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We consider the problem of allocating a single server to a system of queues with 
Poisson arrivals. Each queue represents a class of jobs and possesses a holding cost 
rate, general service distribution, and a set-up cost. The objective is to minimize the 
expected cost due to the waiting of jobs and the switching of the server. A set-up 
cost is required to effect an instantaneous switch from one queue to another. We par- 
tially characterize an optimal policy and provide a simple heuristic scheduling policy. 
The heuristic's performance is evaluated in the cases of two and three queues by com- 
parison with a numerically obtained optimal policy. Simulation results are provided to 
demonstrate the effectiveness of our heuristic over a wide range of problem instances 
with four queues. 
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1. Introduction 

We consider a facility where customers of  several different classes are compet- 
ing for service from a single server. Holding costs are incurred for each unit of  time 
that customers have to wait in the system, and switchover costs are incurred when 
the server switches f rom serving one type of  customer to another. 

The optimal control  of  queues with multiple customer classes has been exten- 
sively addressed in the literature. The great majori ty of  these models, however, have 
considered the case with zero switchover costs. It is well known, for example, that 
for an M/G/1 queue with multiple customer classes, if jobs  of  type i are charged 
holding costs at rate ci and are processes at rate #i, the c# rule minimizes the aver- 
age holding cost per unit time (see Baras et al. [1], Buyukkoc  et al. [3], Cox and 
Smith [4], Gittins [7], Nain [21], Nain et al. [22], and Walrand [30]). Other stochastic 
scheduling problems in the literature for which there are no costs for switching from 
one type of  job  to another may  be found in Baras et al. [1], Dempster  et al. [5], 
Gittins [7], Harr ison [10, 11], Kl imov [13, 14], Lai and Ying [16], Nain [21], Nain 
et al. [22], Varaiya et al. [29], and Walrand [30]. 
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In most manufacturing environments, it is actually more appropriate to con- 
sider switchover or set-up times rather than switchover costs. There are certainly 
situations, however, where switching is costly and switchover times are small com- 
pared to the processing times. For example, in the production of asphalt shingles, 
changes in pebble color or shingle weight are accomplished while the process is 
running. Although the changeover can be accomplished quickly, scrap is produced 
and the cost of this scrap is the primary consideration. We also note that interest in 
just-in-time (JIT) production has led to significant reductions of set-up times. Hall 
[9] notes that significant reductions in set-up times can be obtained by differentiating 
between external set-up and internal set-up. External set-up refers to set-up work 
done while the machine is running. Internal set-up refers to set-up work done 
with the machine stopped. As Hall [9] emphasizes, one of the most significant 
ways to decrease set-up times is by converting as much set-up activity as possible 
from internal set-up to external set-up. Although a dramatic reduction of set-up 
times during which machines are not productive can be obtained by trading a maxi- 
mum amount of internal set-up for external set-up, there is clearly a cost to perform- 
ing the external set-up. At the very least, workers have to spend the time necessary 
to perform the external set-up. Although the objective is to simultaneously achieve 
small set-up costs and times, there will be situations in which the internal set-up time 
(the time the machine is stopped) is small and the cost of an external set-up becomes 
the dominant factor. (We note that in situations where the service of a queue is 
short, there may not be enough time to perform the external set-up required for 
the next queue, and a set-up time may be impossible to avoid. This situation can 
best be modeled by considering set-up times and costs simultaneously, which is 
beyond the scope of this paper and remains a topic for future work.) 

Because of the difficulties introduced by switching penalties, there are few 
known results for the optimal scheduling of such systems. Boxma et al. [2] devel- 
oped effective static polling rules for the problem with set-up times. Gupta et al. 
[8] considered the problem in this paper with switching costs and only two types 
of jobs with the same processing time distributions. Hofri and Ross [12] considered 
a similar problem with switching times, switching costs, and two homogeneous 
classes of jobs. They conjectured that the optimal policy is of a threshold type. Con- 
currently with our work, Koole [15] and Reiman and Wein [24] treated the problem 
at hand in the case of two queues. For the case of exponential service distributions, 
Koole performed a numerical study and a dynamic programming analysis that 
partially characterizes an optimal policy (as nonidling and exhaustive at one 
queue, in addition to the asymptotic behavior of the switching curve with respect 
to the length of the other queue). Koole suggests a heuristic policy that requires 
the solution of a dynamic program. Reiman and Wein focused on the problem 
with two job types and switching costs or switching times and developed heuristics 
by approximating the dynamic scheduling problem by a diffusion control problem. 
We note that both Koole and Reiman and Wein propose methods to determine 
heuristic policies that possess the same structural features as the heuristic policy 
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we derive (a top-priority queue, a constant switching threshold for switching from 
the lower priority queue, and thresholds for idling). In addition, we treat the case of 
N queues, propose a heuristic policy, and analyze its performance. 

For problems with N queues, Duenyas and Van Oyen [6] addressed the prob- 
lem with switching times. They partially characterized the optimal policy and devel- 
oped some dynamic heuristics. Van Oyen et al. [27] treated versions without arrivals 
but with heterogeneous service processes and either set-up costs or set-up times. 
They proved that an index policy is optimal and computed the optimal indices 
for cases with lump-sum set-up costs and those with set-up times. Van Oyen and 
Teneketzis [28] further extended this approach for systems with switching penalties 
and without arrivals by treating connected queues such that the resulting network 
formed an in-forest. They identified conditions on the holding costs and service dis- 
tributions for which an index rule is optimal in the case of tandem queues as well as 
conditions for which exhaustive service is optimal in any in-forest. Recently, Rajan 
and Agrawal [23] and Liu et al. [19] have studied systems similar to the one con- 
sidered here (as well as extensions to incomplete information) and have partially 
characterized an optimal policy for the case of homogeneous service processes. 

Other work has concentrated on performance evaluation and stochastic com- 
parisons of different policies (e.g., Levy and Sidi [17], Levy et al. [18], and Takagi 
[251). 

In this paper, we address the stochastic scheduling of a system with several 
different types of jobs and switching costs in the context of a multiclass M / G / 1  
queue. In section 2, we formulate the problem. In section 3, we partially character- 
ize the optimal policy. In sections 4 and 5, we develop a heuristic policy. In section 6, 
we test the performance of our heuristic by comparing it to other heuristics from the 
literature and to the optimal policy. 

2. Problem formulation 

A single server is to be allocated to jobs in a system of paraUel queues labeled 
1 ,2 , . . . ,  N and fed by Poisson arrivals. By parallel queues, we mean that a job 
served in any queue directly exits the system. Each queue (equivalently, node) n 
possesses a general, strictly positive service period crn with distribution B,, mean 
~n 1 (0 <~ #n  I < CO), and a finite second moment. Successive services in node n are 
independent and identically distributed (i.i.d.) and independent of all else. Jobs 
arrive to queue n according to a Poisson process with rate A, (independent of all 
other processes). To ensure stability, we assume that p = ~-~N 1Pi < 1, where 
Pi = ~i/#i" 

Holding cost is assessed at a rate of c, (0 < c, < CO) cost units per job per unit 
time spent in queue n (including time in service). A switching cost or set-up cost of 
K, (0 < K, < CO) cost units is incurred at each instant (including time 0) the server 
switches from a queue other than n to process a job in n. We assume that the set-up 
action is achieved instantaneously (zero switchover times). Random switching costs 



424 L Duenyas, M.P. Van Oyen/Stochastic scheduling 

pose no significant problems, so we assume that the switching costs are deterministic 
only for simplicity. 

A policy specifies, at each decision epoch, whether the server should remain 
working in the present queue, idle in the present queue, or set-up another queue for 
service. With N + (Z +) denoting the nonnegative reals (integers), let {X~ g (t) : t E R + } 
be the right-continuous queue length process of node n under policy g (including 
any customer of node n in service). Denote the vector of initial queue lengths by 
X(O-) c (Z+) N, where X(O-) is fixed. Without loss of generality, we assume that 
node one has been set up prior to time t = 0 and that the server is initially placed 
in node one. Let ng(t) be the right-continuous process describing the location of 
the server at t under policy g. Define rn (g ) ( t )  = {t c (0, T] : ng(t -) r n, ng(t) = n} 
to be the set of random instances of switching into node n under g. The average 
cost per unit time of policy g, J(g),  can now be expressed as 

T--*ee n = l  n = l  t E png(T) 

(2.1) 

The class of admissible strategies, G, is taken to be the set of non-preemptive and 
non-anticipative (possibly non-stationary and randomized) policies that are based 
on perfect observations of the queue length processes. Our restriction to non- 
preemptive policies requires that once the service of a job begins, that service cannot 
be discontinued, nor can it be interrupted by switching. Idling is allowed. The set of 
decision epochs is assumed to be the set of all arrival epochs, service completion 
epochs, and instances of idling. Although it seems clear that it suffices to consider 
G PM, the class of pure Markov (that is, stationary and non-randomized) policies, 
the technical details of our proofs require us to consider the more general class of 
policies, G. 

