

N∑
j=1

c j� j (x̄, q̄ j ) , (2)

where c j and � j denote coefficients and basis functions, respectively. At the N -th step of
the algorithm, c j and � j (x̄, q̄ j ) are held fixed for j = 1, . . . , N − 1, and the parameters q̄N

of the function �N and the associated coefficient cN are determined by solving the nonlinear
optimization problem

min
q̄N ,cN

E
(
ua

N

)
, (3)

where E(·) is some appropriate functional, for example, the variational principle associated
with the problem H[u] − f = 0. Note that problem (3) may be subject to general equality
and/or inequality constraints, e.g., bounds on the parameters of the basis functions.

The term u0 in Eq. (2) denotes some initial approximation such as a previously obtained
low-fidelity numerical solution of the problem and/or an appropriate additional series expan-
sion necessary for the treatment of boundary conditions (e.g., non-homogeneous Dirichlet
boundary conditions). This additional series expansion may involve different type(s) of
functions than the ones used in the series expansion built by the proposed method. In some
cases, as in the presence of Neumann boundary conditions, it may be necessary to extend
the computational domain and satisfy the boundary conditions by means of the basis func-
tions included in the series expansion built by the OIA method. This is demonstrated in the
nonlinear application considered in this paper.
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With respect to the disadvantages outlined in Oden (1992), note that there is no orthogo-
nality requirement on the basis functions, neither are there any restrictions on their type or
their distribution over the domain of interest. A broad class of functions (low-order polyno-
mials, B-splines, and radial basis functions, etc.) can be used and overlapping is possible.
Basis functions typically have a compact domain of support and are associated solely with
nodes. In this sense, additional basis functions change the computational “grid” as needed.
As a result, an r -type adaptive grid is created virtually without the need for remeshing. It
is matrix-free and can be concentrated in areas with high gradients or any other desired re-
gions. The adaptive grid, defined by the location of the optimally determined basis function
parameters, evolves with the solution and is not based on a posteriori error estimates. The
computational effort associated with a posteriori error estimation and respective regridding
is eliminated.

The computational efficiency of the method depends on the cost of solving the nonlinear
programming problem (3) at each step of the algorithm. The size of this optimization prob-
lem is kept low by solving for one basis at a time. Although any appropriate gradient-based
nonlinear programming algorithm can be used to solve the optimization problems associ-
ated with the applications considered in this paper, we chose the parallel direct search (PDS)
algorithm (Dennis and Torczon, 1991) since it does not require evaluation or estimation of
derivatives, a feature that can be quite useful for many engineering problems where deriva-
tives are either not available or too noisy when computed numerically. Moreover, PDS was
implemented by our collaborator David Serafini to run on a parallel computer (an IBM SP2
located at the Center for Research on Parallel Computation (CRPC) at Rice University) by
means of the Message-Passing Interface (MPI). The necessary evaluations of the functional
to be extremized are quite inexpensive and are distributed among four processors. A major
advantage of PDS is that it is fully scalable, that is, it can exploit additional processors with
the highest efficiency.

Variational principles are employed to define appropriate objective function(al)s, and
numerical stability issues are limited to the nonlinear optimization process. Note that without
an orthogonality requirement on the bases, the optimization problem size in the OIA method
is small compared to finite elements and finite volume where the coefficients and all of the
bases for an adaptive scheme must be calculated simultaneously.

3. Linear application: The convection-diffusion equation

A mathematical model of adequate fidelity for the steady-state balance between fluid con-
vection and diffusion is given by the ordinary differential equation

−α
d2u

dx2
+ β

du

dx
= 0 with α, β > 0, 0 ≤ x ≤ 1, (4)

where α and β represent the viscosity and convection coefficients, respectively. For the
boundary conditions u(0) = 0 and u(1) = 1, the exact solution representing velocity is given
by u(x) = eβx/α−1

eβ/α−1 and is characterized by the presence of a boundary layer adjacent to the
surface at x = 1 (Fletcher, 1988). For many flow problems dissipation is significant only in
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the region of the boundary layer. Therefore, numerical solutions are often oscillatory when
the dependent variable exhibits large gradients across the boundary layer. The cell Reynolds
number, defined in analogy to the freestream Reynolds number by Recell = β�x /α, plays
a significant role in the accuracy and stability of the numerical solution in finite difference
methods. In this regard, Eq. (4) poses a challenging numerical problem.

