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Abstract. This paper has two main contributions. Firstly, we introduce a new approach, the latent instrumental
variables (LIV) method, to estimate regression coefficients consistently in a simple linear regression model where
regressor-error correlations (endogeneity) are likely to be present. The LIV method utilizes a discrete latent variable
model that accounts for dependencies between regressors and the error term. As aresult, additional ‘valid’ observed
instrumental variables are not required. Furthermore, we propose a specification test based on Hausman (1978) to
test for these regressor-error correlations. A simulation study demonstrates that the LIV method yields consistent
estimates and the proposed test-statistic has reasonable power over a wide range of regressor-error correlations
and several distributions of the instruments.

Secondly, the LIV method is used to re-visit the relationship between education and income based on previously
published data. Data from three studies are re-analyzed. We examine the effect of education on income, where the
variable ‘education’ is potentially endogenous due to omitted ‘ability’ or other causes. In all three applications, we
find an upward bias in the OLS estimates of approximately 7%. Our conclusions agree closely with recent results
obtained in studies with twins that find an upward bias in OLS of about 10% (Card, 1999). We also show that for
each of the three datasets the classical IV estimates for the return to education point to biases in OLS that are not
consistent in terms of size and magnitude. Our conclusion is that LIV estimates are preferable to the classical IV
estimates in understanding the effects of education on income.
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1. Introduction

The standard linear regression model y = X + € is an important tool in (applied) statistical
science to model the effect of a set explanatory variables on a dependent variable. Here
y=(1,...,y,) is the dependent variable, X € R"** the vector of explanatory variables
(regressors), B is the unknown & x 1 vector of interest and € = (ey, ..., €,) is an unobserved
stochastic disturbance. An important assumption in these models is the independence of the
explanatory variables X and random (error) components €. In this case the regressors are
said to be ‘exogenous’ (or determined outside the model). Failure of this assumption may
lead to biased or inconsistent estimates for the parameters of interest and henceforth to faulty
conclusions and erroneous decision-making (Judge et al., 1985; Bowden and Turkington,
1984; Greene, 2000). An important area where this independence assumption may not hold
is in estimating the causal effect of education on earnings, see for instance Griliches (1977),
Card (1999, 2001), or Uusitalo (1999). Most of the studies in question have focused on
estimating a linear regression model that relates the logarithm of a measure of earnings to a
measure of education and possible other explanatory variables. The effect of education on
income is expected to be positive, but the simple OLS estimator cannot be used to estimate it
because of omitted ‘ability’, in which case the OLS estimate is expected to be biased upward.

Unfortunately, in many similar situations the assumption of regressors and error inde-
pendence is not satisfied. In this case the regressors are often said to be ‘endogenous’.
Endogeneity can arise from a number of different sources: (1) relevant omitted variables,
such as omitted ‘ability’, (2) measurement error in the regressors, (3) the problem of self-
selection, (4) simultaneity, and (5) serially correlated errors in the presence of a lagged
dependent variable. Ruud (2000) shows that (2)—(5) can be viewed as a special case of (1).
One way to circumvent problems of endogeneity is to find instruments, based on economic
theory or intuition, and apply two-stage least squares or limited maximum likelihood esti-
mation techniques (see e.g. Bowden and Turkington, 1984; Verbeek, 2000; Greene, 2000).
Instruments are variables that mimic the troublesome regressors as well as possible but are
uncorrelated with the error term. Hence, instrumental variables cannot have a direct effect
on the dependent variable. However, this method suffers from at least two problems: (i) in
many situations no such variables are available, and (ii) if they are available, performance
of the inferential procedures critically relies on the ‘validness’ of these variables. Using bad
quality instruments may result in estimates that are even more biased than OLS estimates
(see e.g. Bound et al., 1995; Hahn and Hausman, 2003; Stock et al., 2002).

For most empirical researchers the question where to find suitable instruments is still
open. Without having valid instrumental variables at hand classical instrumental variables
estimation techniques cannot be relied on, and usually there is not much choice on the selec-
tion of instrumental variables. Furthermore, there is a bit of a dilemma: theory suggests that
the best choice of instruments are variables that are highly correlated with the endogenous
regressors. However, the more highly correlated they are, the less defensible the claim is
that these variables themselves are uncorrelated with the disturbances (cf. Greene, 2000).
From the applications presented in this paper it becomes clear that estimating the return to
education using instrumental variable estimation is problematic.

In addition, in empirical work it is not always obvious whether it is necessary at all to
search for instruments. Thus, one would like to test a priori whether E(e | X) = 0 holds.
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However, as OLS always yields X’e = 0, it is fruitless to use the OLS estimates for that
purpose. One way to test for exogeneity is through the use of instruments, and by applying
a Hausman test it can be determined post-hoc whether they were actually needed (see e.g.
Bowden and Turkington, 1984). This method has as drawbacks that instruments need to
be available and that the performance of the test critically depends on the quality of the
instruments. Besides, one may conclude that endogeneity is not a serious problem, in which
case OLS is the best available estimator making the instrumental variables superfluous.

In this paper we propose a new “instrument-free” approach to solve these circular prob-
lems. This Latent Instrumental Variables (LIV) approach estimates regression parameters
consistently regardless of the presence of regressor-error correlations. As this method does
not rely on observable instruments, issues such as availability, validity, and weakness of the
instruments can be circumvented. The proposed LIV method utilizes a latent variable model
to account for dependencies between the regressors and the error. The method introduces
an (unobserved) discrete binary variable to decompose x into a systematic part that is un-
correlated with € and one that is possibly correlated with €. We show how the approach can
be used to test for regressor-error dependencies, without having instrumental variables at
hand. Hence, as opposed to the classical IV approach, one can test a priori for endogeneity.!

This paper is organized as follows. We first introduce the LIV model and prove that the
model parameters are identifiable (Section 2). In addition, we discuss several implementa-
tion issues. In Section 3 we suggest a method to test directly for regressor-error problems,
which is based on a Hausman-test (Hausman, 1978). This instrument-free test can be used
to assess a priori the presence of regressor-error correlations. The model estimators and
test-statistic are evaluated on the basis of a simulation study (Section 4). In Section 5 we
review part of the schooling literature and discuss the problems associated with classical in-
strumental variables estimation. As will become clear, the classical IV method has produced
a less than satisfactory solution in estimating the return to education. We re-examine three
empirical datasets with the LIV approach. Section 6 presents a summary of our findings.
We conclude that the results presented here lend credibility to the LIV approach to solve
for general regressor-error dependencies.

2. The LIV model
2.1. The simple LIV model

The structural form of the assumed LIV model is given by

yi = Bo+ Bix1 + €,

3 (1)
Xi =T+,

1 Although the idea of latent instruments is new, observed discrete instruments have been used before in classical
IV estimation (van der Ploeg, 1997; Verbeek, 2000). Nevertheless, these dummy instruments may be weak or
endogenous. Similar to LIV, methods to ‘identify’ instruments for unbiased estimation of regression parameters
have been proposed in the measurement error literature. For instance, grouping methods have been used to
construct instruments based on the method of Wald (cf. Madansky, 1959; Bowden and Turkington, 1984).
Lewbel (1997) and Erickson and Whited (2002) propose method-of-moments based estimators that do not rely
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withi = 1,...,n and m a (m x 1)-vector of category means. Here, we assume a single
unobserved discrete instrument Z;. The discrete instrument should have at least two cate-
gories (m > 1), which is in accordance with van der Ploeg’s (1997) result for the standard
IV model with observed discrete instruments. Below we suggest how to include additional
exogenous variables into the model. We will also show that the model is robust against
(under) misspecification of the true number of categories of the instruments, and to error
distributions that are fatter in the middle, skewed, or that have fatter tails. It is assumed that
Z is independent of the error terms (€, v), that are specified to follow a normal distribution
with mean zero and variance-covariance matrix

Y- [03 aevi|
Ocy 01)2 '
As can be seen, the endogenous regressor x is split into an exogenous part and an endoge-
nous part. The correlation between x and € is captured through the covariance o,,. The
identifiability of this covariance term is an important feature of our model. The unobserved
instrument is a nuisance parameter, but can be profiled to give it an (economical) interpreta-
tion if additional data is available, and it may be compared to available observed instruments.
If we had observed the instruments, Z would simply separate the sample into m groups, with
known category-membership for each observation and model (1) is in form identical to a
standard instrumental variables model (e.g. van der Ploeg, 1997). In fact, the LIV estimator
for the regression parameters in this case is identical to the well known LIML estimator. The
LIML estimator assumes normality of the error terms and is often recommended instead of
2SLS when the observed instruments are weak (Bekker, 1994; Staiger and Stock, 1997). We
assume, however, that the category indicators are unknown a priori and have a multinomial
distribution with parameters (z, 1), where t = 1 and A = (A4, ..., A,,)’, where Zj Aj=1.
Conditionally given the category number j = 1, ..., m, the reduced form distribution
corresponding to (1) is

