
Queueing Systems 47, 177–199, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Optimal Pricing and Admission Control in a Queueing
System with Periodically Varying Parameters

SEUNGHWAN YOON and MARK E. LEWIS ∗ {syoon;melewis}@engin.umich.edu
Department of Industrial and Operations Engineering, University of Michigan, 1205 Beal Avenue,
Ann Arbor, MI 48109-2117, USA

Received 12 June 2003; Revised 21 January 2004

Abstract. We consider congestion control in a nonstationary queueing system. Assuming that the arrival
and service rates are bounded, periodic functions of time, a Markov decision process (MDP) formulation is
developed. We show under the infinite horizon discounted and average reward optimality criteria, for each
fixed time, optimal pricing and admission control strategies are nondecreasing in the number of customers
in the system. This extends stationary results to the nonstationary setting. Despite this result, the problem
still seems intractable. We propose an easily implementable pointwise stationary approximation (PSA) to
approximate the optimal policies, suggest a heuristic to improve the implementation of the PSA and verify
its usefulness via a numerical study.

AMS subject classification: 60K25, 90C40

1. Introduction

Advances in telecommunications technology have sparked recent interest in real-time
revenue management for multi-class queueing systems. When the system capacity is
finite, a decision-maker must dynamically allocate resources while maintaining revenue
maximization considerations. By and large this is achieved by two congestion control
mechanisms; pricing control and admission control. Pricing control is used when a cus-
tomer’s priority or class cannot be discerned upon arrival. As the system becomes more
congested, the price for admittance can be raised so that the number of arriving cus-
tomers is reduced. By contrast, when a customer’s class is revealed upon arrival, the
revenue maximization and congestion control dilemmas can be alleviated via admission
control. As in the pricing problem, lower priority customers are more likely to be ad-
mitted when the system is not operating close to capacity. The difference in the two
scenarios, while subtle, is distinct in that the amount of information available to the
decision-maker and the reward received is quite different. The pricing controller sets a
price without knowing the class of an arriving customer and may only receive that price
while the admission controller receives the exact reward offered by admitted customers.
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The vast majority of the literature on congestion control assumes that the arrival
and service processes are stationary; independent of the current time. Under this assump-
tion, a decision-maker making pricing or admission control decisions needs only know
the current number of customers in the system. With the added complication of non-
stationary arrival and/or service processes, when a customer arrives, the decision-maker
needs to know the current number of customers in the system and the current time. This
makes the problem of finding the optimal decision intractable. The main theoretical
contribution of this paper is that, under reasonable assumptions, many of the structural
results of the stationary case can be extended to the nonstationary problem. In particular,
when the arrival and service rates vary in a known periodic fashion, an intuitive result
continues to hold; as the congestion increases in the pricing problem the optimal price
increases and in the admission control problem, the admittance requirements become
more strict.

This (unfortunately) does not complete the picture. In contrast to the infinite hori-
zon stationary problem, the optimal decisions in either scenario are not static for each
congestion level. Thus, while the structural results suggest for each fixed time, we can
restrict attention to monotone policies, this restriction does not make the search for opti-
mal policies simple. To exploit the connection between the stationary and nonstationary
cases, we suggest a pointwise stationary approximation (PSA) scheme that allows for
the decisions to be monotone in the congestion level, but dynamic in time. Since we
use results from the stationary problem to implement the approximation, the procedure
is intuitive and easily implementable. We then compare several refinements of the PSA
to the average reward stationary policies that are used in practice.

With the growth of Internet service providers and mobile network service
providers, the study of congestion control in queueing systems with nonstationary ar-
rivals have centered around the telecommunication industries. The focus of most of the
work on nonstationary queueing systems has been on obtaining insights for fixed po-
lices. For example, Massey and Whitt [13] obtain the mean number of busy servers
and the time lag between the maximum arrival time and the actual peak congestion
time for a system without control. The same authors discuss stationary approximations
to nonstationary problems in [12]. Green and Kolesar [3,4] use a pointwise stationary
approximation for the congestion in a nonstationary system. Although, in the present
study we use the same term, “PSA”, to relate to a dynamic control scheme rather than
the estimation of congestion levels, the concept is quite similar.

Monotone policies in admission control were originally discussed by Yadin and
Naor [18], Heyman [6], Lippman and Ross [9] and Miller [15]. Monotone policies
in pricing control was considered by Low [11] and more recently by Paschalidis and
Tsitsiklis [16], Feng and Xiao [1], and Fu et al. [2]. None of the models deal with the
periodic nonstationary extension presently considered.

The remainder of the paper is organized as follows. In section 2 we formulate the
problems as Markov decision processes (MDPs) and introduce the optimality criteria of
interest (discounted and average reward). We prove the existence of monotone optimal
policies under each optimality criterion in section 3. In section 4 we compare the average
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reward pricing and admission control models numerically and introduce the pointwise
stationary approximation heuristic. The concluding remarks follow in section 5.

2. Model formulation

Consider a single commodity queueing system with finite capacity m over an infinite
planning horizon. Customers arrive according to a nonhomogeneous Poisson process
with rate �(t) > 0 for all t . Each customer belongs to one of several classes
j ∈ {1, . . . , �}. Class j customers have a reservation price pj < ∞, and the probability
that an arrival at time t is a class j customer is qj (t) ∈ (0, 1), such that

∑�
j=1 qj (t) = 1

for each t . In the pricing scenario (from now on called the pricing control problem), if
an arriving customer sees a price lower than the reservation price, the price is paid and
the customer enters the system. Otherwise the customer is lost forever. In the admission
control problem, upon arrival the customer reveals the reservation price and is either ac-
cepted or rejected; rejected customers are lost forever. Let the set A ≡ {p0, p1, . . . , p�}
be the set of possible reservation prices (p0 will be used to model a full system), and
without loss of generality, assume that p0 > p1 > · · · > p� > 0. It should be clear that
the decision-maker in the pricing control problem would never set a price outside of the
set A since it would only result in lost revenue.

Let the arrival rate of class j customers be denoted βj(t) ≡ qj (t)�(t), j ∈ {1,

. . . , �}. When price a is set, the customers that actually enter the buffer form a Pois-
son process with rate λa(t) ≡ ∑w(a)

j=1 βj(t), where w(pj) ≡ j . The service process is
assumed to be exponential with rate µi(t) when there are i customers in the system at
time t . We assume that µ0(t) = 0, µ1(t) > 0 and µi(t) is nondecreasing and con-
cave in i. Since µi(t) is not assumed to be strictly nondecreasing in i, buffer space can
be modelled by setting µi+1(t) = µi(t) for all i � i′ for some i′. Assume that the
functions �(t), qj (t) and µi(t) are measurable, bounded, periodic functions with period
T for all j ∈ {1, 2, . . . , �} and i ∈ {0, 1, . . . , m}. Define the maximal transition rate
� ≡ supt∈[0,T ){�(t) + µm(t)}. We apply uniformization (see [8]) with uniformization
constant �, so that we may consider discrete-time problems instead of the continuous-
time problems described in section 1. This has the effect of scaling the actual rewards
by a constant, but has no effect on the optimal policies (in either case). In addition to ar-
rival and departure times, we embed the times corresponding to the beginning of a new
period; 0, T , 2T , etc. Thus, if {σt, t = 0, 1, . . .} represents the sequence of decision
epochs, σt+1 − σt is the minimum of an exponential with rate � and the residual time
left in the current period.