Variational principles are readily available for problems that are governed by linear
self-adjoint differential operators and are associated with homogeneous Dirichlet boundary
conditions. For linear nonself-adjoint operators and non-homogeneous Dirichlet bound-
ary conditions it is possible to derive variational principles by transforming the operators
appropriately (Zienkiewcz and Taylor, 1989; Finlayson, 1972). The variational principle
associated with the problem of Eq. (4) is derived in Kokkolaras (1997) as

E =
∫ 1

0
e− β

α
x

(
du

dx

)2

dx . (5)

3.1. Numerical procedure

The function u(x) that minimizes the functional of Eq. (5) satisfies the associated
Euler-Lagrange equation given in Eq. (4) and the boundary conditions. The series expansion
used to approximate u(x) is

u(x) ≈ ua
N (x) = x +

N∑
j=1

c j� j (x, q̄ j ) = ua
N−1(x) + cN �N (x, q̄N ). (6)

The term c0�0 = x is included in order to satisfy the boundary conditions since all other basis
functions (� j , j = 1, . . . , N ) are defined to vanish at the boundaries of the computational
domain. After introducing this series expansion into Eq. (5), the optimization variables
vector q̄

′
N = (q̄N , cN )T can be defined and determined using PDS. However, the size of this

nonlinear optimization problem can be further reduced. By substituting Eq. (6) into Eq. (5)
and requiring the derivative of E with respect to cN to vanish, the following expression is
obtained:

∫ 1

0
e− β

α
x dua

N

dx

d�N

dx
dx = 0 . (7)

Solving for the coefficient cN yields

cN =
[ ∫ 1

0
e− β

α
x d�N

dx

d�N

dx
dx

]−1

×
[
−

∫ 1

0
e− β

α
x d�N

dx
dx −

N−1∑
j=1

c j

∫ 1

0
e− β

α
x d� j

dx

d�N

dx
dx

]
. (8)
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Readily parameterized piecewise linear “hat” functions (B1-splines) were employed as the
basis functions. B1-splines are defined as

�(x) =




(x − (xM − �xl))/�xl if xM − �xl ≤ x ≤ xM

((xM + �xr ) − x)/�xr if xM ≤ x ≤ xM + �xr

0 otherwise

, (9)

where the parameters xM , �xl , and �xr denote the location of the center of the function, its
width to the left, and its width to the right, respectively. The optimization variables vector
is q̄N = (xM , �xl , �xr )T

N and can be computed by solving the optimization problem

min
q̄N

E
(
ua

N

)
(10)

subject to 0 ≤ xM − �xl ≤ xM ≤ xM + �xr ≤ 1 ,

where

E
(
ua

N

) =
∫ 1

0
e− β

α
x

(
1 +

N−1∑
j=1

c j
d� j

dx
+

[ ∫ 1

0
e− β

α
x d�N

dx

d�N

dx
dx

]−1

×
[
−

∫ 1

0
e− β

α
x d�N

dx
dx −

N−1∑
j=1

c j

∫ 1

0
e− β

α
x d� j

dx

d�N

dx
dx

]
d�N

dx

)2

dx . (11)

Once the basis functions parameters q̄N have been determined, the associated coefficient
cN can be computed directly from Eq. (8).

3.2. Numerical results

Equation (4) was solved for the coefficient ratio β/α = 20. The approximations obtained
after determining optimally the parameters of one (top left), two (top right), three (bottom
left), and ten (bottom right) basis functions and the associated coefficients are compared to
the exact solution in figure 1. The agreement between the exact and approximate solutions
within the boundary layer, characterized by a large gradient of the solution, is quite sat-
isfactory. Acknowledging that finite elements with B1 splines can mimic finite difference
schemes using specific quadrature rules (Fletcher, 1982), figure 1 illustrates the low number
of bases required by the OIA method relative to results reproduced from Fletcher (1988)
in figure 2. In addition, solutions obtained at any step of the algorithm do not exhibit insta-
bilities (oscillations) as opposed to solutions obtained by some finite difference schemes.
The same oscillations occur when applying the Bubnov-Galerkin finite element method to
the original differential equation using coarse uniform grids and linear Lagrangian shape
functions.
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Figure 1. One-dimensional convection-diffusion. The evolution of the approximate solution with increasing
number N of basis functions using the OIA method compared to the exact solution.