L(yi, xi |Zi = ej) = Na(uj, Q) 2
with mean
W= <,30+,317Tj> 3)
j

and variance-covariance matrix

2 “4)

Q= [ 1201)2 +2ﬂlasu +652 ‘310’3 +Uev:|
ﬂla\;2+oév g, ’

(Continued.) on observable instruments, and show that, under certain higher-order moment conditions, the
constructed instrumental variables can be used to consistently estimate the regression parameters. However,
the LIV model is developed for situations with general regressor-error dependencies and, hence, is more

generally applicable. Furthermore, the LIV method estimates the instruments via the available data rather than
constructing them on basis of moments that may or may not hold.
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where e; is the j-th column of the m x m-identity matrix. If f; denotes the normal bivariate
probability density function conditionally given Z; = e;, then the unconditional (marginal)
probability density function for (y;, x;) can be computed as

f(yisxi)zz)»jfj(yuxiﬁi =e;), &)
=

Thus, f(y;, x;) is a mixture of bivariate homoscedastic normal distributions and it has
expectation
- (/30 + B2 M”j) ©)
y.x = ’
Y AT

with variance-covariance

Q=+ (ﬁ’f)\/ar(zi)(ﬂj/) ,

where Var(z;) = diag(A) — AM, A = (Aq, ..., Ay). The parameters Aq, ..., A,, represent
the category sizes, with 4; > O and }; A; = 1. The parameters to be estimated are the
regression parameters Sy and f, the category means 7;, the variances o> and o2, the
covariance o, and the category sizes A, for j = 1, ..., m. The parameters are identified
as is shown in appendix 1.

For estimation of the parameters, assume that a sample of n IID observations (y;, x;) is
available. The method of maximum likelihood can be used to estimate the model parameters.
The likelihood function is obtained as the product of (5) across the observations. The
resulting (log-)likelihood equations, however, are nonlinear and do not allow a closed-form
expression. Therefore we use quasi-Newton numerical optimization routines (the BFGS-
method) for the maximization of the likelihood function that are provided with the GAUSS
package (Aptech, 2000). As the LIV model belongs to the class of mixture models, standard
results on estimation schemes and statistical properties for these models can be applied (see
Titterington et al., 1985; Redner and Walker, 1984; McLachlan and Peel, 2000, for an
overview).

Contrary to traditional instrumental variables estimation, the LIV approach is not
identified through the first two moments of the data, but is identified by statistical assump-
tions, similar in spirit to the measurement error methods proposed by e.g. Wald (1940) or
Lewbel (1997). As can be seen from the results in appendix 1, the model is identified for
every m > 1. This means that, unless the joint distribution of (y;, x;) is perfectly normal,
a mixture of normals with more than one component can be fitted to approximate the true
distribution. As long as m > 1, i.e. there exist at least two different group means 7, the
covariance o, is identifiable and the endogeneity can be accounted for. Titterington et al.
(1985) put forward that mixtures of normals often approximate densities of various shapes
quite well and that mixtures are used in robustness studies to investigate non-normal con-
ditions. Hence, the LIV model can be expected to be relatively insensitive to the shape of
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the (joint) distribution of the data or to the (non)existence of higher order moments. Fur-
thermore, identifiability does not break down when 8; = 0. We show this below in Monte
Carlo studies. These simulation studies indicate that the simple LIV model estimates the
regression parameters consistently and is flexible in adapting to the different joint distribu-
tions of (y;, x;). We also show below that the results are not sensitive to misspecification of
the true number of categories of the latent instrument.

2.2.  LIV: Implementation issues

Additional exogenous regressors. Additional exogenous regressors can be included
straightforwardly in both rows of 1, , in (6), so that (say) 2 x k additional parameters
have to be estimated. Similarly, possible available observed instrumental variables can be
included in the second row of w, .. It can be shown that these additional parameters are
identifiable as well (Ebbes, 2004).

Selection of the number of categories of the discrete instrument. In empirical studies,
it needs to be decided how many categories the latent instrument has, i.e. how large m
should be. Standard model selection methods, like AIC, CAIC, or BIC are often found
to overestimate the number of groups. Naik et al. (2003) argue that information criteria
like AIC are designed for selecting regressors, but not groups. The integrated classification
likelihood (ICL) criterion (Biernacki et al. 2000) has also been shown to be suitable for
selecting the number of components in mixture models. Since our aim is to select the
number of categories for the discrete instruments, i.e. the number of groups representing
the endogenous regressor best, and given the importance of not overestimating the number
of components, we prefer the ICL criterion, which is more conservative than the other
statistics.

The ICL criterion is a modification of BIC. Biernacki, Celeux and Govaert (2000) suggest
to choose the model that maximizes the complete integrated maximum likelihood and show
that the resulting ICL criterion is essentially the BIC statistic penalized by the subtraction
of the mean entropy =2, )~ j Zijlog pij, where p;; are the posterior probabilities that
observation i comes from category j and Z;; = 1 whenever p;; = max; p;;, and zero
otherwise. It follows that if the categories are not well separated, this term has a large
value and BIC is penalized more severely. If the groups found by the LIV model are not
well separated, it resembles a situation in classical IV where the instruments are weak.
Furthermore, overfitting in terms of the number of groups results in using a too large
number of instruments which is not preferred, since degrees of freedom are lost which
reduces efficiency.

Although the ICL criterion can be used in determining the number of instruments, we
emphasize that several choices of m should be examined. This approach allows investigating
whether the estimated regression coefficients are stable across the considered choices of m.
In general, to prevent over-fitting we recommend using the extra penalization term proposed
by Biernacki et al. (2000) that adjusts the BIC statistic more severely when the instruments
yield posterior groupings that are fuzzy.
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LIV diagnostics. We extend several diagnostics, originally proposed for the classical
regression model (Fox, 1991; Belsley, Kuh and Welsch, 1980; Cook and Weisberg, 1982)
to the LIV case. Outliers and influential observations can be problematic because they
may influence estimation results. Their presence may point out that the estimated model
fails to capture important aspects of the data. Analyzing residuals can reveal important
information for assessing model assumptions. Although maximum likelihood estimation
is approximately valid in all but small samples, it is still important to examine carefully
systematic deviations from normality in the distributions of the residuals.

Analyzing residuals. 'The model residuals from (1) can be examined (i) to investigate the
normality assumption of the disturbances; (ii) to detect potential outliers; and (iii) to examine
heteroscedasticity. In appendix 2 we derive two type of residuals: conditional residuals, and
I'V-type residuals. To examine (lack of) normality we propose using the I'V-type residuals
to compute kurtosis and skewness. Heteroscedasticity can be examined using conditional
residuals (i.e. examine scatterplots of the residuals versus explanatory variables and the
predicted values). To correct the estimated standard errors for heteroscedasticity, White’s
(1980) method can be used. Finally, outliers are identified by examining standardized ver-
sions of the above residuals and the highest values are investigated.

Analyzing influential observations and outliers. 'We propose to approximate the Jack-knife
LIV estimate (i) by a few numerical optimization steps with the maximum likelihood
estimate of the complete sample as starting value (Cook and Weisberg, 1982; Belsley et al.,
1980; Fahrmeir and Tutz, 1994). The measures in appendix 2 can be used to examine the
influence of observation i.

3. A test-statistic to test for endogeneity

We propose to apply a Hausman test directly to test for exogeneity of the regressor (see
Greene, 2000) based on the parameter estimates Bv. The null hypothesis is that both
OLS and LIV estimates are consistent. The alternative hypothesis states that only LIV is
consistent. The Hausman-LIV statistic is defined as

HLIV = (BLiv — Bors) St v(Buv — Bors)s @)

where fHLIV is the estimated asymptotic covariance of the difference of ,BLIV — BOLS.
Hausman shows that this difference can be computed by subtracting the estimated asymp-
totic OLS covariance matrix from the estimated asymptotic LIV covariance matrix. We
found that the estimated asymptotic covariance matrix based on the analytical first- and
second-order derivatives is more stable and gives more accurate results than a numerical
approximation of the gradient or Hessian. Under the null hypothesis, the statistic follows
asymptotically a y2(1)-distribution.