For policies which employ idling improperly, (2.1) may be infinite. For p < 1, 
it is well known that policies such as the exhaustive and gated cyclic polling 
strategies yield a stable system (see Levy and Sidi [17]). Thus, finite steady state 
average queue lengths exist under an optimal policy. Because an optimal policy 
requires at most one set-up per job served, it is also clear that the average switching 
cost per unit time is also finite. The objective is to minimize total of the weighted 
sum of the average queue lengths and the average switching cost per unit time. 

Although our analysis is set within the general policy space G, in developing 
our heuristic, we focus on the subclass G eM consisting of pure Markov policies. 
Under the restriction to pure Markov policies (and a memoryless arrival process), 
it suffices to regard the decision to idle as a commitment that the server idle for 
one (system) interarrival period. Thus, the state of the system is described by the 
vector X ( t ) = ( X l ( t ) , X E ( t ) , . . . , X u ( t ) , n ( t ) ) E  S, where n(t) denotes that the 
server is set up to serve jobs at node n(t) at time t and S denotes the state space 
(Z+) u x { 1 , 2 , . . . , N } .  Let the action space H = {1 ,2 , . . . ,N}  x {0, 1} be defined 
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in the following way. Suppose that at a decision epoch, t, the state is X(t ) - -  
(Xl,X2,... ,XN, n(t)) E S. Action U(t) = (u, 1) C L/, where u ~ n(t), causes the 
server to set up node u and to subsequently serve a single job (if any) in u. Action 
U(t) = (n(t), 1) results in the service of a job in n(t), the currently set-up queue. 
Action U(t)= (n(t),O) selects the option to idle in the current queue until the 
next decision epoch, another system arrival. No other actions are possible. 

3. On an optimal policy 

In this section, we provide a partial characterization of  an optimal policy 
within G. The special case with all switching costs equal to 0 has been well 
studied, with early results found in Cox and Smith [4]. The non-preemptive e# 
rule is optimal: The index ci #i is attached to each job in the ith queue. At any deci- 
sion epoch, serve the available job possessing the largest index. Although these 
indices are most properly associated with individual jobs (see Varaiya et al. [29]), 
because the jobs in a given queue are indistinguishable, the indices can be associ- 
ated with the queues. Note that the index of any queue is independent of both 
the queue length (provided it is strictly positive) and the arrival rate of that 
queue. Another  special case has been treated in Liu et al. [19] and Rajan and 
Agrawal [23]. For problems that are completely homogeneous with respect to 
cost and to the service process, they partially characterized optimal policies as 
exhaustive and as serving the longest queue upon switching. 

We begin our analysis with the following definitions: 

DEFINITION 1 

A policy serves node i in a greedy manner if the server never idles in queue i 
while jobs are still available in i and queue i has been set up for service. 

DEFINITION 2 

A policy serves node i in an exhaustive manner if it never switches out of node 
i while jobs are still available in i. 

DEFINITION 3 

A top-priority queue refers to any queue (there may be more than one) that is 
served in a greedy and exhaustive manner. 

DEFINITION 4 
A policy serves in a patient manner if it never switches into an empty queue. 

Theorem 1 states that a top-priority queue always exists under an optimal 
policy and can be determined as the node maximizing cn #n over all n. Theorem 1 
is similar to the results presented in Gupta et al. [8], Hofri and Ross [12], Liu 
et al. [19] and Rajan and Agrawal [23] for systems with homogeneous service 
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processes. Although set-ups are not included in their model, Meilijson and Yechiali 
[20] prove the optimality (with respect to the total cost accrued up to a particular 
stopping time) of top-priority service to the job type maximizing cn#n for a multi- 
class G/GI/1 (under non-preemptive service) with server breakdowns and idling. 
Our proof  requires an intuitive lemma, which we state without proof. 

LEMMA 1 
Consider a single stage optimization problem with a finite set of control 

actions, U. Action u ~ U results in an expected cost ~, c IR and requires an 
expected length of time #n E (0, c~). Let p ,  E [0, 1] denote the probability that 
action u is taken where ~ u P u  = 1. Then, the single-stage cost rate is at most 
maxu s u ~,/c7,; equivalently, 

THEOREM 1 
If Cn#n > Ci #j for all j  = 1 ,2 , . . . ,  N, then there exists a policy for which queue 

n is a top-priority queue that is an optimal policy under the average cost per unit 
time criterion. 

Proof 
The argument is similar to that used in Duenyas and Van Oyen [6] for the case 

of set-up times. Relabel the queues so that Cl#l _> cj#j for a l l j  = 1 ,2 , . . . ,  N. Sup- 
pose policy g is optimal but does not  serve node one as a top priority node. We first 
prove the optimality of exhaustive service in node one, then justify greedy service in 
node one. Although g is assumed to be pure Markov for the sake of presentation, 
our argument applies to nonstationary and randomized feedback laws as well. 

Suppose that policy g does not exhaust node one for some state 
(Xl,... ,Xu, 1) C ,9 with Xl >_ 1. Suppose that g chooses to switch to node j at 
t = 0; thus ug(o )=  (j ,  1) for s o m e j  r 1. For l E N, let t(l) denote the time at 
which the /th control action is taken under policy g. Thus, t ( 1 ) =  0, and 
t(2) = aj. With respect to policy g, let the random variable L E {N U oc} denote 
the stage, or index of the decision epoch, at which g first chooses to serve a job of 
node one. Thus, ug(t(L - 1)) • (1, .), and ug(t(L)) = (1, 1). Because unstable 
policies cannot be optimal, L is finite with probability 1. 

Along each sample path of the system, we construct a policy g, which inter- 
changes the service of the job in queue one (stage L under g) with the first L - 1 
stages under g as follows. At time t = 0, ~ serves the job in node one that is 
served under policy g at t(L), which possesses the processing time o- 1. During 
[o-l,o-1-t-t(L)),~ mimics the actions taken by g during [0, t(L)), the first L -  1 
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stages. At time t(L + 1) = t(L) + o1, both g and ~ reach the same state along any 
realization, and ~ mimics g from that point on. To compare g and ~, we note that 
each job served during (t(2), t(L)] under g is delayed by 0"1 time units under ~, 
which represents an increased cost for ~. On the other hand, the first job in queue 
1 is completed at time 0"1 under ~ and at t(L) + 0"1 under g, a cost savings of 
Cl t(L) for ~. 

To compare the difference between g and ~, we define the costs associated 
with the stages 1 ,2 , . . . ,  L prior to the coupling ofg  and ~. Let the random variable 
g(l) E { 1,2, . . . ,  N + 1 } denote the type of job, if any, served during stage l, where 
g(l ) = N + 1 with the probability that the server idled in any queue during stage l. 
Thus, g(1 ) = j  and g(L) = 1. Let the holding cost of the job, if any, served on stage l 
be denoted by the random variable C(g(l )), where C(g(l )) = cg(l ) for g(l ) <_ N and 
C(N + 1) = 0. Define 0"(g(l)) = t(l + 1) - t(1). For outcomes g(1) < N, 0-(g(l)) = 
0"gq). As seen from (2.1), the average cost per unit time of policy g is defined by the 
limiting ratio of cumulative cost through T divided by T. It is convenient to first 
compute the cumulative holding cost advantage of policy ~ over g, which equals 

L-1 } 
Ah(g,~ ) = E clt(L) - E C(g(1))0-1 

l=1 
L1 } 

(3.2) 

To conclude that Ah(g,g ) > O, it suffices to observe from Lemma 1 that for 
I E { 2 , 3 , . . . , L - 1 } ,  

E{C(g(I))IL}/E{0-(g(1))[L} <_ Cl/E{0-1 } = Cl# 1. (3.3) 

If xl = XI(0) = 1, then g serves only a single job on its first visit to queue 1 
with the probability that there are no arrivals at queue 1 prior to the first visit of 
g to 1. If this event occurs, policy ~ saves/s > 0 in cumulative expected switching 
cost with respect to g, because queue 1 need not be set up at t = 0. On the other 
hand, if xl (0) > 2, then the above savings of a switch may be a zero probability 
event under g. Apply the argument thus far iteratively until the resulting modified 
policy saves a switch with strictly positive probability. Thus, the cumulative 
expected cost saving of~ with respect to g is strictly positive. We note that the pre- 
ceding argument extends in a straightforward manner to the case of randomized 
policies and nonstationary policies. Since our construction may require ~ to be non- 
stationary, our analysis is framed with the class G. 