Figure 2. One-dimensional convection-diffusion. Solutions from different schemes of the finite differences
method (reproduced from Fletcher (1988)).

Figure 3 (left) compares the RMS error convergence rate obtained by the Galerkin method
using linear Lagrangian shape functions on a uniform grid to that obtained by the optimal
incremental approximation method. The RMS error is directly proportional to the discrete
L2-norm of the error. Since our bases are piecewise linear and the exact solution vector is
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Figure 3. One-dimensional convection-diffusion. Convergence rates comparison (left) and distribution of the
N = 10 optimally selected basis functions (right).

exponential for our linear equation, we have p = 1, m = 0, and s = ∞ in Eq. (1). If the OIA
does not adversely affect the optimal convergence rate of the bases then it should display at
least a quadratic dependence on N (µ = 2). This is confirmed in figure 3 (left). In addition,
the comparison with uniform conventional finite elements in figure 3 (left) shows that the
positive constant Cδ of Eq. (1) is substantially reduced by the OIA, which resembles the
behavior of r -methods. Note that a greater than quadratic convergence is displayed at some
steps of the OIA algorithm. This is partially explained by the “relocation” aspect of the OIA
method, since it places the bases where they will reduce the magnitude of equation residual
by the greatest amount.

3.3. Computational cost

At each step of the algorithm, the optimization problem (10) is solved using PDS. The
computational cost depends on the search size, characterized by the number of simplex
vertices (or pattern points) d , and the termination tolerance tol; both are user-controlled
parameters. PDS evaluates the objective function at d vertices of a simplex in the hyperplane
of dimension n, where n is the number of optimization variables. After the completion of this
process, the “best” vertex is chosen and compared to the previous iterate. If the difference lies
between the user-defined tolerance tol, the optimization process is terminated. In general, a
small d should be associated with a tight tolerance tol, while a large d should be combined
with a relaxed tolerance tol.

Table 1 summarizes the amount of computational work required by PDS for two
combinations of parameter values: (tol = 10−6, d = 100) and (tol = 10−4, d = 1000).
The number of iterations required by PDS at each step of the algorithm does not fluctuate
significantly. However, it is observed that PDS requires fewer iterations at the first step of
the algorithm. The number of required function evaluations is not very large, especially
considering that an evaluation is quite inexpensive and that the computational work is
distributed among four processors. In addition, the total number of solved optimization
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Table 1. Amount of computational work required by PDS for the linear convection-diffusion problem.

Algorithm No. of PDS Total no. of Total no. of
step iterations function eval. constraint eval.

d = 100 tol = 10−6

1 24 836 2272

8 18 1493 1536

16 15 1307 1365

24 16 1168 1335

d = 1000 tol = 10−4

1 7 916 5344

8 11 5721 6683

16 12 6970 8719

24 10 7401 8475

problems, which is equal to the number of algorithm steps, is small. The overall computa-
tional cost is therefore quite low. As expected, a low number of pattern points associated with
a tighter tolerance requires more iterations but fewer function and constraint evaluations
than a large number of pattern points associated with a relaxed tolerance.

4. Nonlinear application: The velocity potential equation

The derivation of natural variational principles for problems that are governed by nonlinear
differential operators is generally a challenging task. However, there are applications of
interest in fluid dynamics for which variational integrals have been proposed (Oden, 1992;
Greenspan, 1965, 1967). For example, the problem of compressible inviscid fluid flow has
been studied in its variational form extensively. Prozan (1982 a,b), discussed the existence of
variational principles for unsteady conditions in one and two dimensions. Bateman (1930)
derived two variational principles for isentropic conditions: a maximum principle defined
in terms of the velocity potential and a minimum principle defined in terms of the stream
function. Manwell (1980) proposed a variational integral for flow with shocks but does not
present numerical results. His approach is similar to that presented earlier in Greenspan
and Jain (1967), where a variational principle is extremized using finite differences. This
variational principle is the same as that derived in Lush and Cherry (1956), which is based
on the maximum principle from Bateman (1930) for steady conditions. The OIA method
will be applied to the circular cylinder problem studied in Greenspan and Jain (1967).