This Hausman-LIV test proposed has a great practical advantage over classical [V meth-
ods. In the classical case, one would first need to find observable instruments of decent
quality, after which a test to investigate whether or not the instruments were needed can
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be performed. If the test does not reject the null hypothesis, the instrumental variables
are simply discarded since the OLS estimator is used in that case. Besides, weak and/or
endogenous instruments will bias the test leading to false conclusions. Our approach cir-
cumvents this circular problem since observed instrumental variables are not required to
test for endogeneity.

4. Monte Carlo experiments

This section presents the results of a Monte Carlo experiment to demonstrate that the
proposed simple LIV model and Hausman-LIV test are well suited to identify and resolve
regressor-error dependencies. In all cases we estimate the LIV model assuming that the
latent instrument has two categories, i.e. we use m = 2 in estimation. We show that even
if the true number of the categories of the instrument is larger than two and for various
distributions of the instruments, the LIV estimates are approximately consistent and the
power of the test appears to be satisfactory.

In the simulation study the data were generated as follows. The error terms (e, v) are
drawn from a bivariate normal distribution with unit variances. The endogenous regressor
x was constructed by varying the correlation between x and € and the true number of
instruments 7. We considered three specifications for 7 : 2, 4, and 8, using equal group
sizes 1/m. This results in a bimodal distribution with 72 = 2 (bim2), and two unimodal
distributions with 77 = 4 (unim4) and m = 8 (unim8) for the endogenous x. Furthermore
we consider two other distributions for the instruments both with iz = 8 support points,
resulting in a bimodal distribution (bim8) and a skewed distribution (skew8). The values
for m, o,,and y, ..., s are chosen such that the mean of x is zero, its variance is 2.5 and
the correlation between x and € is 0, 0.1, ..., 0.5. Since in all simulations the endogenous
regressor has mean zero, the OLS estimate of the constant is consistent and it can be used as
an estimate for By. Hence, we omit further details on fj in the following. The Hausman-LIV
test statistic for the regression coefficient has a y (1)-distribution under the null hypothesis
of noregressor-error dependency. Data were generated for 1000 observations and 250 Monte
Carlo replications. We use the analytical expressions for the gradient and Hessian.

Figure 1 shows the bias plots for 8; estimated for the six different correlations between
x and € by, respectively, OLS and the LIV method for data generated with m = 2,4, 8.
Two observations are in order. First, increasing the degree of endogeneity decreases the
amount of uncertainty in the LIV estimator. This result is expected as the proposed method
is designed for situations with endogeneity. In the case of a perfectly exogenous regressor,
OLS provides the ‘best linear unbiased’ estimator and outperforms LIV, but OLS performs
worse as the correlation between x and € increases. Secondly, when there are four or eight
instruments in the unimodal distribution (unim4 and unim8), some efficiency is lost with
the LIV approach since the model is misspecified under these conditions, as we specified
m = 2 in all cases. Furthermore, less well separated mixture components may lead to lower
efficiency (Titterington et al., 1985, Redner and Walker, 1984), and unmixing the distribution
becomes more difficult for these cases. However, when the true instrument has an obvious
grouped structure, as in the case of the two bimodal (bim2 and bim8) and the skewed (skew8)
distribution of the instrument, it is well approximated by the assumed discrete instrument.
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Figure 1. Bias plots g; for the simple LIV model, where 1: OLS, 2: bimodal 7z = 2 (bim2), 3: bimodal /7 = 8
(bim8), 4: skewed m = 8 (skew8), 5: unimodal /= = 4 (unim4), and 6: unimodal 77 = 8 (unimy).

In these cases, the LIV model represents the true instruments quite accurately, resulting
in more efficient estimates. This illustrates that the LIV model is flexible in adapting to
different shapes of the true distribution of (y, x), which is a typical property of mixture
models. Simultaneously, the mixture enables identifiability of the regression parameters. In
all cases, the LIV estimates for the regression parameters appear to be consistent.
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Table 1. Power of the Hausman-LIV test using the simple LIV model for
various degrees of endogeneity, for sizes (respectively) o = 0.50, 0.05, and

0.01.
Distribution

o Px,e bim2 bim8 skew8 unim4 unim8

0.50 0 0.53 0.51 0.54 0.47 0.54
0.1 0.92 0.86 0.96 0.71 0.59
0.2 1.00 1.00 1.00 0.95 0.86
0.3 1.00 1.00 1.00 0.99 0.97
0.4 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00

0.05 0 0.04 0.06 0.08 0.06 0.07
0.1 0.44 0.40 0.56 0.20 0.13
0.2 0.95 0.97 0.99 0.52 0.42
0.3 1.00 1.00 1.00 0.85 0.76
04 1.00 1.00 1.00 1.00 0.97
0.5 1.00 1.00 1.00 1.00 1.00

0.01 0 0.02 0.01 0.01 0.02 0.02
0.1 0.22 0.22 0.37 0.08 0.06
0.2 0.87 0.82 0.96 0.27 0.24
0.3 1.00 1.00 1.00 0.68 0.61
04 1.00 1.00 1.00 0.97 0.94
0.5 1.00 1.00 1.00 1.00 1.00

Table 1 shows the results for the Hausman-LIV test. The degrees of endogeneity are
presented row-wise, each entry represents the fractions of rejections of the null hypothesis.
Increasing the correlation between x and € increases the number of times the null hypothesis
is rejected, as is to be expected. Comparing the two bimodal distributions, the test performs
slightly better for bim2 in which case the number of instruments is correctly specified,
although the results are very close.>? Comparing the two unimodal distributions (unim4
and unim8) the test tends to reject the null-hypothesis somewhat too often when the true
correlation is zero for the case with /1 = 8. As before, this is caused by efficiency loss due
to misspecification, and the approximation of the distribution of x to a normal distribution.
When the true instrument has a skewed distribution, the power of the Hausman-LIV test
for py. > 0 1is higher than for any other distribution that we investigated. But, in this case
the test is also too liberal for zero regressor-error correlations. The power of the test is
highest for the bimodal distributions and the skewed distribution, and the lowest power for
the unimodal distributions. If the instrument has a bimodal or a skewed distribution, the
two groups imposed on the endogenous x by the simple LIV model are a more adequate
representation, allowing for precise LIV estimates.

We also examined the situation where the endogenous regressor x has no effect on y (i.e.
B1 = 0) and the impact of misspecified error distributions: (1) when € has a skewed gamma

2 We did not report the standard deviations. These can be computed easily as /f(1 — f)/[, where f are the
reported fractions and [ is the total number of simulation runs.
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distribution, with a shape parameter equal to 4, (2) when € follows a mixture of a normal
and an uniform distribution, which is fatter than a normal distribution, and (3) when € has
a t¢ distribution, which has a higher peak than a normal distribution. All distributions were
normalized to have mean 0 and variance 1, and we specified the same degrees of endogeneity
as before. We used the same specification for the latent instrument as the bim8 case above.
We found that the LIV results for the situation where 8; = 0 and the distribution of the
errors is normal are similar to the ones before. This confirms our results from appendix
1 that identifiability does not break down when x has no effect on y. Secondly, we found
that the LIV model is robust against misspecified error distributions, yet the likelihood
tends to display multiple local optima in these cases, in particular for the skewed gamma
distribution for €. Several issues seem worth noting. First, such local optima can be identified
by running the algorithm multiple times from different starts. We found that these locally
optimal solutions are often boundary solutions where the estimated correlation between €
and v is close to 1, which may be used as an indicator of a problematic LIV estimate. We did
not find multiple local optima when the distribution of € is correctly specified, and, hence,
presence of multiple optima itself may indicate a misspecified likelihood. Secondly, when
their is no endogeneity, the LIV model does not take this nonnormality as evidence for the
presence of endogeneity. Thirdly, and most importantly, we found that when the algorithm is
started from the OLS solution, i.e. assuming that there is no endogeneity, it converges to the
correct optimum in all cases and the LIV model estimates for the regression parameters are
unbiased. We found that in case of misspecified distributions the LIV estimates of 03 and o,
have a larger root mean-squared error, but are still unbiased. Importantly, we found for g,
that the LIV estimates are not aversely affected by a misspecified likelihood, and the results
are very similar to the ones presented in Figure 1. Finally, residual checks as proposed in the
appendix seem particularly relevant to identify cases in which the assumption of a normal
distribution of the error is violated. These results corroborate that the LIV model is robust
against misspecified error distributions, but it is advisable to start the maximum-likelihood
estimation algorithms from the OLS estimates, to search for multiple local optima, and to
investigate model residuals.