To quantify the average cost advantage of top-priority service of queue 1, 
consider a policy g"  with a countable number of stages. Each stage applies the 
modification described above to a single instance at which queue one is not 



428 L Duenyas, M.P. Van Oyen/Stochastic scheduling 

served exhaustively under g. If g only serves at most one type one job nonexhaus- 
tively, g"  is the same as ~ defined above and time t(L + 1) marks the end of the 
first (and only) stage. If g fails to exhaust queue one following the first stage, a 
second stage is added in the same way, and the construction continues in this 
manner. Each stage reverses a single instance of the non-exhaustion of queue 1 
under g. At instances between these interchanges, g and g" are identical. We 
observe the following: If g fails to serve only a finite number of jobs in queue one 
exhaustively, then J ( g " ) =  J(g). In general, g" will perturb g at a countably 
infinite number of stages resulting in J ( g " )  _< a~(g). I fg  is pure Markov, the strictly 
positive per stage savings of the modification yields J ( g " )  < aV(g). A strict average 
cost savings is not, however, essential to our argument. Thus we see that there exists 
a policy that always exhausts queue one and performs at least as well as any other 
policy in G. 

A similar argument establishes the optimality of greedy service at node one. 
Suppose that at time t = 0, policy g idles the server in node one, and that after some 
random number of stages L - 1, policy g first serves a job in node one at time t(L). 
Because a zero rate of inventory cost reduction (reward rate) is earned during the 
first stage under g, and subsequent single-stage cost reduction rates cannot exceed 
Cl#l, the modified policy ~ as previously constructed performs strictly better than 
g in the sense of cumulative cost. As demonstrated above, this justifies the 
conclusion. [] 

Remarks 
Although exhaustive service is not in general optimal, Theorem 1 provides a 

partial characterization of an optimal policy which is useful in the case of two 
queues and advances our intuition significantly in problems where multiple 
queues share the maximum c# product. The proof of this property in the dis- 
counted cost case is similar. 

One plausible extension to Theorem 1 is the restriction that upon nonexhaus- 
tively switching from a queue i, the server will only switch to a queue j with 
cj #j > ci lzi (an upstream queue). Unfortunately, much effort has not succeeded in 
establishing the validity of this property. For the majority of problem instances, 
we believe that by increasing in length, only an upstream queue can offer an incen- 
tive sufficient to justify a switch. We see this as a consequence of the fact that a 
reward rate of CilZi is available by continuation in queue i, whereas the switching 
costs imply that a strictly lesser reward rate is available from queues downstream 
of i with respect to the c# ordering. 

Theorem 2, which follows, asserts the optimality of patience. 

THEOREM 2 
There exists an optimal policy that is patient. 
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Proof 
Suppose an impat ient  policy, g, switches f rom queue i to j at t = 0, where 

Xj(0) = 0. Let ~- denote  the t ime at which g first serves a job  and denote its queue 
by l. Const ruct  ~ to idle in queue i until  T, and to mimic g f rom that  time forward 
(including the service of  queue l at T). Three cases are possible: 1 = j;  l = i; l ~ {i, j }. 
I f  the first case occurs with probabili ty one (and no addit ional  switches are made  
under  g), the performance is equal; otherwise, ~ incurs a strictly lesser cumulative 
cost than  g. The argument  presented in Theorem 1 can be used to show that  
there exists a policy g '  which performs at least as well as g in the sense of  average 
cost per unit  time. [] 

Remarks 
The result is very intuitive. Since switches are instantaneous,  it is opt imal  not  

to switch to an empty  queue. Rather,  switching cost is minimized by remaining to 
idle in i until  the next job  to be served arrives. Theorem 2 is very general and applies 
both  to the expected discounted cost formula t ion  of  the problem as well as to prob- 
lems with t ransi t ion-dependent  switching penalties with costs Kid for each switch 
f rom i to j .  

Al though  it seems clear that  greedy policies are opt imal  for mos t  problems of  
interest, this remains an open issue. Because the advantage of  a greedy policy is not  
achieved along every sample pa th  (indeed, idling performs better along some sample 
paths), it appears that  a computat ional ly  stronger p roo f  technique is required (if this 
proper ty  is in fact true). 

In general, we expect that  there exists a threshold type policy that  is optimal.  
Take the case of  two queues as an example. The server should switch f rom node  1 to 
2 upon  exhausting queue 1 if, and only if, the queue length X2(t) exceeds a thres- 
hold. For  state (xl, x2, n = 2), switch f rom queue 2 to 1 if, and only if, x 1 _> O2(X2).  

Although  it is plausible to conjecture that  O2(x2 + 1) _< O2(x2), our  numeri-  
cal determinat ion of  opt imal  policies suggests that  this is not  the case (at least when 
preemptive service is allowed). The threshold functions need not  be monotonic .  As 
an example, consider the two queue problem where #1 = #2 z 0.6, ),2 = A2 = 0.2, 
Cl = 3, c2 = 1,/s = 40 and/s = 20. We numerically solved the dynamic  p rogram 
(for increasingly large state spaces) under  the assumpt ion  of  exponential  service 
times and preemptive service, and  the results are as follows. Suppose that  the 
server is setup for queue 2. I f  there are 0 jobs at queue 2, the opt imal  threshold 
for switching to queue 1 is 1. Tha t  is, the server will switch to queue 1 as soon as 
one or more  jobs are available at queue 1. When  the number  of  jobs in queue 2 is 
either 1 or 2, however,  the opt imal  threshold for switching to queue 1 is 4. 
Finally, when there are at least three jobs in queue 2, it is opt imal  to switch to 
queue 1 when there are 3 or more  jobs in queue 1. The intuit ion behind this behav- 
ior is that  when there are no jobs at queue 2, or when there are a lot of  jobs at queue 
2, the server has less incentive to remain at queue 2. This is because when there are 
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no jobs at queue 2, it is costly to wait for jobs to arrive at queue 2 when the server 
could be serving jobs at queue 1. If there are very few jobs (only 1 in our example) at 
queue 2, it might be more worthwhile to serve those jobs first before switching to 
queue 1, thereby possibly avoiding a switch back to queue 2 after exhaustive service 
of queue 1. When there are many jobs at queue 2, however, avoiding such a switch 
back becomes less likely. This example (and a similar example independently found 
by Koole [15] under the discounted cost criterion) clearly demonstrates for the case 
of preemptive scheduling that the threshold function is not, in general, monotonic.  
Numerically obtained examples such as this one indicate the complexity of problems 
of this type. 

4. A heuristic policy for systems with two queues 

In this section, we develop a heuristic for the problem formulated in section 2, 
where the queues are ordered such that Cl~ 1 ~ C 2 #  2 ~_~ "- �9 ~ ON# u. We let xi denote 
the queue length at queue i. We first develop a heuristic for the problem with two 
queues and then extend it to N queues in section 5. 

By Theorem 2, we know that the server should not switch from queue 1 to 
queue 2 when queue 1 is not empty. To define a heuristic policy, we need to specify 
the conditions under which the server would switch from queue 2 to queue 1, when 
queue 2 is not  empty. We also need to characterize a rule for idling (i.e., if the server 
is set up for queue i and queue i is empty, should it idle or switch to the other 
queue?). We first focus on the development of the rule for switching, then develop 
a rule for idling. 

4.1. R U L E  F O R  S W I T C H I N G  

We assume that queues 1 and 2 are both nonempty (xl > 0, x2 > 0), and 
focus on the question of when to switch from queue 2 to queue 1. We first state 
the following result which we will use in our heuristic. 

T H E O R E M  3 

For state (xl, x2, 2) and z ~ {1 , . . . ,  x2}, ifxx > Y/z,  then it is better to switch 
to queue 1 immediately than to serve exactly z consecutive jobs in queue 2 (along 
every sample path) prior to switching to queue 1, where 

y = (K1 + K2)(1 - Pl)~l~2 

Cl# l  - -  C2~2 
(4.1) 

Proof 
Suppose policy g is an optimal policy and chooses to process exactly z jobs of 
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type 2, then switches to queue 1. We know by Theorem 1 that g must exhaust queue 
1 upon switching to it. We construct the (non-stationary) policy g' ,  which first 
switches to queue 1 and exhausts it, then switches back to queue 2 and serves z 
jobs, and then switches back to queue 1 to exhaust it once again. Under our con- 
struction, the processing time for the ith, i = 1 ,2 , . . . ,  service from queue 1, and 
the j th,  j = 1 , . . .  ,z, service from queue 2, is the same for both policies. There- 
fore, the state of the queueing system is identical under g and g '  upon completion 
of the sequence of actions described above, and thereafter g t takes exactly the 
same actions as g. 