The continuity and momentum equations governing steady, two-dimensional, isentropic,
inviscid, compressible fluid flow past a fixed body can be combined by the introduction of
a velocity potential ϕ to the single scalar equation

(
c2 −

(
∂ϕ

∂x

)2)
∂2ϕ

∂x2
− 2

∂ϕ

∂x

∂ϕ

∂y

∂2ϕ

∂x∂y
+

(
c2 −

(
∂ϕ

∂y

)2)
∂2ϕ

∂y2
= 0, (12)
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where c is the local speed of sound. The associated boundary conditions are

∂ϕ

∂n
= 0 on the body and ∇ϕ = (V∞, 0)T = constant far from the body,

where n is the direction normal to the body surface and V∞ is the freestream velocity.
If the velocity potential ϕ is defined in terms of some unknown auxiliary function χ

according to

ϕ = V∞x + V∞χ , (13)

then the following functional to be maximized can be formulated in polar coordinates,

E(χ ) = p∞
∫ 2π

θ=0

∫ ∞

r=1

(
F − 1 + γ M2

∞ H
)
r dr dθ, (14)

where

F =
(

1−γ − 1

2
M2

∞

(
2 cos(θ )

∂χ

∂r
−2

sin(θ )

r

∂χ

∂θ
+

(
∂χ

∂r

)2

+ 1

r2

(
∂χ

∂θ

)2)) γ

γ−1

(15)

and

H =
(

1 − 1

r2

)
∂χ

∂r
cos(θ ) −

(
1 + 1

r2

)
∂χ

∂θ

sin(θ )

r
. (16)

In the above expressions p is pressure, M is the Mach number, γ is the ratio of specific heats
and the subscript ∞ denotes freestream conditions. The associated boundary conditions are

∂χ

∂r
= − cos(θ ) at r = 1 and χ = 0 far from the cylinder.

The variational principle of Eq. (14) is defined over an infinite domain. For the sake of
comparison with the computations presented in Greenspan and Jain (1967), the compu-
tational domain has been modified to cover the area around a quarter of a unit cylinder
(π/2 ≤ θ ≤ π ) with a radius that spans from the body surface (r = 1) to the far-field
(r = 20). The boundary conditions for the new computational domain are

χr = −cos(θ ) at r = 1, χ = 0 at r = 20 and θ = π

2
, and χθ = 0 at θ = π,

where the subscripts denote partial differentiation.

4.1. Numerical procedure

The OIA method has been employed to approximate numerically the extremal function
χ (r, θ ) that maximizes the variational principle. Utilizing the bilinear product �(r, θ ) =
�(r )�(θ ) for the representation of the two-dimensional basis function, the function χ (r, θ )
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is approximated by the series expansion

χa
N (r, θ ) =

N∑
j=1

c j� j
(
r, q̄r

j

)
� j

(
θ, q̄θ

j

)
, (17)

where the basis functions � j are B1-splines with parameters q̄r
j = (rM , �rl , �rr )T

j and
q̄θ

j = (θM , �θl , �θr )T
j . The c j are the associated expansion coefficients.

The presence of homogeneous Dirichlet boundary conditions on the boundaries r = 20
and θ = π/2 facilitates the use of basis functions defined to vanish at the domain boundaries.
The presence of Neumann boundary conditions on the boundaries r = 1 and θ = π ,
however, requires the extension of the computational domain in these two directions by the
addition of a small fictitious domain characterized by the modifications of the lower and
upper bounds in constraints (19) and (20), respectively. It is important to note that this is
possible because the Neumann boundary conditions are naturally satisfied by the variational
principle as shown in Kokkolaras (1997).

Only the partial derivatives of the function χ (r, θ ) appear in the functional E of Eq. (14).
They are approximated by

χr ≈ ∂χa
N

∂r
=

N∑
j=1

c j

∂� j
(
r, q̄r

j

)
∂r

� j
(
θ, q̄θ

j

)
and χθ ≈ ∂χa

N

∂θ

=
N∑

j=1

c j� j
(
r, q̄r

j

)∂� j
(
θ, q̄θ

j

)
∂θ

.