The results of our simulation studies for the Hausman-LIV test suggest that the test
has reasonable power across a wide range of regressor-error correlations and for different
kinds of distributions of the instruments. Furthermore, the proposed model test and esti-
mation work well even if the number of instruments is misspecified. We find the test to
be fairly robust under such misspecifications with a small bias towards rejecting the null
hypothesis somewhat too often. These results are obtained without requiring observed in-
strumental variables, which is the main contribution and an important feature of the LIV
method.

5. Application: The effect of education on earnings

In this section we consider OLS-, IV-, and LIV-estimation of the return to education. As
will become clear, OLS-and [V-estimation is not straightforward in such applications. We
provide LIV results for three empirical datasets in Section 5.3 and argue that our results are
preferable to OLS and IV.
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5.1. OLS estimation of returns to education

Over the past decades, much research has been conducted to investigate the return to ed-
ucation (Card, 1999, 2001). Most work has employed a version of the following linear
regression model:

yi=PBo+ B1Si + X B + e, (®)

where y; is the logarithm of a measure of earnings, S; is a measure of education and X;
is a collection of other explanatory variables assumed to influence y;. The disturbances ¢;
represent all other influences not explicitly accounted for. If the disturbances are distributed
independently of the explanatory variables S; and X;, the simple OLS estimator can be used
to estimate ;. However, the independence assumption may not be realistic.

Four major potential sources of bias have been identified in the literature on the rela-
tionship between education and income. Much work has focused on the issue whether the
presence of a —so called—‘ability bias’ overstates the true causal effect of education on
earnings (for instance, Angrist and Krueger, 1991; Harmon and Walker, 1995; Verbeek,
2000). ‘Ability’ can be seen as an omitted variable that enables (certain) individuals to
obtain more income. When individuals with higher ability have chosen to obtain more
education, the effect of education on income is overstated, since the effect of unobserved
ability is falsely attributed to it. As such, exogenous shocks in education levels will have
less effect on individual wages than what is predicted by the OLS regression model. Other
sources of potential bias are error in the measurement of the education variable S;, which
may result in downward biases, heterogeneity in the regression coefficients, and optimizing
behavior of individuals, that both may lead to either an upward or a downward bias in OLS
(e.g. Chamberlain and Griliches, 1975; Griliches, 1977; Harmon and Walker, 1995; Card,
1999, 2001; Verbeek, 2000).

There is little agreement on the direction and magnitude of the potential bias in the OLS
estimator of the return to education effect. This situation is not surprising in view of the
many sources of potential regressor-error dependencies, with each of them having their own
specific impact on the direction and magnitude of the bias in OLS. A further complicating
factor is that these causes offset or enforce each other.

Card (1999, 2001) surveys several empirical studies on the return to education and finds
regression estimates ranging from about 0.03-0.14. Quite often, the OLS estimates were
not found to be statistically different from the instrumental variable estimates. As suggested
above and discussed in more detail in Section 5.2, instrumental variables estimates for these
kind of studies are potentially biased as well because the instruments used are possible weak
and/or endogenous. Recent evidence from Twin studies suggests an upward bias in the OLS
estimator of about 10-15% (cf. Card, 1999). The major advantage of using data on twins is
that no observed instruments are required as the within-family estimator can be used.

5.2. IV estimation of returns to education

Given the divergent and a priori unknown sources of potential regressor-error dependencies
in estimating the return to education, it is not an easy task to find appropriate instruments that
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alleviate regressor-error dependencies in model (8). Card (1999, 2001) gives an overview
of recent studies that use instrumental variables to estimate the return to schooling. He
distinguishes two sets of instrumental variables that are commonly used: (1) those that are
based on institutional features of the school system and (2) those that are based on family
background characteristics. We discuss them briefly.

Institutional features of the schooling system. When instrumental variables based on
institutional features are used, the resulting IV estimates are approximately 30% higher
than the corresponding OLS results. This finding does not agree with current beliefs in
the literature about the traditional ability bias. Card (1999, 2001) provides a number of
explanations. Firstly, instruments based on institutional features of the schooling system
may not be truly exogenous, since a direct effect of the instruments on earnings may exist.
This may hold for such instruments as ‘college proximity’, ‘quarter-of-birth’, and ‘schooling
reforms’ (Verbeek, 2000; Bound and Jaeger, 1996; Angrist and Krueger, 1991; Card, 1999).
Bound et al. (1995) show that, in finite samples, IV estimates based on weak instruments
are biased in the same direction as OLS. Secondly, the downward bias in OLS can be a
result of error in the measurement of education. However, the strength of this effect is
doubtful in view of Card (1999) who argues that it is unlikely that measurement error alone
can account for the large positive gap between IV and OLS estimates. Thirdly, factors like
compulsory schooling or schooling availability are most likely to affect individuals who
otherwise would have had relatively low schooling. If, because of potential heterogeneity,
these individuals have higher than average marginal returns to schooling, then instruments
based on these variables tend to recover the returns to education for a subset of individuals
with relatively high returns to education, resulting in estimates higher than OLS. Uusitalo
(1999) notes in this respect that presence of heterogeneity in the coefficient of the returns
to education yields an additional error term ufg S;. Since the instrument Z; is correlated with
S;, it cannot be uncorrelated with the error term of the wage equation.

Family background. The second type of instrumental variables commonly used are in-
struments based on family background characteristics, for instance measures on education
levels of family members (Card, 1999). The use of these variables as instruments is moti-
vated by the fact that children’s education tend to exhibit a high correlation with parents’
education. However, he concludes that if the OLS estimator is upward-biased, one would
expect an IV estimator based on family background to be even more upward-biased. He
shows that when the OLS estimator is biased upward because of unobserved ability, the
bias in the IV estimator is at least as large, and potentially larger, depending on the strength
of the instruments and its possible direct effect on the dependent variable.

A particularly powerful approach to address regressor-error dependencies in schooling
models is to use data on twins (or siblings) (Card, 1999). This approach attempts to eliminate
possible omitted variable biases by assuming that some of the unobserved factors (e.g. ability
or motivation) are identical within families (or twin/sibling pairs). In this case, differences
of levels of schooling and education for the twins or siblings can be exploited to estimate
the effect of education on wage. Card (1999) gives an overview of several studies that use
twin-data. He finds that under the assumption that identical twins have identical abilities,
the within-family estimator gives a consistent estimate for the average marginal returns
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to schooling. Furthermore, this estimator can be corrected for measurement error. Card
(1999) concludes from his survey that the OLS estimator obeys a slight upward-bias of the
order of 10-15%. A drawback of these methods is the (possible) lack of generalization to
non-twins and the potential failure of the identical abilities assumptions for identical twins
and siblings. If the assumption does not hold, twin studies might still overestimate to some
extent the effect of education on earnings. In a recent study, Hertz (2003) also finds that
OLS results are biased upward, based on measurement-error corrected estimators.

This review of the literature demonstrates that IV estimation has produced a less than
satisfactory solution to the endogeneity problem of the schooling effect. In the following
sections we present the LIV model results for three applications to examine the effect of
education on income. Each of these three applications are based on previously published
data. First we briefly describe the three datasets, where a more detailed description can
be found in appendix 3. We then estimate model (8) with latent instrumental variables
and compare these results with the traditional IV and OLS estimates. Furthermore, we
investigate the strength of the available observed instruments, and conclude that the LIV
results are to be preferred over IV and OLS.

5.3. LIV estimation of the returns to education

5.3.1 Data used.

NLSY data. The first dataset is a sample of 3010 men taken from the US National Longitu-
dinal Survey of Young Men (NLSY) from 1976. This dataset is analyzed in Card (1995)
and Verbeek (2000). The dataset contains several exogenous variables and one dummy
instrumental variable measuring the presence of a nearby college, i.e. an instrument based
institutional features of the school system.