To compare g and g' ,  observe that the xl jobs in queue 1 and the jobs arriving 
to queue 1 during the busy period generated by these xl jobs are processed earlier 
under g'  than under g. In particular, this results in expected cost savings of 
Clz#z lx l / (  1 -Pa)  for g' ,  because the expected number of jobs served during a 
busy period generated by the Xl jobs in queue 1 equals xl / (1  - Pl), and each of 
these jobs is expedited by z/#2 time units on average at a cost of el per job per 
unit time. On the other hand, policy g '  serves the z jobs in queue 2, on average, 
xl #i -1 / (1 - Pl) time units later, thereby resulting in a loss of CzZX 1 #11 / (1 - Pl) com- 
pared to g. Policy g '  also incurs an additional set-up cost of KI + K2. Thus, (using 
the concluding argument of Theorem 2 to extend our inequality for cumulative cost 
differences to average cost per unit time differences) we see that g~ outperforms g if, 
and only if, 

ClZX 1 e2ZXl 

~2( 1 --Pl) ~1( 1 --Pl) 
_> K1 + K 2. (4.2) 

Simplification yields a threshold as a function of z. Switch if, and only if, 

(K1 + K2)(1 - p l ) U l m  
Xl ( e l #  1 _ e 2 # 2 ) z  (4.3) 

[] 

Remarks 
A similar property was previously investigated in Gupta et al. [8] for the 

special case of homogeneous service (#1 = #2). Although the statement of the 
result is fairly weak, it is useful to us in the development of the heuristic. It is tempt- 
ing to say that if xl _> Y, then an optimal policy must switch immediately. This is 
incorrect, as the proof and its calculations restrict attention to (open loop) policies 
that serve a deterministic number of jobs in queue 2 prior to switching. In general, a 
closed loop policy will use the realization to selectively remain or switch, which is 
very difficult to capture computationally. 

The limited generality of Theorem 3 points to the difficulty of precisely 
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defining an opt imal  threshold within GeM. Our  objective is to provide an analytical 
switching rule which results in an effective policy. We further restrict our  intention 
to defining a constant  threshold rule. Under  our  heuristic, the server switches to 
queue 1 whenever n(t) = 2 and X1 (t) exceeds a constant  threshold, x r  (not depend- 
ing on X2(t)). 

Our  approach  intentionally views the system simplistically by considering 
only the evolut ion of  the mean  queue length in node 1 and by applying Theorem 
3 as if it applied to dynamic  (closed-loop) policies in general. Assume an initial 
state (xl ,x2,2)  at time t = 0. We suppose that  if the number  in jobs in queue 1, 
xl, is at least as large as Y/(z+ 1), then this implies that  a good  policy will 
switch to queue 1 prior  to serving z + 1 jobs in queue 2. Based on this proper ty  
(which relates xl to the number  of  jobs in queue 2) we desire to deduce a condi t ion 
that  justifies switching based only on the condit ion x I _> x r.  We know that  
Y/(z + 1) <_ Xr _< Y/z for some z _> 0, so we solve for such a z. 

Suppose that  xl = Y/(z + 1) for some z. We thus anticipate that  z + 1 con- 
secutive services in queue 2 is undesirable (by Theorem 3) and thus the mean  
queue length at node 1 will exceed XT along this action sequence. That  is, prior  to 
the complet ion of  z jobs in queue 2, we expect queue 1 to exceed the threshold Xr 
and thus avoid the undesirable situation of  processing z + 1 jobs consecutively in 
queue 2. Thus,  we expect that  a good choice of  Xr will satisfy 

Y (-~22) Y < x T < Y  (4.4) z + I + A 1  _>XT, Z + I  Z 

We further simplify the problem by choosing x r  = Y/z*, where z* approximately 
solves 

Y Y 
- -  -t- Z)k 1 / # 2  = - - "  (4.5) 
z + l  z 

Since (4.5) reduces to z2(z + 1) = Ylz2//~l, by approximat ing Z2(2 q- 1) by Z 3, we  
obtain a unique approximate  solution as z* = (Ylz2//~l) 1/3. Since x r  = Y/z*, we 
get x r  = (Y2)q/#2)l/3. Our policy permits a switch f rom queue 2 to queue 1 
when x2 > 0 and Xl _> x r ,  where 

( \ x2 \1/3 
Xr = .(K1 + K2)(1 - P l )# l#2~ A1/#2~ 

Cl/~ 1 -- 72~22 "J J " 
(4.6) 

Since the r ight-hand side of (4.6) is not  an integer in general, we round  it off to 
obtain our threshold. By Theorem 2 it is never optimal  to switch f rom queue 2 to 
queue 1 when Xl = 0, therefore even if the r ight-hand side rounds  off to 0, we let 
X T =  1. 
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4.2. RULE FOR IDLING 
In order to complete the characterization of our heuristic policy, we need to 

specify an idling rule. In particular, assume an initial state (xl, x2, 2) with x2 = 0, 
and the server is set-up for queue 2. If Xl = 0 as well, the optimal policy is to 
idle, by Theorem 2. For the case Xl > 0, we derive a crude idling rule, based on 
quantifying the tradeoffs between switching and idling. We focus only on the dura- 
tion of  time in which the server switches to queue 1, exhausts queue 1, and then 
switches back to queue 2. Idling at queue 2 permits the queue at 1 to grow, and 
therefore the set-up costs will be shared by a larger number of  type 1 jobs if the 
server idles. In particular, if the server idles until the number of jobs in queue 1 
reach I1, and then switches to queue 1, the switching costs will be shared by the 
I1/( 1 -/91.) = I1#1/(#1 --)~1) jobs that the server will process on average before 
queue 1 is exhausted. (Clearly, jobs of type 2 could arrive before the number of  
jobs in queue 1 reaches I1, but we ignore that.) However, if the server waits until 
the number in queue 1 reaches 11, then the jobs in queue 1 will also incur additional 
costs since each job will be finished later than if the server had immediately switched. 
For xl < /1  the server will idle, on average, (I1 -Xl) /A1 time units before the 
number in queue 1 reaches I 1. Hence, the jobs in queue 1 will be finished 
(11 -Xl) /A1 time units later than they would have if the server had immediately 
switched. This will result in an additional per job cost of cl(I1 - Xa)/A1. We use 
this crude analysis in specifying the following optimization problem for choosing 
the value of I1. 

min K1 + K2 r (I1 - Xl) (4.7) 
I1 i1 #-----------~ 4 A1 

#1 - -  A!  

We can solve for the best value of 11 by differentiating the right hand side with 
respect to I1, and we obtain 

I 1 = V//~I (K1 -~- K2)(#  1 - / \1 ) /c1#1 .  (4.8) 

Once again, since the right-hand side of  (4.8) is not an integer, we round it off 
(except when it rounds off to zero, in which case, we let I1 = 1). 

In the case where the state is (0,x2,1), we use the same result even 
though the issue is even more complicated by the fact that it may be optimal 
to switch from queue 2 at a certain point if Xx reaches xr .  Thus, the server 
switches to queue 2 if x2 > I2, where /2 is the nearest integer (greater than or 
equal to 1) to V/)~2(K1 + K 2 ) ( #  2 --,~2)/C2#2. Although these approximations 
appear crude, the results in Section 4 demonstrate that this approach works very 
well. 

We are now ready to state our heuristic control rule in full: 
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Heuristic policy f o r  two parallel queues 

. 

. 

. 

. 

If  the server is currently at node 1, and x 1 > 0, then serve one more job at 
node 1. 

If  the server is currently at node 2, and x 2 = 0, then set/1 equal to the nearest 
integer (greater than or equal to 1) to V/AI(K1 + K 2 ) ( #  1 -A1) /C l#  1. If  
xl _> I1 then switch, otherwise idle. 

If  the server is currently at node 1, and xl = 0, then set 12 equal to the nearest 
integer (greater than or equal to 1) to V/Az(K1 + K 2 ) ( # 2 -  )~2)/c2#2. If  
x2 _> I2 then switch, otherwise idle. 

If  the server is currently at node 2, and x2 > 0; then if c1#1 = c2#2 set 
x r  = +0% otherwise set x r  equal to the nearest integer (greater than or 
equal to 1) to 

( ~ \2 \1/3 
- -  P l ) # 1 / / ' 2  )~1 # 2  (K1 +-K2)(1~2~2 2 c 1 # 1  -- ) / ) " 

If xl  > Xr,  then switch to queue 1, otherwise process another unit of  type 2. 