In each problem, when the system is in a state x the decision-maker chooses from
a set of available actions; a set of admission prices in the pricing control problem and
either accept or reject in the admission control problem. A decision rule is a function d

from the state space to the action space that describes what action will be taken for each
state of the system at a particular time. A policy π is a sequence of decision rules,
i.e., π = {d0, d1, . . .} ∈ � where � is the set of all non-anticipating policies. Each
policy generates a sequence of random variables {(Xt, dt (Xt)): t = 0, 1, . . .} where Xt
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denotes the state of the system and dt (Xt) denotes the action chosen by decision rule dt

in state Xt at decision epoch t . Let r(x, a) be the expected reward when the system is in
state x and action a is chosen. The n-stage, α-discounted expected reward of the policy
π given that the initial state is x is given by

V π
n,α(x) ≡ E

π
x

[
n−1∑
t=0

e−ασt r
(
Xt, dt (Xt)

)]
,

where E
π
x denotes expectation with respect to the probability measure determined by the

initial state x and the policy π , {σt, t = 0, 1, . . .} represents the sequence of event times
and α ∈ R

+. Without loss of generality, assume that α + � = 1. Note that although
policies are defined for the infinite horizon, V π

n,α(x) is only defined for a finite number
of steps. In this case, only that portion of the policy that corresponds to the appropriate
time horizon is used. Since the rewards we consider are bounded and non-negative the
above expectation is guaranteed to exist. Define the α-discounted expected reward to be
V π

α (x) ≡ limn→∞ V π
n,α(x). Similarly, when α = 0 define the long-run average expected

reward (or gain) to be Gπ(x) ≡ lim infn→∞ V π
n,0(x)/n. Consider the value functions and

criterion given in table 1.
A policy whose expected reward achieves the supremum in one of these criteria

(for all states) is called optimal under that criterion. Moreover, although we view the
finite horizon case as interesting, we are actually most interested in the infinite horizon
discounted and average reward cases. For the remainder of the paper we differentiate
quantities identified with the pricing control problem from those with the admission
control problem by using superscripts P and C, respectively.

2.1. The pricing control problem

Since the arrival and service rates are periodic functions of time, from the decision-
maker’s perspective under the infinite horizon discounted and average reward criteria
the actual period within which events occur is not of importance. This fact is easily
seen from the principle of optimality since a decision-maker that sees i customers s

time units into the current period is faced with precisely the same dilemma if there are i

customers in the system s time units into the next period. In the pricing control problem
this means that only the current time since the last period, the number of customers
currently in the system, and the type of event that has just occurred (departure, arrival,
or dummy transition due to uniformization) need to be included in the state space. Let

Table 1
Optimality criterion considered.

Value function Criterion

Vn,α(x) ≡ supπ∈� V π
n,α(x) [Finite horizon]

Vα(x) ≡ supπ∈� V π
α (x) [Infinite horizon discounted]

G(x) ≡ supπ∈� Gπ(x) [Long-run average]
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X
P ≡ {(i, j, z) | i ∈ {0, 1, . . . , m}, j ∈ {−1, 0, 1}, and z ∈ [0, T )} be the state

space, where at relative time z (the current time modulo T), i represents the number of
customers in the system, j = 1 denotes a customer’s arrival, j = −1 a departure, and
j = 0 a “dummy” transition due to uniformization. Note that one may conjecture that
the second element of the state space is superfluous. However, recall that the model we
propose only requires pricing decisions be made at arrival times. This is facilitated by
inclusion of the “transaction type” j . The set of available actions in state (i, 1, z) ∈ X

P ,
denoted AP

i , is

AP
i =

{ {p1, . . . , p�} if i < m;
{p0} if i = m.

Qa(t) ≡ ∑w(a)

j=1 qj (t) = λa(t)/�(t) is the probability that given an arrival has just
occurred at time t and price a is set, the arrival has a class higher than a (recall class 1
is the highest class). For a function f on the state space, define the mapping UP

α(
UP

α f
)
(i, z) ≡

∫ T

z

[
�(t)f (i, 1, t) + µi(t)f (i,−1, t)

+ (
� − �(t) − µi(t)

)
f (i, 0, t)

]
e−(t−z) dt + e−(T −z)f (i, 0, 0).

Intuitively, (UP
α f )(i, z) represents the total expected reward as measured by f starting

from the next decision epoch, given that there are currently i customers in the system at z

time units into the period. Let vP
0,α ≡ 0 and consider the following systems of equations

for (i, j, z) ∈ X
P ,

vP
n,α(i, j, z) =


max
a∈AP

i

{
Qa(z)

(
a + (

UP
α vP

n−1,α

)
(i + 1, z)

)
+ (

1 − Qa(z)
)(

UP
α vP

n−1,α

)
(i, z)

}
if 0 � i < m, j = 1;(

UP
α vP

n−1,α

)
(i − 1, z) if 0 < i � m, j = −1;(

UP
α vP

n−1,α

)
(i, z) otherwise,

(2.1)

gP + hP (i, j, z) =



max
a∈AP

i

{
Qa(z)

(
a + (

UP
0 hP

)
(i + 1, z)

)
+ (

1 − Qa(z)
)(

UP
0 hP

)
(i, z)

}
if 0 � i < m, j = 1;(

UP
0 hP

)
(i − 1, z) if 0 < i � m, j = −1;(

UP
0 hP

)
(i, z) otherwise.

(2.2)

The first system, (2.1), are the finite horizon optimality equations (FHOE) and (2.2)
the average optimality equations (AOE). If we replace vP

n,α and vP
n−1,α with vP

α in (2.1)
we have the discount optimality equations (DOE). If there exists a solution to the FHOE
then vP

n,α(x) = V P
n,α(x). Similarly, for the DOE (when α > 0) vP

α (x) = V P
α (x). The

existence in either case is guaranteed since the rewards are bounded and the action space
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is finite (cf. [17, theorem 11.3.2]). A solution to the AOE is a little more subtle since
the recurrent class structure must be considered. However, for the problem we consider
a solution (gP , hP ) implies gP = GP (x) (for all x) while hP is unique up to an additive
constant and is called a relative value function.