Brabant data. The second dataset was originally sampled in 1952 from the Dutch province
‘Noord-Brabant’. Thirty years later the same individuals were contacted to collect data
on, among other things, educational level, income, and social background statistics. The
labor market information used here is from 1983, and the dataset used contains obser-
vations on 833 men who had reached a stable labor market position. As with the NLSY
dataset, several exogenous explanatory variables are available. We have two instrumental
variables: measures on the educational level of the respondents’ father and mother, i.e.
family background characteristics (see also Hartog, 1988, for a more detailed description
of the data).

PSID data. The third dataset contains data on 424 working, married white women between
the ages 30 and 60 in 1975, and comes from the University of Michigan Panel Study of
Income Dynamics (PSID), analyzed in Wooldridge (2002) and Mroz (1987). The labor
market information is from 1975. This dataset has several exogenous variables. The
available instruments are also family background variables: the respondents’ fathers and
mothers level of education. For more details on the datasets and the used regressors and
instruments, we refer to Appendix 3.

The three datasets differ on various key aspects (sample sizes, region, sex of respon-
dents, year of labor market information), which makes direct comparison of the estimated
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Table 2. Results of OLS, IV and LIV for the schooling coefficient for the three datasets.

B OLS v LIV2 LIV3 LIV4 LIVS

NLSY 0.074 0.133 0.050 0.065 0.068 0.069
(0.0035) (0.0518) (0.0099) (0.0041) (0.0040) (0.0040)

Brabant 0.043 0.056 0.040 0.042 0.040 -
(0.0044) (0.0075) (0.0051) (0.0049) (0.0049)

PSID 0.102 0.073 0.134 0.099 0.099 0.096

(0.0139) (0.0321) (0.0282) (0.0160) (0.0153) (0.0142)

regression coefficients superfluous. However, we compute the relative bias in OLS with re-
spectto the LIV and IV estimates, which, as will become clear, straightforwardly allows us to
compare the results across the three applications. The application of LIV with its assumption
of discrete levels of the latent variable may well correspond to the existence of discrete levels
of schooling, underlying the measured education variables, that are free of measurement er-
ror and that represent the levels of education that one would obtain regardless of ability, butis
not predicated on that. The latent instrument relates to factors that affect the choice of educa-
tion but do not directly affect income, such as e.g. cost-, parental-, or school-characteristics.
Alternatively, as one reviewer to this study pointed out, LIV can be interpreted as identifying
‘latent twins’ and using an analogue of the twin estimator, conceptually.

5.3.2. LIV results. Weestimate the LIV model withm = 2, ..., 5 and with the inclusion of
extraexogenous variables. We emphasize that the LIV model does not require the availability
of instrumental variables, and the results in this section are obtained without using the
available observed instruments mentioned above. We also present here the results for the
standard OLS estimator, the IV estimator, and LIV model fit diagnostics, but postpone a
detailed discussion of the IV results until Section 5.3.3.

Estimated coefficients. In Table 2 we present the results for the estimated schooling co-
efficients for the datasets using OLS, IV, and LIV. It can be seen that for all specifications
for m in the LIV model, the resulting estimate for the schooling coefficient is below the
OLS estimate, indicating a small upward bias in the OLS estimate. On the other hand, the
direction of the bias for the IV results using the observed instruments is not the same, and
we discuss this in more detail below. The only downward bias found by LIV is for the PSID
data when m = 2. This can be expected if a dummy variable exists which is identical or
nearly identical to the unobserved instrument. In this case, there is a situation of (almost)
perfect multicollinearity in the second stage of the LIV model and the parameters are only
nearly identified. This also explains why the results for m = 2 have larger standard devi-
ations than from what could have been expected and why relative large improvements in
model fit occur for m > 2. In these applications several dummy regressors are present (see
Appendix 3). In addition, the PSID data is the smallest dataset we have and the likelihood
may be less smooth in this case. For the Brabant data the maximized value of the likelihood
is degenerate® at m = 5 and no estimate for LIVS5 is given in Table 2. Here the LIV method

3 The reason why the likelihood degenerates is that two categories of the LIV estimator are identical, so that in
effect LIV recovers m = 4 here too.
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Table 3. Computed values for the ICL criterion. Boldface values indicate the
minimum value (row-wise). BIC and AIC3 are provided for comparison.

m=2 m=3 m=4 m=>5

NLSY ICL 6942.75 5703.59 5611.37 5995.09
BIC 5832.06 5404.04 5309.55 5291.73

AIC3 5751.91 5313.86 5209.36 5181.52
Brabant ICL 1931.07 1974.67 1990.93 2004.44*
BIC 1867.02 1837.67 1835.73 1849.18*
AIC3 1799.97 1763.17 1753.77 1759.77*

PSID ICL 1199.23 1042.04 1020.93 914.55
BIC 1164.49 1023.99 1005.42 905.26

AIC3 1103.49 956.89 932.22 825.97

*Degenerate solution, where in fact the m = 4 solution is recovered, since two
of the estimated class means are identical.

Table 4. Relative biases with respect to OLS and results for Hausman-test
(P-values) to test for endogeneity (based on the Hessian matrix).

Data Estimator % A P-values
NLSY v —-79.9 0.220
Opt. LIVm =4 7.9 0.002
Opt.LIvm =5 6.5 0.007
Brabant v —30.1 0.034
Opt. LIVm =2 7.0 0.325
Opt. LIVm =4 7.0 0.105
PSID 1\ 27.8 0.326
Opt. LIVm =5 5.5 0.040

indicates that the number of instruments (number of categories) should not be too large.
Overall it can be seen from Table 2 that the LIV results are relatively stable for different
choices of m. We consider choosing the ‘best’ m next.

Choosing the number of categories of the latent instrument.  As argued before, we choose
among the different values for m by looking at the ICL criterion, and for comparison and
validity we also present AIC3 and BIC in Table 3. For the NLSY data the ICL statistic
yields a minimum at m = 4. For the Brabant dataset ICL yields m = 2 and m = 5 for the
PSID data. Importantly, we find that the estimated regression coefficients and the estimates
for the schooling equation are not very different for the values of the selection criteria.* As
we will show this result also holds for testing for (absence of) endogeneity. In the following
we will only consider the optimal LIV results.

Testing for endogeneity using the Hausman-LIV test. Table 4 shows the results for the
relative bias’ in the estimated regression coefficient for schooling with respect to OLS for

4 The estimated schooling effect is given in Table 2. The results for the effects of the exogenous regressors, the
7’s, the A’s, and variance components, are presented in appendix 5B of Ebbes (2004).
5 We computed this percentage as 100 x (1 — B{“IV/BIOLS) and 100 x (1 — B}V/B?LS).
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the IV and optimal LIV results. Furthermore, the test results for testing for absence of
endogeneity are presented. We present the results for IV (2SLS) as well, but discuss the IV
estimates and the used instruments in more detail later on. The test-statistics for LIV are
computed without using the observed instrumental variables. The Hausman-test is based on
comparing the complete vectors BOLS and BLN.6

Overall, we find that the differences between LIV and OLS are not large, which is also
indicated by the Hausman-test (presented in the last column of Table 4). The optimal LIV
solutions for the NLSY data and the PSID data indicate a significant upward bias in OLS,
but for the Brabant data the estimated value for 8; by LIV is not significantly different from
OLS. Here, the classical IV estimator indicates a significant downward bias in OLS.

Before discussing the classical IV results in more detail, we first examine various diag-
nostics for the above presented LIV estimates, where we only report the results for the LIV
model indicated by the (preferred) ICL-criteria. We note that for the Brabant data the R?
measure for the strength of the LIV instruments is substantially better for m = 4 than for
m = 2, which is discussed in Section 5.3.3.

Diagnostics: Outliers, influential observations, normality and heteroscedasticity. We ex-
amined the various diagnostics presented in Section 2.2 to investigate the fit of the (optimal)
LIV model and to identify potential outliers and influential observations.

For the NLSY data (n = 3010), residual checks did not reveal heteroscedasticity, and
residuals had a skewness of —0.28 and a kurtosis of 3.5. All standardized residuals (in
absolute value) were smaller than 4.5. Examining the outliers and influential observations
diagnostics did not identify highly unusual data.

For the PSID data (n = 424) there is evidence of weak heteroscedasticity for the variable
‘experience’, but this effect is rather small. The residuals are slightly skewed (—0.26) and
are leptokurtic (kurtosis is 5.1). One observation was identified as an influential observation,
but no outliers are present. When this observation is removed results and conclusions do
not change, and all standardized residuals are smaller than 4 (in absolute value).