5. Heuristic for systems with N queues 

Using the ideas developed previously for 2 queues, we extend our heuristic to 
the case where the system has any number  of  queues. We assume that the system 
consists of  N queues numbered such that c1#1 _> c2#2 _> "'" _> CN#N. To begin, 
assume that the server is currently serving queue i, and that xi > 0. In this case, 
we consider whether the server should switch to queues 1 , . . . ,  i - 1. We disallow 
nonexhaustive switches from i to the "downst ream" (with respect to the c# order- 
ing) queues i + 1 , . . . ,  N. In deciding whether to switch to any of  these queues, 
our heuristic first computes the number  required in queues 1 ,2 , . . . ,  i - 1, to make 
a switch from i worthwhile. To do this, we ignore the existence of  all other 
queues except the present queue i, and candidate queue j < i. Then, we use (4.6) 
to compute the threshold x r ( i , j )  required to switch from queue i to queue 
j = 1 , . . . , i -  1: 

(4.9) 

Once these thresholds have been computed, our heuristic checks the number  
of  jobs in each queue, :9, to see whether queue j is a candidate for a switch (i.e. 
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xj >_ xr(i, j )). When there is more than one candidate queue, our heuristic makes 
use of the notion of reward rates by choosing the queue with the highest reward 
rate as follows: 

On average, the server processes #; jobs for every unit of time spent process- 
ing jobs from queue i. Since, for each time unit these jobs wait the system incurs a 
cost ofci, the server is decreasing the costs for the system (or earning rewards) at the 
rate of c;#i when serving queue i. Our heuristic computes the reward rate that is 
earned by switching from queue i to j ,  exhausting queue j,  and then switching 
back to queue j. We denote this reward rate by 

(4.10) 

This computat ion follows from the assumption that when the server switches 
to queue j ,  and then eventually back to queue i, additional set-up costs of Ki + Kj 
are incurred. By remaining in queue j until the end of  its busy period, the server 
can earn rewards at a rate of cj#j for an expected duration of xj/(#j  - Aj). There- 
fore, (4.10) gives us the expected reward rate of a switch to queue j,  and a switch 
back to i after the exhaustion of queue j.  Although the server does not have to 
switch back to queue i immediately upon completion of  queue j ,  we include Ki in 
our calculation because the unfinished jobs left behind in queue i eventually require 
an extra set-up to be served. 

Clearly, once the server has switched to queue j ,  there is no guarantee that the 
server will exhaust it. It may in fact switch to another higher priority queue before 
exhausting queuej.  Equation (4.10) provides an estimate of the average reward rate 
that can be earned by switching to queue j. The dynamic implementation of  the 
heuristic preserves the option to later switch to a more attractive queue as events 
unfold. Among all queues j < i, with )9 >_ xr(i, j ) ,  our heuristic switches to the 
queue with the largest reward rate ~ij. 

To complete the specification of our heuristic, we also need to define its action 
when the system is set up for queue i, and xi = 0. In this case, our heuristic once 
again computes the idleness threshold for each queue. For each queue j,  we 
derive the threshold, 

(4.11) 

Among all those queues with xj _>/j, our heuristic chooses the one with the 
highest reward rate. In this case, since the server is not  leaving behind unfinished 
jobs, the set-up cost for queue i is not  included in our reward rate calculations 
and the reward rate is given by 

(4.12) 

We are now ready to state our heuristic formally: 
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Heuristic policy for N parallel queues 

1. If the server is set up for queue i with xi > 0: For j = 1 , . . . ,  i - 1, compute 
xT(i, j )  using (4.9). Let cr = 0. For j = 1 , . . . ,  i - 1, if :9 >_ x1,(i, j ) ,  then 
cr = cr Uj. If cr is empty, then process one more unit from queue i. Other- 
wise, for a l l j  E a compute ~oij using (4.10). Switch to the queue j E cr with 
the maximum ~ij value. 

2. If the server is set up for queue i with xi = 0: For j = 1 , . . . ,  N, compute / j  
using (4.11). Let cr = 0. F o r j  = 1, . . .  ,N, if :9 >_ Ij then o-= crUj. If cr is 
empty, then idle until the next arrival to the system. Otherwise, for all 
j E or, compute ~bj using (4.12). Switch to the queue j  E o-with the maximum 
~j value. 

The heuristic which we have described above, is known to have optimal 
characteristics in the following limiting cases: 

1. Ki = O for all i: If all set-up costs are zero, our heuristic reduces to the c# rule, 
which is known to be optimal. 

2. Symmetrical Systems: If all queues are identical with respect to holding costs, 
processing time distribution, arrival rates, and set-up costs, the heuristic 
serves each node exhaustively and upon switching chooses the longest 
queue. These policies have been shown to be optimal among the set of 
non-idling policies (Liu et al. [19], Rajan and Agrawal [23]). The optimal 
idling policy is not known. 

Having developed our heuristic, and specified the cases where it has optimal 
characteristics, we next report the results of a numerical investigation in which we 
tested its performance. 

6. A numerical study 

The real test of any heuristic is its performance with respect to the optimal 
solution. In the problem considered here, however, the optimal solution is not 
known, except for a few special cases. Solving the problem using dynamic program- 
ming becomes very difficult, in general. Cases without exponential processing times 
are more complex than the exponential case. Even with exponential processing 
times, we need to take into account the fact that the state space is countably 
infinite. We solved dynamic programs with increasingly large state spaces and com- 
puted the average cost per unit time in each case. Once a desired level of accuracy was 
reached, we stopped. In a problem with only 4 queues, however, truncating the state 
space such that the content of each queue is allowed to vary between 0 and 99 still 
leads to a state space of size 4 • 108. In fact, solving the dynamic programming 
equations for systems with more than 2 queues is computationally very expensive. 

Given the difficulty of computing the optimal solution even for the 
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Table 1 
Input data and results for Examples 1-22. 

Ex. c1 c2 #l #2 A1 /~2 Kl Heuristic EXH c# 

1 1 1 0.6 0.6 0.2 0.2 5 
2 1 1 0.6 0.6 0.2 0.2 7 
3 1 1 0.6 0.6 0.2 0.2 50 
4 2 1 0.6 0.6 0.2 0.2 5 
5 2 1 0.6 0.6 0.2 0.2 7 
6 2 1 0.58 0.58 0.21 0.21 10 
7 4 1 0.56 0.56 0.22 0.22 500 
8 5 1 0.56 0.56 0.22 0.22 10 
9 5 1 0.70 0.70 0.15 0.15 1 

10 3 1 0.54 0.54 0.23 0.23 10 
11 3 1 0.54 0.54 0.15 0.31 10 
12 3 1 0.54 0.54 0.31 0.15 10 
13 3 1 0.54 0.54 0.31 0.15 10 
14 4 1 0.53 0.53 0.21 0.26 100 
15 4 1 0.3 0.65 0.15 0.20 10 
16 4 1 0.3 0.65 0.15 0.20 10 
17 4 1 0.3 0.65 0.15 0.20 500 
18 3 1 0.35 0.70 0.25 0.05 50 
19 3 1 0.35 0.70 0.25 0.05 500 
20 3 1 0.35 0.70 0.25 0.05 100 
21 2 1 0.25 0.65 0.05 0.30 100 
22 3 1 0.45 0.60 0.15 0.25 100 

/s Opt. 