2.2. The admission control problem

In an analogous manner to the previous section, since we are interested in the infinite
horizon problems, the decision-maker is indifferent to which period decisions are being
made. The state and action spaces for the admission control problem are

X
C ≡ {

(i, j, z) | i ∈ {0, 1, . . . , m}, j ∈ {−1, 0, 1, . . . �}, and z ∈ [0, T )
}
,

AC
i =

{ {accept, reject} if i < m and j > 0;
{reject} if i = m and j > 0,

where i � m, j � 0 and z ∈ [0, T ) are as in the pricing control model and j > 0
denotes an arrival of class j . Define the mapping UC

α for a function f on the state space
to be

(
UC

α f
)
(i, z) ≡

∫ T

z

[
�∑

j=1

βj(t)f (i, j, t) + µi(t)f (i,−1, t) + (
� − �(t)

− µi(t)
)
f (i, 0, t)

]
e−(t−z) dt + e−(T −z)f (i, 0, 0).

The analogous systems to (2.1) and (2.2) follow (vC
0,α = 0)

vC
n,α(i, j, z) =


max

{
pj + (

UC
α vC

n−1,α

)
(i + 1, z),(

UC
α vC

n−1,α

)
(i, z)

}
if 0 � i < m, j � 1;(

UC
α vC

n−1,α

)
(i − 1, z) if 0 < i � m, j = −1;(

UC
α vC

n−1,α

)
(i, z) otherwise,

(2.3)

gC + hC(i, j, z) =


max

{
pj + (

UC
0 hC

)
(i + 1, z),(

UC
0 hC

)
(i, z)

}
if 0 � i < m, j � 1;(

UC
0 hC

)
(i − 1, z) if 0 < i � m, j = −1;(

UC
0 hC

)
(i, z) otherwise.

(2.4)

Again replacing vC
n,α and vC

n−1,α with vC
α yields the DOE. The first element in each max-

imum refers to accepting the arriving customer and the second corresponds to rejection.
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3. Monotone optimal policies

In this section we show the existence of nondecreasing optimal pricing strategies and
optimal control levels. To this end, we show that the result holds in the finite horizon
case and then extend to the infinite horizon models. To ease notation, let the set of non-
increasing, concave functions (the domain will be clear from the context) be denoted
by DC. We find the following results from Lippman and Stidham [10] useful.

Lemma 3.1 (Lippman and Stidham (1977)). The following hold.

1. If H(i) ≡ µif (i − 1) + (µ̃ − µi)f (i), where f (i) ∈ DC and µ̃ = maxi{µi}, then
H(i) ∈ DC.

2. Let r � 0 be fixed and let g(i) ≡ max{r + f (i + 1), f (i)}. Then g is concave if f

is concave.

We note that it is simple to show that µ̃ can be replaced with any upper bound of µ̃.
For a function f define the first and second differences, 
f (i) ≡ f (i + 1) − f (i) and

2f (i) ≡ 
f (i + 1) − 
f (i), respectively. Although these mappings will be applied
to functions of more than one variable, they will always correspond to the differences of
the first element.

Lemma 3.2. In the discounted reward finite horizon problem,V P
n,α(i, j, z),(UP

α vP
n,α)(i, z)∈ DC as a function of i for all n � 0, for each fixed j , z and α.

Proof. Since vP
n,α = V P

n,α , it suffices to show the result holds for solutions to the FHOE.
By induction. For n = 0 the results hold trivially. Suppose they hold for n − 1. We first
show that (UP

α vP
n−1,α)(i, z) ∈ DC implies vP

n,α(i, j, z) ∈ DC. It should be clear that this
holds for j = −1, 0 since

vP
n,α(i, 0, z) = (

UP
α vP

n−1,α

)
(i, z), vP

n,α(i,−1, z) = (
UP

α vP
n−1,α

)
(i − 1, z).

Consider the case with j = 1, suppress j and z (since they are fixed) and recall
dP

n (i) represents the optimal price when in state (i, 1, z). Suppose the decision-maker
uses the potentially suboptimal action dP

n (i + 1) in state (i, 1, z). Then

vP
n,α(i, 1, z) � QdP

n (i+1)

(
UP

α vP
n−1,α

)
(i + 1, z) + (1 − QdP

n (i+1))
(
UP

α vP
n−1,α

)
(i, z), (3.1)

while

vP
n,α(i + 1, 1, z) = QdP

n (i+1)

(
UP

α vP
n−1,α

)
(i + 2, z)

+ (1 − QdP
n (i+1))

(
UP

α vP
n−1,α

)
(i + 1, z). (3.2)

Subtracting (3.1) from (3.2) yields


vP
n,α(i, 1, z) � QdP

n (i+1)

(

UP

α vP
n−1,α

)
(i + 1, z) + (1 − QdP

n (i+1))

(
UP

α vP
n−1,α

)
(i, z).

(3.3)
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Thus, since 
(UP
α vP

n−1,α)(i, z) � 0 for i and z arbitrary, vP
n,α is non-increasing in i

for all n as desired.
On the other hand, to get the concavity suppose dP

n (i) is employed in (i + 1, 1, z).
The FHOE yields


vP
n,α(i, 1, z) � QdP

n (i)

(
UP

α vP
n−1,α

)
(i + 1, z)+ (1 −QdP

n (i))

(
UP

α vP
n−1,α

)
(i, z). (3.4)

Combining (3.3) (for (i + 1, 1, z)) and (3.4)


2vP
n,α(i, 1, z) � QdP

n (i+2)

2(UP

α vP
n−1,α

)
(i + 1, z)

+ (1 − QdP
n (i))


2
(
UP

α vP
n−1,α

)
(i, z). (3.5)

Thus, 
2vP
n,α � 0 and we have vP

n,α ∈ DC.
It remains to show that vP

n,α ∈ DC implies (UP
α vP

n,α)(i − 1, z) ∈ DC. Recall(
UP

α vP
n,α

)
(i, z) ≡

∫ T

z

[
�(t)vP

n,α(i, 1, t) + µi(t)v
P
n,α(i,−1, t)

+ (
� − �(t) − µi(t)

)
vP

n,α(i, 0, t)
]
e−(t−z) dt + e−(T −z)vP

n,α(i, 0, 0).

The result now follows from the linearity of the difference operator and part 1 of lem-
ma 3.1. �

The next result asserts the existence of monotone optimal policies in the finite
horizon case.

Theorem 3.3. Under the finite horizon optimality criterion, for each fixed time z ∈
[0, T ), the optimal price at stage n when there are i customers in the system, denoted
dP

n (i) (since j and z are fixed), is nondecreasing in i.

Proof. Fix z ∈ [0, T ) and α � 0. Clearly dP
n (m) > dP

n (m − 1) since dP
n (m) = p0.