As for the PSID data, the results for the Brabant data (n = 833) indicate slight evidence
of weak heteroscedasticity, here for the dummy variable whether the father is self employed
at the age of 12. For this dataset, the residuals are more skewed (skewness is —1.25) and
more leptokurtic (kurtosis is 12.7). Examination for potential outliers and influential data
identifies three observations that clearly do not “fit’ the rest of the data. We re-estimated
the model without these three observations, and found that the estimates and test statistics
are not affected. The Hausman-statistic to test for endogeneity (see Table 4) for the m = 4
solution now becomes 3.47, which is significant at « = 0.10. After omission of these
outlying data, the residuals are less skewed and leptokurtic. All but four of the absolute
values of the standardized residuals are smaller than 4.5, with a maximum of 5.9.

5.3.3 Relative biases and comparison with classical IV. 1t can be seen from the relative
percentage bias in OLS with respect to the optimal LIV and IV estimates in Table 4 (the

6 We used the regression-based form of the Hausman test for the classical IV (2SLS) estimator, which is easier to
compute in this case and equivalent to the original form of the Hausman test (e.g. Wooldridge, 2002). See also
Ebbes (2004) for an alternate account and for the estimates of the complete vector of regression coefficients.
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column indicated by % A), that the LIV method reveals an upward bias of OLS ranging from
5.5-8%. When traditional IV is used, the conclusions are very different for the three studies,
ranging from an ~ 80% downward bias to an 230% upward bias in OLS. For the NLSY
data, the IV estimate for the return to schooling, based on a dummy for college proximity, is
about 80% higher than OLS and equal to (approximately) 0.13 (0.052). For the Brabant data,
we find that the IV estimate is 0.056 (0.008), which is also substantially higher (=30%)
than OLS. Here the instruments are the levels of education of the respondents’ parents.
Using the same set of instruments, we find for the PSID data an upward bias of 230% in the
OLS estimate. It can be seen that in all cases the IV estimate has a standard deviation that
is substantially higher than OLS. The instability of the 2SLS results and the high standard
deviations may be a result of weak and/or endogenous instruments.

Strength of the available observed instruments. In applying classical IV estimation it is
recommended to report the R? or F-statistic from the regression of the endogenous regressors
on the instrumental variables, i.e. on the instruments and the other explanatory variables
(Bound et al., 1995). When the instruments explain only a small part of the variation of
the endogenous regressors, the instruments are weak and using the IV results in this case
is not recommendable. Instruments can be computed as a byproduct of the LIV results
by computing a posteriori category membership using Bayes theorem. Subsequently, these
estimates can be ‘treated’ as observed instruments.

The third column of Table 5 reports the difference in R? of the regression of schooling
on the explanatory variables and the available observed instruments, or, in case of LIV,
the optimal LIV instruments, and the R? of the regression of schooling on the explanatory
variables only. Hence, a large increase in R? indicates that the instruments explain a sub-
stantial amount of the variance in the endogenous schooling variable. It can be seen that in
particular for the the NLSY data the observed instrument ‘Nearc’ appears to be weak. The
family background instruments (Brabant and PSID data) explain a larger part of the variance
in schooling, in particular for the PSID dataset. However, the increase in R? is in all cases
substantially larger when using the optimal LIV-instruments. It follows that the optimal LIV
instruments do a much better job in explaining the variance of x than the available observed
instruments, because they are estimated from the available data. These findings explain the

Table 5. Results strength of observed versus predicted LIV instru-
ments. Instruments NLSY: ‘Nearc’, Brabant and PSID: ‘FatherEd’
and MotherEd’, respectively (based on the Hessian matrix).

Data Method AR?
NLSY Obs IV 0.0029
LIV4 1V 0.7503
LIV5 1V 0.7976
Brabant Obs IV 0.0922
LIV2 1V 0.3906
LIV4 1V 0.5247
PSID Obs IV 0.1658

LIVS IV 0.8312
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loss of efficiency in the 2SLS estimates for the regression coefficients in Table 2, where the
IV estimated standard deviations are (0.052), (0.008), and (0.032) and, respectively, 14.8,
1.7, and 2.3 times higher than the OLS standard deviations. Not surprisingly, the estimated
standard deviations for (the optimal) LIV estimates are only 1.14, 1.16, and 1.02 times the
OLS estimated standard deviations.

These results illustrate the difficulties associated with classical IV estimation in these
applications. The conclusions for the three datasets with respect to the magnitude and sign
of the bias in the estimated OLS coefficient for schooling differ highly, even with a similar
set of instruments. Card’s (1999) reasoning that the IVs used are potential endogenous may
explain part of this variability. He argues that instruments based on family background char-
acteristics are likely to be endogenous. Furthermore, the best available empirical evidence
from studies on identical twins suggest a small upward bias on the order of 10-15% in the
OLS estimator (cf. Card, 1999), which is not supported by the standard IV estimates from
the three datasets analyzed here. Our estimates have the same order of magnitude found in
the twin studies but do not fully recover the 10% difference. A reason for this result might
be that estimating the model by simple OLS yields in general only a modest fit (the OLS
results presented in Table 2 have R?’s of respectively 29, 23 and 17%), i.e. the regressors
do not explain a large part of the variance in wage. The fact that LIV indicates a smaller
positive bias might also indicate that a part of the positive ability bias is offset by negative
biases due to e.g. measurement error or heterogeneity, which is expected to be less in the
twin studies. Further, in the twin studies there may still be a limited amount of unobserved
ability if the abilities of twins and siblings differ.

6. Conclusions

Searching for valid instruments is a long-standing problem in estimating IV models that
account for regressor-error problems in the social sciences. In addition, the identification
of regressor-error correlation has been impossible without such valid instruments. Our
proposed instrument-free approach presents a practical solution to this circular problem:
it can be used to estimate regression parameters and test for regressor-error correlations
without the necessity of first finding ‘valid’ instruments.

We proved that the LIV model is identifiable through the likelihood and, hence, usual
results on consistency of maximum likelihood estimation can be applied. A potential lim-
itation of the model is that it is predicated on distributional assumptions of the x and y
variables. However, the Monte Carlo studies show that the model yields unbiased results
for several types of distributions for x, and it is robust to misspecification of the error distri-
bution on € and to the particular choice of m. The Hausman-LIV test detects departures from
independence of regressor and model error with a reasonable power across a wide range of
regressor-error correlations. Importantly, the test, as well as the estimates for 8, are rather
insensitive to the true number of instruments and the distribution of the true instruments. In
the case of severe model violations, the Hausman-LIV test becomes too strict in rejecting
the null hypothesis when it is true. As a result, in applications of this test researchers may
search unnecessarily for manifest instruments in a small fraction of cases. We feel that this
is a small price to pay in view of the simplicity and ease of implementing the proposed test.



384 EBBES ET AL.

However, of course, the LIV method is not without caveats. Firstly, one may encounter
situations in which the model is severely misspecified, in particular with respect to the
distribution of € where it may yield biased estimates. This is one reason why we consider
the analysis of local optima, residuals (even from OLS as a first indication), outliers, in-
fluential cases, model fit, and diagnostic tests of endogeneity as important to address the
former question. We illustrated this approach in our empirical analysis of the education
effects on earnings. In addition, the simulation studies suggest that moderate misspeci-
fications of the distribution of € are not a severe problem. Secondly, a latent instrument
may not be identifiable from the data, which happens if the true data-generating process
is x;, = ¢ + v;, where c is a constant. In this case x is normally distributed and the LIV
model is unidentified. For other error distributions identifiability still seems to be possible,
but future research is needed at this point. A situation where x had an unimodel, sym-
metric distribution, and was thus approximately normally distributed, was investigated in
the simulation study and we found that in this case the LIV model yields unbiased but
less efficient results, reflecting the near unidentifiability. The distribution of x can be in-
vestigated a priori for that purpose. Thirdly, the assumption that the latent levels of the
endogenous regressor are uncorrelated with the error term of the dependent variable are not
testable and they hold by assumption as in the classical instrumental variables framework.
This assumption implies that the endogenous regressor can be split in an endogenous and
exogenous part. The idea to decompose the endogenous regressor to correct for regressor-
error biases is used in other studies as well, e.g. Manchanda et al. (2004), Van Dijk et
al. (2004), Bronnenberg and Mahajan (2001), or Chamberlain and Griliches (1975). It
may be important to stress that we view these latent instruments as auxiliary parameters
that one needs to get unbiased estimates, but that one may not be primarily interested in
themselves.