5 2.69 
5 2.83 

50 6.09 
5 3.46 
5 3.62 

10 4.97 
20 23.4 

100 14.2 
100 6.8 
50 12.0 
50 10.9 
50 12.7 

800 27.6 
200 24.0 

10 10.3 
500 21.9 

10 21.9 
50 11.7 
10 15.7 

200 14.0 
100 7.3 
100 12.6 

2.69 4- 0.01 
2.83 + 0.01 
6.13 4- 0.04 
3.47 + 0.05 
3.64 + 0.O6 
5.06 -4- 0.13 

23.8 -4- 0.3 
14.3 q- 0.2 
7.0 +0.1 

12.3 -4- 0.4 
11.1 -4- 0.4 
13.0 + 0.4 
28.4 + 1.0 
24.4 -4- 0.3 
10.5 + 0.4 
22.3 + 0.4 
22.3 -4- 0.4 
11.9-4-0.5 
15.9 4- 0.4 
14.4 -4- O.3 
7.5 • 0.2 

12.74-0.3 

2.69-4- 0.01 2.69 +0.01 
2.84 -4- 0.01 2.84 • 0.01 
8.91+0.11 8.91-t-0.11 
3.69-t-0.09 3.63-4-0.13 
3.83+0.13 3.79-4-0.18 
5.22-4-0.19 5.42• 

39.9 -4- 0.3 52.1 + 0.5 
17.1 -4- 0.4 16.9 -4- 0.5 
8.9+0.1 9 .5+0.2  

14.7-4-0.5 13.1+0.6 
13.7+0.6 11.9.4.0.7 
15.0 + 0.5 13.5 + 0.7 
47.2 -4- 0.8 69.7 -4- 1.2 
32.1 4- 1.2 37.7 4- 1.5 
11.3-4-0.6 11.2,4,0.5 
31.6 -4- 0.5 39.3 -4- 1.5 
31.6.4.0.5 39.3-4-1.5 
12.4 + 0.5 12.8 -4- 0.6 
22.1 -4- 0.6 24.2 + 0.7 
17.14-0.6 18.4,4,0.6 
9.1-4-0.1 10.5.4.0.5 

16.6+0.2 19.7-4-0.3 

exponential case, we chose to compare our heuristic to the optimal pure Markov 
policy for systems with 2 and 3 queues and to compare it to other rules from the 
literature for systems with 4 queues. The cases that we tested included symmetric 
as well as asymmetric queues, high and moderate utilization, and both equal and 
different holding costs for different job classes. For  each case, we tested our heuris- 
tic by simulating 50 000 job completions from the system. We repeated the simu- 
lation 10 times and computed the sample mean of  the performance obtained 
in each run. We report these means and 99% confidence intervals in summary 
tables. 

We first tested our heuristic on a variety of problems with 2 queues. The data 
for these 22 problems as well as the results obtained from the heuristic and from the 
dynamic programming solution are displayed in Table 1. In all of  these cases, the 
processing times were exponential for simplicity (though our heuristic does not 
require this assumption). We assumed that preemptive service was allowed (pre- 
emptive resume and preemptive repeat being equivalent for exponential service 
times). Hence, in these examples, we adapted our heuristic to the preemptive 
case. In particular, as soon as the number in queue 1 reached x~-, our heuristic 
switched to queue 1. 
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The input data and the results for the examples with two queues are displayed 
in Table 1. The examples include a variety of situations. For example, in the first 3 
examples, queues 1 and 2 are identical with respect to their processing times, arrival 
times, and holding costs. In Examples 4-10, queue 1 and queue 2 have different 
holding and set-up costs, but the same arrival and service rates. In Examples 11- 
14, the queues have the same service rates, but different arrival rates and costs. 
Finally, in Examples 15-22, the two queues have nothing in common. If in one 
example, the queue with the high utilization or holding cost had a high set-up 
cost, in the next example, we tested the case where the queue with the low utili- 
zation or holding cost had a high set-up cost, to see the effect of  such variations 
on the heuristic. We also chose examples with a wide range of utilization, from a 
low of 0.42 (Example 9) to a high of 0.89 (Example 14). 

We also compared our heuristic to other policies from the literature. We com- 
pared our heuristic to the exhaustive and gated polling rules as well as the c# rule. 
The exhaustive policy (EXH) serves each of  the queues in an exhaustive and cyclic 
manner. That is, the server finishes all jobs of type 1, then if there are any jobs of 
type 2, switches to queue 2 and exhausts all the jobs of type 2, and so forth. We 
found that not switching to an empty queue improved the performance of this 
rule, hence we prevented switching to an empty queue by forcing the server to 
switch to the next nonempty queue in the polling cycle. The gated policy 
(GATED) does not exhaust the jobs at each queue; rather the server gates all the 
jobs present at the time its set-up is completed, and serves only those jobs. Once 
again, we presented switches to empty queues (in all of the examples in Tables 1 
and 2, GATED performed worse than EXH, therefore we only present the results 
for EXH). Finally, as a third alternative, we tested the c# rule as a heuristic. In 
this case, at each decision epoch, the server processed a job from the queue with 
the highest c# index. 

The results in Table 1 indicate that our heuristic performed very well. These 
results are representative of our experience with the heuristic. The maximum devi- 
ation from the optimal solution in G eM was 3%. The average suboptimality of the 
heuristic for Examples 1-22 was 1.5%, compared to 27% for EXH and 38% for c#. 
Our heuristic consistently performed well in examples with low or high utilization 
and low or high set-up costs. Given the fact that in most practical applications, 
even the input data can not be estimated to this level of accuracy, the results for 
the two queue case are very encouraging. 

We note that in cases where the set-up costs were very low, there was much 
less difference between the heuristic and the best of the c# and EXH heuristics. 
However, as the set-up costs became larger, c# and EXH consistently became 
worse. This is demonstrated in Fig. 1. In this case, we tested an example with two 
queues where c2 = 2, c 1 ~ -  1, #1 = / ~ 2  -~" 0.6, and )k 1 ~ -  )k 2 = 0.2. The set-up costs 
K1 = K2 were varied from 2 to 256. As Fig. 1 clearly demonstrates, the heuristic 
remained close to the optimal policy following its concave trend as the set-up 
costs were increased, while the two other heuristics performed worse as the set-up 
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Fig. 1. Average cost per unit time as a function of  set-up costs. 

costs increased, with the costs under these two policies exhibiting linear trends as the 
set-up costs were increased. 

We next tested our heuristic on a variety of examples with 3 queues. The input 
data and the results for the three queue examples are displayed in Table 2. In all of 
these cases, the service rates were identical for each of the three queues and were 
equal to #, and the holding costs were 4, 2 and 1 for queues 1, 2 and 3 respec- 
tively. Processing was assumed to be non-preemptive. Once again, our examples 
represent a variety of different situations. In Examples 23-26, the queue with the 
highest holding cost has the highest arrival rate. In Examples 27-30, the queue 
with the second highest holding cost has the highest arrival rate and in Examples 
31-35, the queue with the lowest holding cost has the highest arrival rate. The uti- 
lization of the server was again varied to test the effect of utilization on the heuristic. 
The results in Table 2 show that despite the fact that the deviation from the optimal 
solution increased for examples with 3 queues, the heuristic still performed very 
well. The average suboptimality of the heuristic was around 3%, and was again 
much lower than the suboptimality of the E X H  and c# rules. 

We next tested our heuristic on a set of examples with 4 queues. Non- 
preemptive service was assumed in these examples. Given the computational 
difficulty of computing the optimal solution in this case, we chose to compare our 
heuristic only to the other policies from the literature. 
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Table 2 
Input data and results for Examples 23-40. 

Ex. # A1 /~2 A3 K1 K2 /(3 Opt. Heuristic % Dif. EXH c# 

23 0.6 0.2 0.1 0.1 5 5 5 
24 0.6 0.2 0.1 0.1 1 10 100 
25 0.6 0.2 0.1 0.1 200 200 200 
26 0.6 0.2 0.1 0.1 15 10 10 
27 0.6 0 .05  0.30 0.05 5 5 5 
28 0.6 0 .05  0.30 0.05 1 10 100 
29 0.6 0 .05  0.30 0.05 100 10 1 
30 0.6 0 .05 0.30 0.05 50 50 50 
31 0 .65  0.07 0.08 0.20 5 5 5 
32 0 .65  0.07 0.08 0.20 1 10 100 
33 0 .65  0.07 0.08 0.20 200 200 200 
34 0 .65  0.07 0.08 0.20 15 15 10 
35 0 .65 0.07 0.08 0.20 50 20 10 
36 0 .55 0.30 0.07 0.08 1 10 100 
37 0 .55 0.30 0.07 0.08 100 10 1 
38 0 .55  0.30 0.07 0.08 50 50 50 
39 0 .55 0.30 0.07 0.08 200 200 200 
40 0 .55 0.30 0.07 0.08 40 20 10 

5.42 5.644-0.10 4.1 
9.11 9.304-0.19 2.1 

23.10 24.16 4- 0.24 4.6 
6.97 7.15 4- 0.14 2.6 
4.46 4.55 4- 0.06 2.0 
6.86 6.95 4-0.05 1.3 
8.31 8.42 4- 0.07 1.3 
9.67 9.95 4- 0.07 2.9 
2.78 2.89 4- 0.02 3.9 
7.19 7.41 4- 0.02 3.1 

18.98 19.49 4- 0.05 2.7 
4.30 4.40 4- 0.03 2.3 
6.26 6.44 4- 0.03 2.8 

13.85 14.264-0.44 3.0 
15.80 16.72 4- 0.43 5.8 
16.73 17.28 4- 0.29 3.3 
26.86 28.40 4- 0.44 5.7 
13.81 14.34 4- 0.28 3.8 

6.2 -4- 0.2 5.8 -4- 0.2 
11.7-t-0.2 11.74-0.3 
43.0 4- 0.2 48.5 -4- 0.5 

7.5 4- 0.2 7.3• 
5.0 4- 0.2 4.7 4- 0.2 
8.5• 8.5+0.2 
8.6-4-0.2 9.1 4-0.2 

10.74-0.2 11.64-0.5 
3.14-0.1 2.94-0.1 
9.94-0.1 10.54-0.2 

37.1-4-0.3 40.54-0.6 
4.54-0.1 4.54-0.1 
6.54-0.1 6.64-0.2 

16.84-0.7 15.6• 
18.2 4- 0.6 18.3 4- 0.7 
19.0 4- 0.5 18.9 -4- 0.7 
38.2 4- 0.6 44.9 4- 0.8 
15.8 4- 0.4 14.7 4- 0.4 

The  52 examples  on  which we tested our  heuristic include 7 sets o f  examples. 