These approximations are introduced into the variational integral to be maximized at each
step of the algorithm. Due to the nonlinearity of the functional, the optimization problem
cannot be decomposed into smaller problems as in the linear case. All seven optimization
variables, represented by the vector q̄ ′

N = (rM , �rl , �rr , θM , �θl , �θr , c)T
N , are computed

simultaneously by solving the optimization problem

max
q̄ ′

N

E
(
χa

N

)
(18)

subject to 0.9 ≤ rM − �rl ≤ rM ≤ rM + �rr ≤ 20 (19)

and

π

2
≤ θM − �θl ≤ θM ≤ θM + �θr ≤ 1.1π (20)

using PDS.

4.2. Numerical results

Numerical results are presented for transonic air flow around a quarter of a unit cylinder and
compared to the results of Greenspan and Jain (1967). The following flow properties are
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estimated after solving for the function χ : the nondimensionalized speed of the fluid V /V∞,
the nondimensionalized local speed of sound c/V∞, the nondimensionalized pressure p/p∞,
and the pressure coefficient C p.

Since the auxiliary function χ (θ, r ) is approximated by piecewise linear splines, its partial
derivatives χr and χθ required for the representation of the above mentioned quantities are
approximated by piecewise constants. The results obtained from the partial derivatives of
χ have been smoothed by a cubic polynomial fitted in the least-squares sense.

Numerical results were obtained for three test cases with freestream Mach numbers 0.4,
0.43, and 0.46 in air (specific heat ratio γ = 1.405). Greenspan and Jain (1967) reported
results for M∞ = 0.4 and M∞ = 0.43, but their Newton-like algorithm failed to converge for
freestream Mach numbers that were greater then 0.43. In their numerical test cases, �θ = 9◦

and �r = 0.1, 0.15, and 0.2 which result in finite difference grids of 11 × 191 = 2101,
11 × 127 = 1397, and 11 × 96 = 1056 nodes, respectively. Greenspan and Jain (1967)
compared their results for M∞ = 0.4 to those presented in Lush and Cherry (1956) and
Imai (1941).

The approximate function χa
N (r, θ ) is plotted on the left of figure 4 for M∞ = 0.4 using

31 optimally selected basis functions and associated coefficients. The function exhibits a
steep gradient in the r -direction near the cylinder surface. A satisfactory level of accuracy
is achieved considering the low number of optimal basis functions included in the series
expansion.

The approximate solutions for M∞ = 0.43 and M∞ = 0.46 are similar to those of M∞ =
0.4. The plot on the right of figure 4 and the plots in figure 5 present the approximation of
χa

N (r, θ ) at different radii (on and near the cylinder surface) obtained for M∞ = 0.46 and
M∞ = 0.43 using 41 and 30 optimal basis functions, respectively. It can be concluded
that the agreement with the results presented in Greenspan and Jain (1967) is satisfactory.
Moreover, the OIA method did not fail for M∞ > 0.43. The results presented for M∞ = 0.46
complete the ones reported in Greenspan and Jain (1967), Lush and Cherry (1956) and Imai
(1941).
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Figure 4. Two-dimensional, compressible, inviscid flow. The approximate velocity potential auxiliary function
for M∞ = 0.4 using N = 31 optimal basis functions (left) and the approximate velocity potential auxiliary function
at different radii (on and near the cylinder surface) for M∞ = 0.46 using N = 41 optimal basis functions (right).



CONCURRENT IMPLEMENTATION OF THE OIA METHOD 283

opt. seq. approx.

Imai             

Greenspan dr=0.1 

Greenspan dr=0.15

90 100 110 120 130 140 150 160 170 180
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

θ

r=1

χ

opt. seq. approx.

Imai             

Greenspan dr=0.1 

Greenspan dr=0.15

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
r=1.6

χ

opt. seq. approx.

Imai             

Greenspan dr=0.1 

Greenspan dr=0.15

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
r=2.2

χ

opt. seq. approx.

Imai             

Greenspan dr=0.1 

Greenspan dr=0.15

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
r=2.8

χ

90 100 110 120 130 140 150 160 170 180
θ 90 100 110 120 130 140 150 160 170 180

θ

90 100 110 120 130 140 150 160 170 180
θ

Figure 5. Two-dimensional, compressible, inviscid flow. The approximate velocity potential auxiliary function
at different radii (on and near the cylinder surface) for M∞ = 0.43 using N = 30 optimal basis functions.