The studies of Card (1999, 2001) clearly indicate the difficulties associated with applying
standard I'V estimation to estimating the returns to education. The results in this area are often
found to be counterintuitive and different across studies. Furthermore, in many instances it
can be questioned whether the instruments used were ‘valid’. Unfortunately, in general it is
not possible to test for the validity of a specific instrument. We show that the LIV method
can be successfully applied to solve these problems. The OLS estimates are found to be
biased upward by about 7%. Equally important, the instruments that have been used in the
literature seem to be often inadequate, and produce results that are both more biased than
the OLS results and have much lower efficiency.

The advantage of the LIV approach is that no observable instruments are needed. Fur-
thermore, once estimates have been obtained, endogeneity can be tested for. For the NSLY
and the PSID dataset we find significant evidence of an ‘ability’ bias. Furthermore the
standard errors of the estimates are much smaller than the standard errors for classical IV,
and not much larger than for OLS. Because of the relative large number of observations in
the NLSY data, it is to be expected that the power of the Hausman test is larger. In using
LIV to test for endogeneity it is recommended to use datasets of substantial size to ensure
a reasonable power. Using the proposed diagnostics, we do not find any evidence that the
LIV models used for the three applications here do not fit the data well.

7 We thank an anonymous reviewer for pointing this out to us.
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The relative size and magnitude of the bias in the OLS estimator that was found is
somewhat smaller, but still close to the numbers reported in Card (1999) for the Twin studies:
6—8% for all three datasets. The results in this paper are convergent and add credibility to the
LIV approach. We conclude that the LIV model presents a solution to the circular problem
of searching for valid instruments in empirical studies. The model and Hausman-LIV test
are fairly simple and easy to implement, and the results in this paper illustrate its usefulness
across a wide variety of problems.

Appendix 1: Identification

The parameters 7 and o2 are identified using first and second order moments, but the
parameters By, B1, 0’62, and o, are not identified in this case. However, these parameters
become identified by considering finite mixtures. Let

F ={F(x,0),0 € ©,x € RY}

be the class of d-dimensional distribution functions from which mixtures are to be formed.
Here ® will be a Borel measurable set in R? and 0 is formed from the elements of the
mean (3) and variance (4). For the simple LIV model above,d = 2,q = 5,and F(-,6)isa
bivariate normal c.d.f..

The class of finite mixtures H generated by F is defined as

H={HEx):Hx)=)Y ¥;F(x.0).y; >0,

J=1

Yy =1L Fx.6)eF. Vim=12 . xeR. (AL1)
j=1

So, H is the convex hull of F. For the sake of simplicity, we will use some abbreviations:
F(x,0;) will be written as F;(x) or just F; and the (corresponding) mixture as H =
Zj?:l Y ; F;j. We use definition 1 for the identifiability of mixtures in . Here we are
interested in pure mixtures (1; > 0) of orderm = 1,2, .. ..

Definition 1. Suppose H and H' are any two members of H, given by
H=Y vy;F;, H =) VF] (A1.2)
j=l1 j=1

‘H is identifiable when H = H’ if and only if m = m’, and the order of summation can
be chosen such that ¢; = w}, F; = F;,j =1,...,m.

Stated differently, H € H is identifiable, if there is a unique solution (up to a permutation
of subscripts) of the identity defining H in (A1.2). Several theorems on the identifiability
of finite mixtures are available and linear independence of the members of F is the key to
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answering the question (cf. Titterington et al., 1985). Core papers on this issue are Teicher
(1963) and Yakowitz and Spragins (1968).

In several studies it is proved that certain families F of d-dimensional c.d.f.’s, for instance
Gaussian c.d.f’s, generate identifiable finite mixtures. As we show below, these results
do not carry over directly to the LIV model and we have to prove identifiability in two
steps. Similarly, related work by Hennig (2000) on identifiability of mixtures of regressions
cannot be extended straightforwardly because of structural differences between his and our
framework, and model assumptions (in the context of Hennig at least o, # 0 is required
whereas o, = 0 is also of interest in our model).

Let

Fpx = {F | Fis abivariate normal c.d.f. on R? of the pair (y;, x;)

with mean and variance (u(8, ), Q(8, X)), 7 € R} (AL3)

where u(B8, m) = (Bo + i, w) and Q(B, T) = Q as in (4), be the class of general LIV
models, 8 and ¥ are known, and Hg 5 the set of all pure finite mixtures of order m of the
class Fg 5 We will consider general m > 1. We apply standard results of identifiability
of finite mixtures to establish identifiability of the class Hg s in terms of the n’s and
the mixture probabilities. However, the identifiability of the parameters 8 and ¥ does not
follow immediately. In fact, we are not seeking for the identifiability of Hg 5 but for the
identifiability of the larger class

G=JHps. (A1.4)
B.X

In the following, we first prove the identifiability of the class Hg 5. Subsequently, we use
the identifiability of Hg » to prove identifiability of G the class of LIV models. Identifiability
of G is equivalent with identifiability of the parameters in the general LIV model.

Proof of identifiability of 7{s 5. Let F; x be the marginal distribution function of F; for
X. More specifically, F; ((x) = limy_, o F;(y, x). From (1) and (3) it can be seen that X has
mean 7;, and variance wy,. Here, all F; x, j = 1,2, ..., are normal distribution functions
with different location parameters but with the same variances.

Since we assume for the moment that 8 and ¥ are known, identifiability of the class
Hp = is established if there is a unique solution of F(y,x) = Z;’;l ajF;(y, x) in terms
of a; and ; form = 1,2, .... Hence, we only have to look at the marginal distribution
of X, since this distribution contains all the relevant parameters. The c.d.f. F is a finite
mixture of N(r, ovz), distribution functions with 7 € R and UVZ is fixed for the moment.
According to proposition 1 of Teicher (1963) or proposition 2 of Yakowitz and Spragins
(1968) F is identifiable. It follows® that there is a unique solution in terms of m, a jand 7
forj=1,2,...,mforany F € Hg x.

8 It can be seen from the following that as long as x can be unmixed, the parameters of the LIV model are
identifiable. A mixture of normal distributions can be used for that purpose, but this is not the only family
that yields identifiable mixtures (Redner and Walker, 1984; Al-Hussaini and Ahmad, 1981; Yakowitz and
Spragins, 1968), and the normality assumption is not crucial. We already observed in Section 4 that the
maximum-likelihood method is quite robust for moderate deviations of normality in the LIV model. We plan
to report on identifiability results for the LIV model with more general distributed error terms in the future.
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In the preceding we assumed 8 and ¥ known, which will not be the case in general. But
the previous result can be used to proof identifiability of the larger class G = | sy Hpx
which is the union across all possible values of 8, X. If a distribution from this class has
a unique solution in terms of its unknown parameters, than the parameters of the general
LIV model are identified (including the relative class sizes).

Proof of identifiability of G. In the following we prove that G is also identified, i.e. we
prove the following theorem.

Theorem 1. Assume that m > 2. Hg 5 is identified for all B and ¥ positive semi-definite
& G is identified.

Proof: (=) Let F, G € G such that F = G, where

m
F = ZaiFi € Hg x

i=1
k

G = ijGj S 'H,S,xp,
j=1

and ay,...,ay and by, ..., by are the positive mixing proportions, and the distributions
Fi,...,F, € Fgx and Gy, ..., Gy € Fsy are different in terms of their means and
variances, i.e.

F;is the c.d.f. of No(u(B, m;), (B, 2))

(A1.5)
G, is the c.d.f. of No(u(8, v;), (6, V)).

We need to show that F = G implies m = k, a; = b; and F; = G; modulo permutation
(definition 1). By definition 1, G is identified if F = G implies that m = k, a; = b;, and
F; = G; eventually after relabeling (and vice versa) fori =1, ..., k.