In  each set o f  examples,  the ho ld ing  cost,  service rate and  arrival  rates were the 

same. The set-up costs were varied for  each example to observe the effect o f  dif- 

ferent set-up costs on  the heuristic. The da ta  on  the hold ing  costs, service rates 

and  arrival  rates for  Examples  4 1 - 9 2  is displayed in Table  3. Examples  4 1 - 5 2  are 

examples  where b o t h  the c and  # values for  the different queues are different. In  

Examples  5 3 - 9 2  all o f  the queues have the same c values, bu t  different # values. 

In  Examples  53-76 ,  the ut i l izat ion for  the system is high (0.9), while in Examples  

77-92 ,  the ut i l izat ion for  the system is low (0.5). In  Examples  53-60 ,  all o f  the 

Table 3 
Input data for Examples 41-92. 

Examples cl c2 t73 c4 #l  #2 #3 #4 /~1 ,~2 /~3 /~4 

41-45 2 1 0.5 0.2 2 2 1 1 0.5 0.4 0.2 0.2 
46-52 2 1.2 0.5 0.2 1 1 2 2 0.2 0.2 0.5 0.5 
53-60 1 1 1 1 5 2 1 0.5 1.125 0.45 0 . 2 2 5  0.1125 
61-68 1 1 1 1 5 2 1 0.5 2.5 0.6 0.05 0.025 
69-76 1 1 1 1 5 2 1 0.5 0.25 0.1 0.3 0.25 
77-84 1 1 1 1 5 2 1 0.5 0.625 0.25 0 . 1 2 5  0.0625 
85-92 1 1 1 1 5 2 1 0.5 0.25 0.1 0.05 0.175 
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Table 4 
Data and results for Examples 41-76. 

Ex. /('1 K2 /<3 K4 EXH GATED c# Heuristic 

41 40 40 40 40 
42 2 20 40 80 
43 80 40 20 2 
44 100 100 100 100 
45 1 10 500 500 
46 5 5 5 5 
47 40 40 40 40 
48 100 100 100 100 
49 2 20 40 80 
50 80 40 20 2 
51 1 1 500 500 
52 500 500 1 1 
53 5 5 5 5 
54 40 40 40 40 
55 100 100 100 100 
56 2 20 40 80 
57 80 40 20 2 
58 500 500 1 1 
59 1 1 500 500 
60 1 1000 1 1 
61 5 5 5 5 
62 40 40 40 40 
63 100 100 100 100 
64 2 20 40 80 
65 80 40 20 2 
66 500 500 1 1 
67 1 1 500 500 
68 1 1000 1 1 
69 5 5 5 5 
70 40 40 40 40 
71 100 100 100 100 
72 2 20 40 80 
73 80 40 20 2 
74 500 500 1 1 
75 1 1 500 500 
76 1 1000 1 1 

26.8-4-0.4 32.1-4-0.2 34.5-4-0.3 18.6• 
22.2 -4- 0.4 26.0 • 0.3 25.2 -4- 0.2 13.8 4- 0.2 
27.2 + 0.4 32.8 4- 0.2 36.8 4- 0.3 18.8 4- 0.3 
56.3+0.6 69.94-0.5 81.94-0.6 29.44-0.5 

107.4 4- 1.6 134.3 4- 1.3 149.5 4- 1.5 30.7 -4- 0.7 
9.4 -4- 0.5 9.9 4- 0.7 8.0 4- 0.3 7.8 4- 0.3 

23.8 -4- 0.2 28.8 4- 0.3 33.2 4- 0.3 17.9 4- 0.4 
48.4 4- 1.6 61.4 • 1.1 76.8 -4- 0.5 27.0 • 0.8 
23.9-4-0.3 29.1 4-0.4 32.74-0.4 14.8-4-0.4 
20.2 4- 0.3 23.6 -4- 0.3 26.6 4- 0.4 18.3 -4- 0.4 

130.3 4- 4.3 171.6 -4- 5.2 222.8 -4- 2.2 32.1 4- 0.6 
90.24-3.4 114.54-2.7 159.2+1.3 40.14-0.6 
20.14-1.3 19.94-1.3 11.8-4-0.3 11.34-0.2 
34.0+2.1 38.1 4-2.0 45 .4+0.2  25.04-0.9 
57.8 -4- 1.5 69.5 4- 1.8 103.1 4- 0.4 36.8 4- 1.6 
28.3 + 1.4 30.6 4- 2.1 28.2 4- 0.3 19.2 4- 0.8 
36.1-4-1.0 41.0+1.9  54.04-0.3 24.14-0.5 

149.2-4-4.2 189.74-6.5 352.34-2.1 55.74-1.3 
86.14-1.3 105.9-4-2.4 144.24-0.6 37.8-4-0.6 

134.84-10.1 173.14-5.3 300.34-2.1 36.7-4-0.9 
13.94-0.6 17.54-1.3 11.2-4-0.4 9.8-4-0.2 
28.5 4- 0.5 39.5 4- 1.0 42.9 -4- 0.5 20.6 -4- 0.3 
54.1 4-0.9 77.4+0.7 97.5-4-0.8 30.74-0.1 
18.7 4- 0.5 24.0 4- 1.6 19.2 4- 0.5 14.4 4- 0.3 
34.6 4- 0.6 49.4 4- 0.7 58.6 + 0.6 23.3 4- 0.5 

194.7 4- 5.2 296.2 4- 7.8 427.5 4- 4.3 59.0 4- 0.7 
41.4 -4- 0.7 48.6 4- 1.8 41.7 4- 1.4 21.0 4- 0.7 

190.7 4- 3.2 288.3 + 8.0 410.6 4- 4.8 46.6 4- 0.6 
15.14-1.2 14.04-1.3 11.14-0.5 10.34-0.9 
23.54-0.9 25.5•  31.4-4- 1.4 20.74- 1.3 
37.94-0.8 45.24-0.7 66.64- 1.6 30.44- 1.1 
22.7 4- 0.6 24.6 4- 1.0 29.4 4- 1.4 18.7 4- 0.8 
22.6 4- 0.6 23.4 4- 1.0 28.7 4- 1.3 17.6 4- 0.8 
70.6 q- 1.7 84.7 4- 1.9 135.5 4- 2.1 34.1-4- 0.9 
77.8 4- 2.6 104.2 4- 2.9 174.3 4- 2.8 37.8 -4- 0.8 
57.74-0.9 67.84- 1.4 92.1 4-2.8 21.54-0.9 

f o u r  q u e u e s  s h a r e  t h e  u t i l i z a t i o n  e q u a l l y  (i .e. ,  Pi = 0.225 f o r  i = 1 , . . . ,  4) ,  w h i l e  in  

E x a m p l e s  6 1 - 6 8 ,  t h e  s e r v e r  s p e n d s  t h e  g r e a t e s t  p r o p o r t i o n  o f  t i m e  s e r v i n g  the  

q u e u e  w i t h  t h e  h i g h e s t  c #  i n d e x .  S i m i l a r l y ,  in  E x a m p l e s  6 9 - 7 6 ,  t h e  s e r v e r  s p e n d s  

t h e  g r e a t e s t  p r o p o r t i o n  o f  t i m e  s e r v i n g  t h e  q u e u e  w i t h  t h e  l o w e s t  c #  i n d e x .  F o r  

t h e  e x a m p l e s  w i t h  l o w  u t i l i z a t i o n ,  in  E x a m p l e s  7 7 - 8 4 ,  t h e  t o t a l  u t i l i z a t i o n  is a l l o -  

c a t e d  e q u a l l y  t o  t h e  d i f f e r e n t  q u e u e s ,  a n d  in  E x a m p l e s  8 5 - 9 2 ,  t h e  s e r v e r  s p e n d s  
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Table 5 
Data and results for Examples 77-92. 