Thus, we must show dP
n (i + 1) � dP

n (i), 0 � i � m − 2. Let dP
n (i) be the optimal

price when in state (i, 1, z). Suppose the decision-maker uses the potentially suboptimal
action dP

n (i + 1) in state (i, 1, z). Then

vP
n,α(i, 1, z) � QdP

n (i+1)(z)
(
dP

n (i + 1) + (
UP

α vP
n−1,α

)
(i + 1, z)

)
+ (

1 − QdP
n (i+1)(z)

)(
UP

α vP
n−1,α

)
(i, z), (3.6)

while

vP
n,α(i + 1, 1, z) = QdP

n (i+1)(z)
(
dP

n (i + 1) + (
UP

α vP
n−1,α

)
(i + 2, z)

)
+ (

1 − QdP
n (i+1)(z)

)(
UP

α vP
n−1,α

)
(i + 1, z). (3.7)

Subtracting (3.6) from (3.7) yields


vP
n,α(i, 1, z) � QdP

n (i+1)(z)

(
UP

α vP
n−1,α

)
(i + 1, z)

+ (
1 − QdP

n (i+1)(z)
)



(
UP

α vP
n−1,α

)
(i, z). (3.8)
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Similarly, if we use action dP
n (i) in state (i + 1, 1, z). The FHOE imply


vP
n,α(i, 1, z) � QdP

n (i)(z)

(
UP

α vP
n−1,α

)
(i + 1, z)

+ (
1 − QdP

n (i)(z)
)



(
UP

α vP
n−1,α

)
(i, z). (3.9)

Combining (3.8) and (3.9) we obtain(
QdP

n (i+1)(z) − QdP
n (i)(z)

)

2

(
UP

α vP
n−1,α

)
(i, z) � 0.

Lemma 3.2 implies 
2(UP
α vP

n−1,α)(i, z) � 0. There are two possibilities to consider.
First, suppose that 
2(UP

α vP
n−1,α)(i, z) = 0. Note that the FHOE for j = 1 may be

rewritten,

vP
n,α(i, 1, z) = (

UP
α vP

n−1,α

)
(i, z) + max

a∈A(x)

{
Qa(z)

(
a + 


(
UP

α vP
n−1,α

)
(i, z)

)}
.

Our assumption on 
2(UP
α vP

n−1,α)(i, z) = 0 implies

max
a∈A(x)

{
Qa(z)

(
a + 


(
UP

α vP
n−1,α

)
(i, z)

)} = max
a∈A(x)

{
Qa(z)

(
a + 


(
UP

α vP
n−1,α

)
(i + 1, z)

)}
and there exists an optimal policy such that dP

n (i) = dP
n (i + 1).

Suppose now that 
2(UP
α vP

n−1,α)(i, z) < 0. Then, QdP
n (i+1)(z) − QdP

n (i)(z) � 0.
Since Qa(z) is (strictly) decreasing in a, this implies that dP

n (i + 1) � dP
n (i) for each

fixed time. �

Lemma 3.4. In the discounted finite horizon admission control problem, V C
n,α(i, j, z),

(UC
α vC

n,α)(i, z) ∈ DC as a function of i for all n, for each fixed j , z and α.

Proof. By induction. The case for n = 0 is trivial. Assume that the results hold for
n − 1. The fact that (UC

α vC
n−1,α)(i, z) ∈ DC implies vC

n,α(i, j, z) ∈ DC follows in the
same manner as lemma 3.2 for j = −1, 0. When j > 0 using the optimal admission
control decision for state (i + 1, j, z) in state (i, j, z) implies


vC
n,α(i, j, z) �

{



(
UC

α vC
n−1,α

)
(i + 1, z) if dC

n (i + 1, j, z) = accept,



(
UC

α vC
n−1,α

)
(i, z) if dC

n (i + 1, j, z) = reject.
(3.10)

Thus, vC
n,α(i, j, z) is non-increasing. Part 2 of lemma 3.1 implies the concavity. To

show vC
n,α(i, j, z) ∈ DC implies (UC

α vC
n,α)(i, z) ∈ DC, apply the same argument as

lemma 3.2. �

Theorem 3.5. For each fixed time z ∈ [0, T ), the optimal admission control policy
when there are i customers in the system at stage n, denoted dC

n (i, j, z), is nondecreasing
in i under the finite horizon optimality criterion. That is, there exists control limits
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ηn(j, z) such that

dC
n (i, j, z) =

{
accept (0) if i � ηn(j, z);

reject (1) if i > ηn(j, z).
(3.11)

Furthermore, ηn(j, z) is non-increasing in j for each fixed time z.

Proof. Note that it is optimal to accept (reject) at stage n if pj + 
(UC
α vC

n−1,α)(i, z) �
(<) 0. Let i′ be the smallest i such that pj + 
(UC

α vC
n−1,α)(i, z) < 0 (letting i′ = m

if none exists). Since lemma 3.4 implies 
(UC
α vC

n−1,α)(i
′, z) � 
(UC

α vC
n−1,α)(i

′ + 1, z)

we have pj + 
(UC
α vC

n−1,α)(i, z) < 0 for all i � i′ and reject is optimal for each such i.
Hence, if we set ηn(i, z) = i′ the proof is complete.

The last claim follows from the fact that the acceptance (rejection) criterion when
in state (i, j, z) for j > 0 is pj + 
(UC

α vC
n−1,α)(i, z) � (<) 0 and the assumption that

p1 > p2 > · · · > p�. �

3.1. Infinite horizon monotone optimal policies

The main theoretical result of the paper is stated in the following theorem.

Theorem 3.6. For each fixed time z, under both the infinite horizon discounted and
average reward optimality criteria the following hold

1. In the pricing control problem there exists an optimal policy such that the admission
price, when there are i customers in the system, is nondecreasing in i.

2. In the admission control problem there exists an optimal policy such that for each
class j there are control limits η(j, z) such that the decision-maker accepts (rejects)
class j customers if i � (>) η(j, z). Furthermore, η(j, z) is non-increasing in j .

The results of the previous sections suggest that to prove theorem 3.6 it suffices to
show that the value functions for each infinite horizon model are concave in i. To this
end, we note that the concavity in the infinite horizon discounted reward case is achieved
virtually immediately by letting the horizon length go to infinity in lemmas 3.2 and 3.4.
The concavity of the relative value functions in the average reward case requires several
technical assertions. We then let the horizon length go to infinity in the undiscounted
(and normalized) finite horizon problem to get the result. This is detailed in the next
proposition.

Proposition 3.7. For the pricing and admission control models, gk
n(x) ≡ V k

n,0(x) −
V k

n−1,0(x) → gk and hk
n(x) ≡ V k

n,0(x) − V k
n,0(y) → hk(x), ∀x ∈ X

k, where y is an
arbitrary (fixed) state in X

k, (gk, hk) satisfies the AOE, and k = P,C for the pricing
and admission control models, respectively. Furthermore, this convergence is uniform
on compact subsets of X

k.
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Proof. See appendix. �

The following lemma is an immediate consequence of lemmas 3.2, 3.4, proposi-
tion 3.7 and the observation that 
V P

n,1(i, z) = 
hP
n (i, z). It completes the proof of

theorem 3.6.

Lemma 3.8. In the pricing and admission control models, the value functions for the
infinite horizon discounted reward problem and the relative value function for the aver-
age reward problem are non-increasing and concave in i. Similarly for (Uk

αvk
α)(i, z) and

(Uk
0 hk)(i, z), where k = P,C.