Figure 6 depicts the nondimensionalized fluid velocity and sonic speed on the cylinder
surface for the three test cases. The agreement with previously reported results is satisfactory.
It can be seen how the flow just reaches sonic speed at θ = π/2 for M∞ = 0.4, while the
flow becomes transonic for M∞ = 0.43 and M∞ = 0.46.

Finally, the pressure coefficient distributions on the cylinder surface for the three test
cases are presented in figure 7. Again, the agreement with the available data validates the
OIA method.

4.3. Computational cost

The amount of computational work required by PDS at each step of the algorithm is pre-
sented in Table 2 for tol = 10−4 and d = 1120. The number of iterations required by PDS to
solve the optimization problem at each step of the algorithm does not exhibit extreme fluc-
tuations. A larger number of function evaluations is required for the nonlinear application
due to the increased size of the optimization problem. Evaluations are still quite inexpen-
sive to perform however, and computational work is distributed among four processors. In
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Figure 6. Two-dimensional, compressible, inviscid flow. Nondimensionalized fluid velocity (curve 1) and sonic
speed on the cylinder surface (curve 2) for M∞ = 0.4 (top left), M∞ = 0.43 (top right), and M∞ = 0.46 (bottom).

addition, the total number of solved optimization problems, which is equal to the number of
algorithm steps, has not increased substantially. The overall computational cost is therefore
low.

5. Challenges and opportunities

It has been argued in the literature (Greenspan, 1965; Finlayson, 1972, p. 310) that the
numerical approximation of the function that extremizes a variational principle is preferable
to the numerical approximation of the function that satisfies the associated Euler-Lagrange
equation. The performance of the proposed OIA method on problems where variational
principles are available supports the above argument. Based on the presented examples, the
OIA method seems to work very well on problems with linear (self- or nonself-adjoint)
operators and on problems with nonlinear operators for which variational principles can be
derived. The purpose of the OIA method is not to “compete” with traditional methods such
as finite differences or finite elements, but to present an alternative that may work better
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Figure 7. Two-dimensional, compressible, inviscid flow. Pressure coefficients distribution on the cylinder surface
for M∞ = 0.4 (top left), M∞ = 0.43 (top right), and M∞ = 0.46 (bottom).

and/or more efficient relative to “simple” implementations of traditional methods in such
problems. The point here is that “sophisticated” implementations of traditional methods
may outperform the OIA method, however, they are more complicated and expensive.

As mentioned, the implementation of the OIA method in this paper is based on the
utilization of variational principles. However, derivation of variational principles for all
types of problems is far from straightforward; moreover, variational integrals may not
always be associated with extremal functions. An alternative approach for defining the
objective function in the optimization problem (3) is necessary.

The method of weighted residuals is a possible alternative, as discussed in Meade et al.
(1997). For example, minimizing 〈R, R〉, where R is the residual of a differential equation
and 〈·〉 is some appropriate inner product, corresponds to the well-known least-squares
weighted residual method.

An alternative to the least-squares method can be found within the method of weighted
residuals by considering the following geometric perspectives: if we assume that 
N is some
function of the basis �N , then the parameters of the vector 
N can be selected such that it
is as parallel as possible to the previous equation residual vector RN−1. This is equivalent to
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Table 2. Amount of computational work required by PDS for the two-dimensional, compressible, inviscid flow
problem for d = 1120 and tol = 10−4.

Algorithm No. of PDS Total no. of Total no. of Functional
step iterations function eval. constraint eval. value

M = 0.4

1 21 6337 17202 0.053511

10 16 11464 12155 0.093902

20 42 33811 41611 0.095980

30 17 13711 15000 0.096385

M = 0.43

1 17 8014 12655 0.069409

10 15 7941 13806 0.106047

20 22 20452 21232 0.111336

30 24 19443 24323 0.113558

M = 0.46

1 17 7543 12654 0.080411

10 31 23691 27128 0.128511

20 44 28435 39596 0.143601

30 24 23453 23643 0.149425

40 37 36678 38842 0.150619

maximizing 〈RN−1, 
N 〉2. The associated coefficient cN can be determined by forcing the
residual RN to be as orthogonal as possible to 
N . This is done by using the optimization
variable cN to minimize 〈RN , 
N 〉2. The similarity of this technique to the Petrov-Galerkin
method is apparent.