Example K~ /(2 /(3 K4 EXH GATED c# Heuristic 

5 4.2 4-0.1 
40 22.8 4- 0.2 

77 5 5 5 
78 40 40 40 
79 100 100 100 100 
80 2 20 40 80 
81 80 40 20 2 
82 500 500 1 1 
83 1 1 500 500 
84 1 1000 1 1 
85 5 5 5 5 
86 40 40 40 40 
87 I00 100 100 100 
88 2 20 40 80 
89 80 40 20 2 
90 500 500 1 1 
91 1 1 500 500 
92 1 1000 1 1 

4.44-0.1 4 .24 -0 .1  3.94-0.1 
24.84-0.2 25.34-0.3 13.04-0.1 

54.54-0.4 59.84-0.5 61.44-0.7 20.74-0.1 
13.14-0.1 14.34-0.2 14.44-0.2 9.24-0.1 
27.6 4- 0.2 30.1 4- 0.3 31.0 4- 0.4 13.6 4- 0.1 

193.14-0.8 211.34-2.0 219.04-3.0 38.14-0.2 
75.74-1.3 84.04-1.3 85.14-1.5 20.54-0.3 

164.64-1.7 180.84-1.8 83.54-3.1 23.64-0.2 
3.24-0.1 3 . 2 4 - 0 . 1  3.2- t -0.1 3.04-0.1 

14.64-0.1 16.44-0.1 16.84-0.3 10.24-0.1 
34.34-0.3 39.14-0.2 40.24-0.8 16.24-0.2 
12.44-0.9 14.54-0.1 14.74-0.3 8.74-0.1 
15.04-0.1 16.44-0.1 16.94-0.4 9.4-t-0.1 
97.94-1.0 108.34-0.9 112.14-3.2 25.34-0.2 
69.4 4- 0.9 83.9 4- 0.7 85.8 4- 1.9 20.2 4- 0.2 
74.1 4- 1.1 81.0 4- 1.0 81.1 4- 3.2 15.3 4- 0.1 

the greatest proport ion of  the time serving the queue with the lowest c/z index. Thus, 
Examples 41-92 cover a wide variety of  situations, with low and high utilization, 
low and high arrival and service rates, and different combinations of  set-up costs. 

The results for Examples 41-76 are displayed in Table 4, and the results for 
Examples 77-92 are displayed in Table 5. These results strongly support the 
superior performance of  our heuristic over several important  policies taken from 
the literature. Our heuristic outperformed the other rules on every problem 
instance. For  cases where the set-up costs were very low, the performance of  our 
heuristic was again only slightly better than the performance of  the other policies, 
and the c# rule also performed well. In all other cases, our heuristic outperformed 
the other policies very significantly, and the results in Tables 4 and 5 include cases 
where the nearest competitor to the heuristic resulted in costs per unit time that were 
nearly 6 times worse than the heuristic. However, we note that  the exhaustive, gated 
and c# policies are rather naive policies, and it is possible to develop better static 
policies for the set-up cost problem similar to those developed for the set-up time 
problem by Boxma et al. [2]. Our focus is on the development of  dynamic rules, 
and optimization within the class of  static rules is beyond the scope of  this paper. 

Acknowledgements 

We would like to thank Matthew Keblis for his help with the computations 
and Professor Demosthenis Teneketzis for many fruitful discussions. We are grate- 
ful to an anonymous referee for his detailed comments which improved the paper. 



L Duenyas, M.P. Van Oyen/Stochastic scheduling 443 

The  work  o f  the first au tho r  is sponsored,  in part ,  by  N S F  Gran t s  No:  D D M -  
9308290 and  DMI-9424596 to the Univers i ty  o f  Michigan.  

References 

[1] J.S. Baras, D.J. Ma and A.M. Makowski, K competing queues with geometric service require- 
ments and linear costs: the #c rule is always optimal, Syst. Control Lett. 6 (1985) 173--180. 

[2] O.J. Boxma, H. Levy and J.A. Weststrate, Efficient visit frequencies for polling tables: Minimi- 
zation of waiting cost, Queueing Systems 9 (1991) 133-162. 

[3] C. Buyukkoc, P. Varaiya and J. Walrand, The c/z-rule revisited, Adv. Appl. Prob. 17 (1985) 237- 
238. 

[4] D.R. Cox and W.L. Smith, Queues (Methuen, London, 1960). 
[5] M.A.H. Dempster, J.K. Lenstra and A.M.G. Rinnooy Kan, Deterministic and Stochastic 

Scheduling (Reidel, Dordrecht, 1982). 
[6] I. Duenyas and M.P. Van Oyen, Heuristic scheduling of parallel heterogeneous queues with set- 

ups, Technical Report 92-60, Industrial and Operations Engineering, University of Michigan, 
Ann Arbor, MI (1993). 

[7] J.C. Gittins, Multi-armed Bandit Allocation Indices (Wiley, New York, 1989). 
[8] D. Gupta, Y. Gerchak and J.A. Buzacott, On optimal priority rules for queues with switchover 

costs, Working Paper, Department of Management Sciences, University of Waterloo (1987). 
[9] R.W. Hall, Zero Inventories (Irwin, Homewood, IL 1983). 
[10] J.M. Harrison, A priority queue with discounted linear costs, Oper. Res. 23 (1975) 260-269. 
[11] J.M. Harrison, Dynamic scheduling of a multiclass queue: Discount optimality, Oper. Res. 23 

(1975) 270-282. 
[12] M. Hofri and K.W. Ross, On the optimal control of two queues with server set-up times and its 

analysis, SIAM J. Comp. 16 (1987) 399-420. 
[13] G.P. Klimov, Time sharing service systems I, Theory of Prob. and Its Appl. 19 (1974) 532-551. 
[14] G.P. Klimov, Time sharing service systems II, Theory of Prob. and Its Appl. 23 (1978) 314-321. 
[15] G. Koole, Assigning a single server to inhomogeneous queues with switching costs, Technical 

Report, CWI, Amsterdam, The Netherlands (1994). 
[16] T.L. Lai and Z. Ying, Open bandit processes and optimal scheduling of queueing networks, Adv. 

Appl. Prob. 20 (1988) 447-472. 
[17] H. Levy and M. Sidi, Polling systems: applications, modelling, and optimization, IEEE Trans. 

Commun. 38 (1990) 1750-1760. 
[18] H. Levy, M. Sidi and O.J. Boxma, Dominance relations in polling systems, Queueing Systems 6 

(1990) 155-172. 
[19] Z. Liu, P. Nain and D. Towsley, On optimal polling policies, Queueing Systems 11 (1992) 59-84. 
[20] I. Meilijson and U. Yechiali, On optimal right-of-way policies at a single-server station when 

insertion of idle times is permitted, Stoch. Processes Appl. 6 (1977) 25-32. 
[21] P. Nain, Interchange arguments for classical scheduling problems in queues, Syst. Control Lett. 

12 (1989) 177-184. 
[22] P. Nain, P. Tsoucas and J. Walrand, Interchange arguments in stochastic scheduling, J. Appl. 

Prob. 27 (1989) 815-826. 
[23] R. Rajan and R. Agrawal, Optimal server allocation in homogeneous queueing systems with 

switching costs, preprint, Electrical and Computer Engineering, Univ. of Wisconsin-Madison, 
Madison, WI (1991). 

[24] M.I. Reiman and L.M. Wein, Dynamic scheduling of a two-class queue with setups, Technical 
Report, Sloan School of Management, MIT, Cambridge, MA (1994). 

[25] H. Takagi, Priority queues with set-up times, Oper. Res. 38 (1990) 667-677. 



444 L Duenyas, M.P. Van Oyen/ Stochastic scheduling 

[26] M.P. Van Oyen, Optimal stochastic scheduling of queueing networks: Switching costs and partial 
information, Ph.D. Thesis, University of Michigan, Ann Arbor, MI (1992). 

[27] M.P. Van Oyen, D.G. Pandelis and D. Teneketzis, Optimality of index policies for stochastic 
scheduling with switching penalties, J. Appl. Prob. 29 (1992) 957-966. 

[28] M.P. Van Oyen and D. Teneketzis, Optimal stochastic scheduling of forest networks with switch- 
ing penalties, Adv. Appl. Prob. 26 (1994) 474-497. 

[29] P. Varaiya, J. Walrand and C. Buyukkoc, Extensions of the multi-armed bandit problem, IEEE 
Trans. Autom. Control AC-30 (1985) 426-439. 

[30] J. Walrand, An Introduction to Queueing Networks (Prentice Hall, Englewood Cliffs, 1988). 