4. Pointwise stationary approximations

The results of the previous section imply a close relationship between the nonstationary
and stationary versions of congestion control problems. In fact, for each fixed time,
we have shown that the intuition for the optimal policy is precisely the same; the more
congested the network becomes, the more strict should be the admission structure. This
intuition does not carry over in all nonstationary models as an example in [7] exhibits.
Furthermore, this observation does not stand to make the solution of the nonstationary
problems simple since the problems remain uncountable state space MDPs. In fact, even
approximating these problems with a discretization of the time horizon quickly becomes
computationally intensive for problems of reasonable size.

With this in mind, we present a pointwise stationary approximation to the non-
stationary problem and verify that it achieves an average reward that is quite close to
optimal. Our numerical study shows that it can be a considerable improvement over
the stationary policy that is often used in practice. Note that although in this section
we only consider the average reward case, a similar analysis could be performed for the
discounted case. A brief description of the PSA follows.

Choose a set of γ points, say S ≡ {τ1, τ2, . . . , τγ }, where τ1 = 0 and τγ = T in the
period [0, T ] and consider a sequence of stationary problems. For the nth problem, n ∈
{1, 2, . . . , γ }, λ(t) = λ(τn), µi(t) = µi(τn) for i = 0, 1, . . . , m, and qj (t) = qj (τn) for
j ∈ {1, 2, . . . , �} for all t . That is to say, we solve the stationary pricing (or admission)
problem with the parameters for each fixed time τn and obtain the optimal (stationary)
policy denoted {f k

τn
(i), i = 0, 1, . . . , m} for k = P,C.

Definition 4.1. The pointwise stationary approximation for the set S is defined to be the
nonstationary policy dP (i, t) = f P

τn
(i) for pricing control and dC(i, j, t) = f C

τn
(i, j) for

admission control, for t ∈ [τn, τn+1) and n = 1, 2, . . . , γ − 1.

In essence the PSA is the piecewise linear policy that uses the optimal policy for
the stationary problem at several points during the period in hopes that the optimal non-
stationary policy can be closely approximated in this manner. This exploits the fact that
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the structure of the optimal policy is the same for the stationary and nonstationary prob-
lems and is a quite intuitive way of congestion control in practice. Equally important is
the observation that the stationary problem may be solved via solution of the optimal-
ity equations from one of the well-known solution techniques for MDPs, for example,
policy iteration or value iteration.

One might notice that we have made no mention of how the set S is chosen. An
obvious implementation would be to choose the number of points one would like to
include in S and space them equally on the interval. This has the drawback that it ignores
the observation that congestion (not time) is the driving force behind changes in the
optimal policy. As an alternative, we propose a PSA that attempts to track times of peak
congestion and adjust the policy accordingly. Define the instantaneous congestion

ρ(t) = �(t)

µm(t)

for t ∈ [0, T ). For the remainder of the section, we assume that ρ(t) is continuous
and differentiable for all t ∈ [0, T ). We contend that this is not much of a restriction
since we can replace the derivative condition contained in the third step of the algorithm
below with a similar condition on left-hand derivatives, while discontinuous functions
can be approximated by continuous functions. We next define the “distance” between
two stationary policies at τn1 and τn2 for each problem considered. In the pricing control
problem let

DP
(
f P

τn1
, f P

τn2

) ≡ max
0�i�m−1

∣∣w(
f P

τn1
(i)

) − w
(
f P

τn2
(i)

)∣∣.
This represents the largest change in the action chosen (in each state) for different poli-
cies in the stationary problem. Similarly, in the admission control problem, assume that
f C

τn1
and f C

τn2
are stationary policies that are of the form of the optimal policy (i.e., have

control limits) and let

DC
(
f C

τn1
, f C

τn2

) ≡ max
1�j��

∣∣η(j, τn1) − η(j, τn2)
∣∣.

Note that this represents the maximum difference in the admission control limits for the
stationary policies f C

τn1
and f C

τn2
.

The instantaneous congestion based PSA (ICPSA) is described for the pricing con-
trol problem by the following algorithm (the admission control problem would be ap-
proximated analogously):

1. Set n = 1.

2. Compute f P
τn

from the stationary problem (recall τ1 = 0).

3. Let τ ∗ = inf{t > τn | ρ ′(t) = 0}, where the infimum of the empty set if taken to
be T .

4. Compute f P
τ∗ from the stationary problem and set n′ = n + 1 + DP (f P

τn
, f P

τ∗). If
τ ∗ = T use the left hand limits of λa(t) and µi(t) for each a and i as t approaches T .
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5. Choose {τn+1, . . . , τn′−1} equally spaced between τn and τ ∗ and compute f P
τk

for
τk ∈ {τn+1, . . . , τn′−1}.

6. Let n = n′. If τn = T . Stop. Otherwise return to step 2.

Steps 3, 4, and 5 make up the crux of the ICPSA algorithm. The construction
includes all times that the derivative of the instantaneous congestion is zero as well as
the beginning and end of the period. Between these times, the number of points used
is set equal to the largest change in the pricing action. This policy has the desirable
property that more time points are placed between times when the optimal stationary
approximation makes a significant change in the policy. When the algorithm is complete,
the set {f P

τn
} is defined and thus, so is the corresponding ICPSA policy.

In order to compare the equally spaced PSA and the ICPSA to what is currently
done in practice we define the nominal arrival and service rates

β̄j ≡
∫ T

0 βj(t) dt

T
and µ̄i ≡

∫ T

0 µi(t) dt

T

for j = 1, 2, . . . , � and i = 0, 1, . . . , m. Define the average stationary approximation
(ASA) policy to be the policy that maximizes the reward of the stationary (pricing or
admission control) problem when the vectors β̄ and µ̄ are used as constant arrival and
service rate vectors, respectively. Thus, when estimating the arrival and service rate
vectors the decision-maker simply uses the average of each rate over the period.

We discretize the time horizon and approximate the gains of the optimal policy and
the heuristics (equally spaced PSA, ICPSA, and ASA) that have been discussed. Sup-
pose we divide the period into n equally spaced time segments. Denote the time elapsed
between adjacent decision epochs by 
t so that 
t = T /n. At each decision epoch, the
decision-maker chooses the “optimal” action. Since transitions follow a Poisson process
with rate �, an event occurs at every 
t with probability 1 − e−�
t whereas nothing
occurs (a dummy transition) during time period 
t with probability e−�
t . Recall that
the crucial quantity in defining the AOE, (2.2), was (UP

0 f )(i, z) for a function f on the
state space. Let(

ÛP
0 f

)
(i, z) ≡ (

1 − e−�
t
)[�(z + 
t)

�
f (i, 1, z + 
t) + µi(z + 
t)

�

× f (i,−1, z + 
t) +
(

1 − �(z + 
t)

�
− µi(z + 
t)

�

)
× f (i, 0, z + 
t)

]
+ e−�
tf (i, 0, z + 
t),

for z = 0, 
t, . . . , T − 2
t . Similarly,(
ÛP

0 f
)
(i, T − 
t) ≡ (

1 − e−�
t
)[�(T )

�
f (i, 1, 0) + µi(T )

�
f (i,−1, 0)

+
(

1 − �(T )

�
− µi(T )

�

)
f (i, 0, 0)

]
+ e−�
tf (i, 0, 0),
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where the rate functions are replaced with their left-hand limits in the case of a disconti-
nuity at time T . The “discretized” AOE is the analogue of (2.2) using ÛP

0 instead of UP
0 .