Thomson (1999) and Thomson et al. (2001) applied the OIA method to heat transfer prob-
lems successfully using functionals that were defined according to the above suggestions.

The OIA method may also be used in combination with mixed variable programming
algorithms to solve problems with singular solutions. As discussed in Belytschko et al.
(1996), the moving least-squares (MLS) meshless method employs predefined sets of basis
functions. The associated coefficients are functions of the independent variables x̄ and are
determined by minimizing some appropriate criterion. When the problems have singular
solutions, singular basis functions should be included in the predefined basis function sets.
In fact, a user should be able to choose among many types of functions and their combi-
nations: trigonometric, exponential, polynomial, or singular functions. The OIA method
could be extended to also determine the optimal type of basis function to be included in
the series expansion. A pattern search optimization algorithm has been developed recently
for mixed variable programming (MVP) (Audet and Dennis, 2000). MVP has been applied
to problems with categorical variables (Kokkolaras et al., 2001). Categorical variables are
integer variables that cannot be relaxed to continuous variables during the optimization
process since the objective function cannot be evaluated. The basis function type is such
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a categorical variable. Using MVP as the optimization algorithm instead of PDS, the OIA
method could determine which basis function type to use at each step of the algorithm in
addition to its optimal parameters and associated coefficient.

Treating complicated geometries is the major challenge faced by the proposed method.
A possible remedy may be hybridization with other techniques. The computational domain
could be partitioned, and the OIA method would work well for the part of the domain
described by simple geometry while traditional techniques take care of the boundaries.

6. Conclusions

We present an optimal incremental approximation (OIA) method for the adaptive and mesh-
less solution of problems for which variational principles are available. The proposed al-
gorithm requires the solution of a nonlinear optimization problem at each of its steps. The
variational principles associated with the differential equations and boundary conditions of
the problems are utilized to define the objective function(al).

The OIA method is adaptive in nature although a grid is neither built nor adapted in the
traditional sense. The computational overhead of the a posteriori error estimation and adap-
tive process, present in traditional adaptive and multigrid techniques, is avoided. The “grid”,
defined by the location of the optimally determined basis function parameters, evolves with
the solution. In this sense, the method can be viewed as a meshless method. Complicated
data structures are not required since systems of equations are neither assembled nor solved,
and numerical stability issues are limited to the nonlinear optimization process. The algo-
rithm can be initialized with an empty set of basis functions and utilize a broad class of
functions.

The OIA method has been applied successfully to a linear nonself-adjoint problem and a
nonlinear problem associated with general boundary conditions. The OIA method exploits
its adaptive nature in problems whose solutions exhibit large gradients. The accuracy of
the obtained results is satisfactory considering the low number and order of the optimal
basis functions used in the series expansion that approximates the solution. As shown in
the case of the linear application, the OIA method overcomes certain difficulties faced
by the finite differences methods when the latter does not employ an upwind scheme. In
addition, although we cannot estimate convergence rates theoretically at this point, the
convergence rate obtained in practice for the linear application seems to be superior to that
of the Bubnov-Galerkin technique using a uniform grid. Of course, upwind schemes can
be employed in finite differences, and the finite element method could be utilized with
higher order basis functions and more sophisticated meshes, in which cases they would
outperform the OIA method. However, the purpose of the OIA method is to present an
attractive alternative for simple (adaptive but meshless, using linear basis functions) and
efficient (low computational cost without deteriorating accuracy) solution of problems that
can be represented by variational principles.

Any nonlinear programming algorithm can be employed for the solution of the optimiza-
tion problems. However, using the parallel direct search (PDS) algorithm, which features
concurrent function evaluations, we keep the computational cost low. Readily parameter-
ized low order functions and their bilinear products have been used to ensure simplicity
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and computational efficiency. The computational work required by PDS does not increase
as the algorithm advances.

The implementation of the OIA method in this paper is based on the utilization of natural
and contrived variational principles. We propose alternative formulations for problems
where variational principles may not be available and point to references of recent work in
which these formulations were used successfully in the solution of heat transfer problems.
Finally, we discuss a possible extension of the method using mixed variable programming
algorithms to also determine the type of basis function to be used in the series expansion.
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