F = G implies that

m k
> aiF; =) b;G;. (A1.6)
i=1 j=1

Both F and G have unique representations (up to a permutation of indices) in terms of
m, a;,and 7r;, respectively, k, b;, and y; because Hg 5 and H;, ¢ are assumed to be identified
(=).In(A1.6) we have a finite mixture of bivariate normal distribution functions. According
to proposition 2 of Yakowitz and Spragins (1968) such mixtures are identifiable, hence we
must have m = k, a; = b;, and F; = G; (eventually after relabeling). But F; = G; implies
that w(B, ;) = u(d, y;) and Q(B, X) = Q(4, V). Thus,

Bo + Bim; = 8o + S1y; (A1.7)
T =Y, (AL1.8)

2 2 2 Q2.2 2
19y +G€ + 2:3106\) - 811//\) + 1/[5 + 2311//61) (A19)
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Bio} + 0ey = 81¥ + Ve (A1.10)
o =, (A1.11)
fori = 1,...,m. Since the F; = G; are different for i = 1, ..., m, we have m; # 7;

and y; # y; forall i # j. Using this and m > 2, it follows from (A1.7) and (A1.8) that
Bo = 8o and B; = &;. Subsequently, from (A1.9)~(A1.11), we have 02 = ¥2, 02 = 2 and
Oy = Yey. S0, F € Ghasanunique representation and G is thus identified. The reverse of the
proof («=) follows immediately (i.e. a subset of an identified set must be identified as well).

To conclude, from theorem 1 it follows that if m > 2 and all the group means 7;, j =
1,...,m, are different, the parameters of the LIV model in (1) with normally distributed
errors are identified, including the mixture probabilities.

Appendix 2: LIV residuals and measures for outliers and influential observations

Conditional residuals. One way to examine residuals is to look at the conditional
distribution of y given x in the LIV model (for the sake of notational simplicity we
omit other exogenous regressors here). Conditional on category j, we obtain from (1):
i lxi, j) ~ Ny, ‘73|x,j)’ where the conditional mean of y;|x;, j is

. O¢y O¢y
Ei 15, ) = (B = 25 + (B + 25 (A2.1)
= o+ Bixi + 2L (x; — 7)), (A2.2)
g,

v

with x; —7; = v;, and var(y; | x;, j) = 02 — ‘(’7—, The residual ¢; = y; — $; with §; = Jy,x, ;.
is equal toe; = (,30 —Bo)+(ﬁ1 —Bl)xi —(é'ev/é\‘vz)f), +€; with 1/),' = X; —)’(\I,' = (ﬂj —ﬁ'j) + ;.
Because of the presence of v;, normality of ¢;, alone cannot be examined via this type of
residuals. Since a priori it is not know to which category/group individual i belongs, we use
the a posteriori group probabilities p;;, and compute the residuals as ¢; = y; — §; where

A m ~ A~
$i= 2021 Pijly .-

IV-type residuals. In classical IV estimation with observed instruments, the residual is
estimated as y — X B and not as y — XB, see e.g. Greene (2000) or Pagan (1984). Using
the latter residuals results in an incorrect estimate of the standard errors. Applying this
result to LIV gives ¢; = y; — 9 = (Bo — Bo) + (B1 — P1)xi + € where $; = By + Pixi,
and the estimated values are the maximum likelihood estimates from LIV. Note that there
is no ‘direct’ effect of v; Furthermore, there is no need in using the a posteriori group
memberships. Unfortunately, we found this type of residual to be misleading in detecting
heteroscedasticity (see Ebbes, 2004, for more details).

Outliers and influential observations. Once the model is estimated, we propose to use the
following measures to determine the influence of observation i on:

1. the likelihood, measured by the likelihood distance LD(i) = 2[LL(H)— LL#(i))] where
LL() denotes the value of log-likelihood for the complete sample in point 6 and &(i) is
the maximized value of the log-likelihood leaving observation i out of the sample.
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Table 6. Descriptive statistics NLSY dataset (n = 3010).

Variable Description Mean Std.
Regressors
constant (Bp) Model constant - -
schooling (1) Years of schooling in 1976 13.26 2.68
experience (f2) Potential experience 8.86 4.14
black (83) Equals 1 if black 0.23 0.42
smsa (B4) Equals 1 if lived in metropolitan 0.71 0.45
area in 1976
south (Bs) Equals 1 if lived in south in 1976 0.40 0.49
Dependent
log wage Logarithm of hourly wage 6.26 0.44
Instruments
Nearc Grew up near a 4 year college 0.68 0.47

2. the estimated parameters, measured by Cook’s distance CD(i) = (é — é(i))’H (9)(9 —
0(i)), where H () is Hessian evaluated at 6.

3. the estimated covariance matrix, measured by COVRATIOL(i) = det[V(B(i))]/ det
[V(0)] where V() denotes the estimated variance covariance matrix for 6

4. the estimated covariance matrix of (e, v), given by COVRATIO2(i) = det[fZ(i)] / det[fZ],
where €2 is givenin (4). Because €2 is essential in correcting for endogeneity, this measure
may point towards observations having a large effect on the relation between € and v.

Our experience based on simulation studies is that the four measures mention above,
together with an examination of the residuals, can be fruitfully applied to detect outliers
and influential observations. We propose examining the ranking of the largest values of
LD(i) or CD(i), and of | COVRATIO1(i) — 1| and | COVRATIO2(i) — 1|, where large jumps
between subsequent observations indicate potential influential or outlying observations.

Appendix 3: Descriptive statistics used datasets

NLSY data. The total sample consists of 3010 men taken from the National Longitudinal
Survey of Young Men (see Verbeek, 2000; Card, 1995).° In this survey, a group of indi-
viduals in the age of 14-24 years is followed since 1966. The labour market information
used is from 1976. In this year, the individuals had on average a little more than 13 years
of schooling, with a maximum of 18 years. The average working experience was about
8.86 years (in 1976 those men aged 24-34) with an average hourly wage rate of $5.77.
The variables used can be found in Table 6. We used the values centered around the mean
for schooling in estimation.

Brabant data. The initial dataset used in this paper consisted of 839 observations, but we
deleted 5 observations with very low wages (log hourly wages < 0). Another observation
with an extreme large reported wage was also removed (> 9 x IQR from median). This

9 http://www.econ.kuleuven.ac.be/GME/.
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Table 7. Descriptive statistics Brabant dataset (n = 833).
Variable Description Mean Std.
Regressors
constant (So) Model constant - -
schooling (B1) Years of schooling after age 12 4.35 4.00
experience (82) Potential experience 25.52 4.19
nr. children (83) Number of children present at age 12 491 2.68
av. mark (B4) Average school mark in final year of
primary education 5.62 1.42
anti-social (B5) Equals 1 comes from antisocial background 0.10 0.29
self (Bs) Equals 1 if father is self employed at age 12 0.31 0.46
Dependent
log wage Logarithm of hourly wage 2.70 0.42
Instruments
Father Ed. Education level father 2.35 0.70
Mother Ed. Education level mother 222 0.54
(levels: 1-6, higher categories = higher
education)
Table 8. Descriptive statistics PSID dataset (n = 424).
Variable Description Mean Std.
Regressors
constant (Bp) Model constant
schooling (81) Years of schooling 12.66 229
experience (f2) Actual labor market experience 13.09 8.05
kidslt6 (B83) Number of children younger than 6 0.14 0.39
kidsgr6 (B4) Number of children older than 6 1.34 1.32
unempl (Bs) Unemployment rate in county of residence 8.54 3.04
city (Be) Equals 1 if lives in SMSA 0.64 0.48
nwincome (f7) Family income less total income wife/1000 18.99 10.62
Dependent
log wage Logarithm of hourly wage 1.22 0.67
Instruments
Father Ed. Years of schooling father 8.80 3.57
Mother Ed. Years of schooling mother 9.24 3.37

data was collected in 1983 in the Netherlands’ southern province of Noord-Brabant.
At that time the average age of the men in the sample was about 43. This cohort was
confronted with compulsonary schooling until 12 years of age. The schooling measure
used is the number of post-compulsonary years of schooling; on average 4.35 years. The
average hourly wage was Dfl. 16.72 and the individuals had, on average, 25 years of work
experience at the time of the survey. See Table 7 for more information on the variables
used. As before, we centered the schooling variable around the mean.
PSID data. As for the Brabant dataset, we removed a few observations prior to data
analysis: four observations had an obvious lower (log) wage (< —1) than the rest and
were not used for estimation. This data come from the University of Michigan Panel
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Study of Income Dynamics (PSID),'° obtained in 1976 (also used in Mroz, 1987). The
sample consists of working married white women, who were aged in between 30 and 60
in 1975. They earned of average $4.18 per hour. The women reported an average 12.7
years of schooling and a little over 13 years of labor market experience. For a detailed
description of the used variables, see Table 8, where for estimation, the schooling variable
was mean-centered.
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