The result produces an estimate of the relative value function and the optimal gain for the
pricing control problem. An analogous system is used in the admission control problem.

We present an example that captures two important observations; the first is that the
ASA can perform quite poorly while the second highlights the importance of knowing
the reservation price to the decision-maker in the admission control model.

Example 4.2. Let � = 3, m = 3, and 
t = T /100, and the set of reservation prices
{11, 6, 3}. We consider the cases in which T = nπ/4, n = 1, 2, 3 and 4, so that the
nonstationarity is captured by the whole sine wave (bimodal) in one case and various
portions of the sine function in others. The arrival rates and service rates are

λpj
(t) =


1

�

(
10 sin(2t) + 11

(
2j−1

))
if j = 1, 2, 3;

0 otherwise,

µi(t) =


1

�

(
30 + 10(i − 1)

)
for i = 1, 2, 3;

0 otherwise,

respectively, where � = 104 and �(t) = λp3(t).

Figure 1 shows how the heuristic policies compare to the (discretized) optimal pol-
icy when 1 customer is in the system and T = π (other congestion levels are similar).
The PSA with equally spaced time points is denoted “PSA”. The number of time points
were set equal to the number of points used in ICPSA. The ASA policy for this example
uses the static price 6 for all t when there is 1 customer in the system. One might note
that both the ICPSA and the PSA closely track the optimal policy, but that the ICPSA
overcompensates. That is to say that there is a shift to the left in the ICPSA away from
the optimal policy. We believe this is due to the fact that the pointwise stationary approx-
imations do not take into account the decision-maker’s ability to anticipate an increase
in congestion. The shift is particularly apparent in figure 2 and somewhat justifies the

Figure 1. The comparison of optimal prices for T = π .
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Figure 2. The comparison of optimal prices for T = π/4.

Table 2
Comparison of the average optimal rewards for example 4.2.

Cases Opt. gain % diff. from gP

T = π Admission control Opt. admission (gC) 1.75857 +36.06

Pricing control Opt. pricing (gP ) 1.29246 –

ASA (gP
ASA) 1.15075 −10.96

PSA (gP
PSA) 1.26951 −1.78

ICPSA (gP
ICPSA) 1.25754 −2.70

T = 3π

4
Admission control Opt. admission (gC) 1.79780 +33.14

Pricing control Opt. pricing (gP ) 1.35028 –

ASA (gP
ASA) 1.21622 −9.92

PSA (gP
PSA) 1.30139 −3.62

ICPSA (gP
ICPSA) 1.30935 −3.03

T = π

2
Admission control Opt. admission (gC) 1.81467 +29.02

Pricing control Opt. pricing (gP ) 1.40647 –

ASA (gP
ASA) 1.40475 −0.12

PSA (gP
PSA) 1.38299 −1.67

ICPSA (gP
ICPSA) 1.38299 −1.67

T = π

4
Admission control Opt. admission (gC) 1.26077 +29.23

Pricing control Opt. pricing (gP ) 0.97558 –

ASA (gP
ASA) 0.97436 −0.13

PSA (gP
PSA) 0.94429 −3.21

ICPSA (gP
ICPSA) 0.94429 −3.21

performance of the ASA when T = π/4, π/2 (the compensation can have a negative
effect).

In table 2 for T = π, 3π/4 the equally spaced PSA and ICPSA outperform the
ASA considerably (over 8% savings in one case). When the nonstationarity is more
mild (T = π/2, π/4) the ASA dominates the PSA however not by a significant mount.
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Another notable phenomenon is that the percentage difference in the average reward is
shown to vary widely for the ASA (over 10%) while the equally spaced PSA and the
ICPSA are consistently within 4% of optimal.

One should also note that there is quite a large difference in the gain for the pric-
ing and admission control models (over 28%). Since the arrival and service rates are
the same for each model, this can be attributed to the fact that the decision-maker has
complete knowledge of the class of a customer upon arrival.

5. Conclusions

We have introduced nonstationary congestion control problems with periodic rates for
both the arrival and service processes. By embedding the current time (modulo the pe-
riod) in the state space, we are able to model each problem as a discrete-time stationary
Markov decision process and compare the average rewards of pricing and admission
control models. We showed that under the discounted and average reward optimality
criteria, the intuition that the control structure should become more strict as the number
of customers increases continues to hold under very light regularity conditions. Unfor-
tunately, since the state space is uncountable, this does not stand to make the problems
tractable. On the other hand, it does lead us to the conclusion that we should be able
to adapt some of the results for the stationary problem, to the more general case. This
link is exploited by the use of a the pointwise stationary approximation. The PSA uses
the knowledge of the arrival and service rates, coupled with the results presented in
theorem 3.6, to get an easily implementable and intuitive approximation to the optimal
policies.

There are several avenues for further study. Note that the equally spaced PSA and
possibly non-uniformly spaced ICPSA both performed quite well in example 4.2. This
may be due to the fact that the arrival rates are assumed to be a sinusoid. We conjecture
that when this does not hold, the equally spaced PSA will not perform as well since as
more elaborate congestion rates arise, the equally spaced PSA will not adapt.

Furthermore, we have presented only two possibilities for the PSAs. Intuition tells
us that as we increase the number of time points for the PSA the accuracy of the approx-
imation should increase. This was noticed in the numerical examples, but not pursued
to its fullest extent. For example one might ask the question, “How many time points is
enough?” Since each added time point adds another stationary MDP to be solved, con-
tinuing to add points ad infinitum is not desirable. Furthermore, since it is the congestion
that drives the decision-maker’s policy, placing more points on the time interval cannot
alone guarantee improved performance. We intend to pursue the study of where these
points should be optimally placed.

Another consideration is exhibited by figure 1. As has previously been alluded to,
both the equally spaced PSA and the ICPSA “overestimate” the optimal policy. That
is, it appears that a better approximation could be achieved by shifting the points to the
left. We conjecture that this is due to the fact that the instantaneous congestion does not
“anticipate” future congestion while a decision-maker pricing optimally would certainly
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do so. The idea that a PSA has this shift in the optimal policy is consistent with the shift
in the estimation of congestion levels discussed in [4]. We believe that each of these
observations offer particularly interesting challenges and hope to explore them further
in future research.
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Appendix

This section is dedicated to the proof of proposition 3.7. After some slight changes to
the assumptions since we are maximizing and not minimizing this is a direct application
of theorem 5.6.3 of Hernandez-Lerma and Lasserre [5]. In essence the first two results
(lemmas A.3 and A.4 below) yield the existence of a solution to the AOE (2.2) and (2.4).
The third result (lemma A.6) then leads to the convergence of the normalized value
iterates. Denote the state and action spaces of a generic MDP by X and A, respectively.
When speaking of the pricing and admission models we continue to use the superscripts
P and C.

We begin with several definitions. Recall, in the pricing control problem, the func-
tion wP (pj ) = j for j = 0, 1, . . . , �. Similarly in the admission control model, let
wC(accept(0)) = 0 and wC(reject(1)) = 1. Define the graph of A by Gr(A) ≡ {(x, a) |
x ∈ X, a ∈ A(x)}, where A(x) is the set of available actions when in state x.

Definition A.1. For v = ((i, j, z), a), v′ = ((i′, j ′, z′), a′) ∈ Gr(A) let the Euclidean
distance between the elements v and v′ be

‖v − v′‖ ≡
√

(i − i′)2 + (j − j ′)2 + (z − z′)2 + (
wk(a) − wk(a′)

)2
,

where k is P or C when considering the pricing or admission control model, respectively.

Definition A.2. Let Q(B | x, a) represent the probability of entering the set of states
B ⊆ X given that action a is chosen in state x ∈ X (the transition kernal).

1. Q(· | x, a), is called strongly continuous if the function F(x, a) ≡ ∫
y∈X

f (y)Q(dy |
x, a) is continuous and bounded whenever f is measurable and bounded.

2. A function f is said to be inf-compact if, for every x ∈ X and r ∈ R, the set
{a ∈ A(x) | f (x, a) � p0 − r} is compact.

Lemma A.3. The following hold for the nonstationary pricing and admission control
models:
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1. The one-stage reward function r(x, a) is nonnegative, upper-semicontinuous in a

and inf-compact.

2. The transition kernel Q is strongly continuous.

Proof. Since the set of available actions Ak
i for k = P,C is finite, the first assertion

holds trivially. We show that the second assertion holds for the pricing control model.
The admission control scenario is similar. Fix ε > 0 and let x = (i, j, z) and x′ =
(i′, j ′, z′). Without loss of generality, assume that z < z′. Since |Qa(z)| � 1 for all
z ∈ [0, T ) it suffices to show the strong continuity of

F(i, z) ≡
∫ T

z

[
�(t)f (i, 1, t) + µi(t)f (i,−1, t)

+ (
1 − �(t) − µi(t)

)
f (i, 0, t)

]
e−(t−z) dt, (A.1)

where f is bounded and continuous. To ease the notation, let

f ′(i, t) ≡ �(t)f (i, 1, t) + µi(t)f (i,−1, t) + (
1 − �(t) − µi(t)

)
f (i, 0, t)

for 0 � i � m. Assume that δ < 1 so that ‖x − x′‖ < δ implies i = i′, j = j ′, and
a = a′. Consider∣∣F(i, z) − F(i, z′)

∣∣ =
∣∣∣∣∫ T

z

f ′(i, t) e−(t−z) dt −
∫ T

z′
f ′(i, t) e−(t−z′) dt

∣∣∣∣
=

∣∣∣∣∫ z′

z

f ′(i, t) e−(t−z) dt + (
e−(z′−z) − 1

) ∫ T

z′
f ′(i, t) e−(t−z′) dt

∣∣∣∣.
Let M denote the bound of f . Since |p + q|2 � 2p2 + 2q2, we have∣∣F(i, z) − F(i′, z′)

∣∣
�

√
2

(∫ z′

z

f ′(i, t) e−(t−z) dt

)2

+ 2

((
e−(z′−z) − 1

) ∫ T

z′
f ′(i, t) e−(t−z′) dt

)2

� 2M
(
1 − e−(z′−z)

)
.

Thus, if we choose z′ − z = δ so that 2M(1 − e−(z′−z)) � ε, the proof is complete. �

Recall that the discounted reward problems include a continuous discount
fact e−ασt . However, most of the MDP theory is developed for the discrete-time dis-
counted reward. To this end, for ξ ∈ (0, 1) define

Wπ
n,ξ (x) = E

π
x

[
n−1∑
t=0

ξ tr
(
Xt, d(Xt )

)]
to be the n-stage, discrete-time, ξ -discounted reward of policy π . Moreover, Wπ

ξ (x) ≡
lim infn→∞ Wπ

n,ξ (x) is the infinite horizon, discrete-time discounted reward. The optimal
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n-stage, discrete-time ξ -discounted reward and the optimal discrete-time, ξ -discounted
reward are respectively defined

Wn,ξ (x) ≡ sup
π∈�

Wπ
n,ξ (x),

Wξ(x) ≡ sup
π∈�

Wπ
ξ (x).

Lemma A.4. For the nonstationary pricing and admission control models, the following
hold with M = p1� and N = b(x) = p1[1 + �(T + E

π∗
(m,0,0)τ0)], where τ0 is the first

time the queue length of a process started in state (m, 0, 0) using the (discounted reward)
optimal policy π∗ reaches zero;

1. There exist a state s ∈ X and numbers ω ∈ (0, 1) and M � 0 such that (1 − ξ)×
Wξ(s) � M for all ξ ∈ [ω, 1).

2. Suppose we fix a distinguished state s ∈ X. There exist N � 0 and a non-negative
function b(·) on X such that, −N � hξ(x) � b(x) for all x ∈ X and ξ ∈ [ω, 1),
where hξ (x) ≡ Wξ(x) − Wξ(s).

3. Furthermore, the function b(·) is measurable and such that, for every x ∈ X and
a ∈ A(x),

∫
y∈X

b(y)Q(dy | x, a) < ∞.

4. Let s ∈ X be a fixed state. The sequence {hξ(n)} is equicontinuous, where hξ(n)(x) ≡
Wξ(n)(x) − Wξ(n)(s), x ∈ X.

Proof. The first assertion holds since the expected reward is bounded by M = p1�.
To prove the second assertion, note that the difference in the expected discrete-time dis-
counted reward between starting in state x = (i, j, z) and starting in state s = (0, 0, 0) is
bounded. In doing so, let S0 ≡ {(i, j, z) ∈ X | z = 0} and let NT −z be a Poisson random
variable of rate �(T − z) representing the expected number of decision epochs seen by
a process starting in state (i, j, z) before reaching time T . Thus, a process starting in
state (i, j, z) satisfies XNT −z+1 ∈ S0. Suppose {It, t � 0} and {Jt , t � 0} represent
the number of customers in the system and the type of event that just occurred at the t th
decision epoch. For any stationary policy π ,

Wπ
ξ (i, j, z) = E

π
(i,j,z)

[
NT −z∑
t=0

ξ tr
(
Xt, d(Xt )

)] + E
π
(i,j,z)W

π
ξ (INT −z+1, JNT −z+1, 0)

� p1�T + E
π
(i,j,z)W

π
ξ (INT −z+1, JNT −z+1, 0). (A.2)

It remains to show that the expected difference in the discounted rewards from
two processes starting in different states in S0 is also bounded. Suppose we start two
processes on the same probability space each using the policy π . Process 1 starts in state
(i, j, 0) and process 2 in state (i′, j ′, 0). Note that, if a decision must be made (j = 1),
the difference in the rewards is at most p1. Consider the processes immediately follow-
ing this decision and without loss of generality assume that process 1 has a higher queue
length. Since each of the queue length processes is skip-free, the time that process 1 first
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has queue length zero, say τ0, bounds the coupling time of the two processes. Moreover,
since the capacity is finite (and the service rate is strictly positive unless the system is
empty), the first passage time τ0 is finite almost surely with finite expectation. Thus,∣∣Wπ

ξ (i, j, 0) − Wπ
ξ (i′, j ′, 0)

∣∣ � p1
[
1 + �E

π
(i,j,0)τ0

]
< ∞. (A.3)

To complete the proof of the second assertion, combine (A.2) and (A.3) to obtain∣∣Wπ
ξ (i, j, z) − Wπ

ξ (0, 0, 0)
∣∣ � p1�T + ∣∣Eπ

(i,j,z)W
π
ξ (INT −z+1, JNT −z+1, 0) − Wπ

ξ (0, 0, 0)
∣∣

� p1
[
1 + �

(
T + E

π
(m,0,0)τ0

)]
< ∞. (A.4)

Since π was arbitrary, the inequality holds for the optimal policy as well. Thus if π∗ is an
optimal policy, the second assertion holds with N = b(x) = p1[1 + �(T + E

π∗
(m,0,0)τ0)].

The third assertion clearly holds: since b(·) is constant. For the last assertion, let x =
(i, j, z) and x′ = (i′, j ′, z′) in X and assume ε > 0. Without loss of generality, assume
z < z′. We want to show that |hξ(n)(x)−hξ(n)(x

′)| � ε whenever ‖x −x′‖ < δ for some
δ > 0 where ε is independent of ξ(n), x, and x′.

Consider two independent Markov chains, X ≡ {Xt, t � 0} starting in (i, j, z)

and X′ ≡ {X′
t , t � 0} starting in (i′, j ′, z′) on the same probability space. Assume both

chains use the discrete-time discounted reward optimal policy π∗ and that δ < 1 so that
i = i′ and j = j ′, i.e., ‖x − x′‖ = z′ − z. Consider∣∣W ∗

ξ(n)(i, j, z) − W ∗
ξ(n)(i

′, j ′, z′)
∣∣ = ∣∣W ∗

ξ(n)(i, j, z) − W ∗
ξ(n)(i, j, z

′)
∣∣

� E
π∗
(i,j,z),(i,j,z′)

[ ∞∑
t=0

∣∣r(Xt , d(Xt )
) − r

(
X

′
t , d(X′

t )
)∣∣].

(A.5)

Let Z ≡ ∑∞
t=0 |r(Xt , d(Xt ))− r(X′

t , d(X′
t ))| and E be the event that no decision epochs

occur between times z and z′. Thus,

E
π∗
(i,j,z),(i,j,z′)[Z] = E

π∗
(i,j,z),(i,j,z′)[Z | E]P{E} + E

π∗
(i,j,z),(i,j,z′)

[
Z | Ec

]
P
{
Ec

}
� p1

[
1 + �

(
T + E

π∗
(m,0,z)τ0

)](
1 − e−�(z′−z)

)
, (A.6)

where the inequality follows from the proof of the second assertion. Thus, choosing δ

such that δ < 1 and |z − z′| < δ implies p1[1 + �(T + E
π∗
(m,0,0)τ0)](1 − e−�(z′−z)) < ε

yields the result. �

Applying theorem 5.5.4 of Hernandez-Lerma and Lasserre [5] the results of lem-
mas A.3 and A.4 yield the existence of a solution to the AOE and an average optimal
policy. It remains to show that the undiscounted value functions may be normalized
such that they approach a solution to the AOE in the limit. Recall that probability mea-
sures {µn, n � 1} on X are said to converge weakly to a probability measure µ, written
µn

w→ µ, if
∫
f dµn → ∫

f dµ as n → ∞ for every continuous and bounded function f

on X. Moreover, a Markov chain with transition kernal Q is called ψ-irreducible if for
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all x ∈ X, whenever ψ(B) > 0, there exists some n > 0, possibly depending on both
B and x, such that Qn(B | x) > 0. The following lemma appears as proposition 10.1.2
part (ii) of Meyn and Tweedie [14].

Lemma A.5. Suppose that {Xt, t � 0} is ψ-irreducible. If µ is any subinvariant mea-
sure with µ(B) < ∞ for some B ∈ B+(X), the set of Borel subsets of X with positive
ψ measure, then µ 
 ψ , i.e., the measure ψ is absolutely continuous with respect to µ.

Lemma A.6. For the nonstationary pricing and admission control models, the following
hold;

1. The sequence {Wn,ξ } is equicontinuous.

2. There is a probability measure φ on X
k, independent of the initial state x ∈ X

k, such
that for all x ∈ X

k and each decision rule d, Qn(· | x, d(x))
w→ φ as n → ∞ and

φ(G) > 0 for every open set G and k = P,C.

3. There is a function L : X
k → R such that∫

y∈Xk

b(y)Qn
(
dy | x,

(
dn(x), dn−1(x), . . . , d1(x)

))
� L(x),

for all x ∈ X
k, n � 1,

where b(·) is the function in lemma A.4 and k = P,C.

Proof. We prove the result for the pricing control problem. The admission control
problem is analogous. The proof of the first assertion follows in precisely the same
manner as that used in part 4 of lemma A.4. To prove that the second assertion holds, let
the total variation norm of the difference of two probability measures Q(B | x, a) and
Q(B | x′, a′) be defined∥∥Q(B | x, a) − Q(B | x′, a′)

∥∥
W

≡ 2 sup
B∈B(X)

∣∣Q(B | x, a) − Q(B | x′, a′)
∣∣, (A.7)

where B(X) is the Borel σ -algebra of X. Remark 5.6.2 of Hernandez-Lerma and
Lasserre [5] explains that Qn(B | x, d)

w→ φ as n → ∞ if for some 0 < ω < 1∥∥Q(B | x, a) − Q(B | x′, a′)
∥∥

W
� 2ω for all (x, a), (x′, a′) ∈ Gr(A). (A.8)

Note that (A.8) does not hold when supB∈B(X) |Q(B | x, a) − Q(B | x′, a′)| = 1. Thus,
we will show in both models that 0 < Q(B | x, a) < 1 − θ for 0 < θ < 1, independent
of B. Let

Bi,j (z1, z2) = {
(i, j, z) | z ∈ (z1, z2), 0 � z1 < z2 � T

}
be an arbitrary open set in X

P for fixed i ∈ {0, 1, . . . , m} and j ∈ {−1, 0, 1}. For
0 � i < m

0 < Q
(
Bi+1,j (z1, z2) | (i, j, z), a

)
�

∫ z2

z1

�(t)� e−�t dt � 1 − e−�T .
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Applying similar algebra to the other cases we conclude that 0 < Q(B | x, a) � 1 −
e−�T for all open sets B and hence for all Borel sets. Since 0 < e−�T < 1, substituting θ

with e−�T leads to

0 < sup
B∈B(X)

∣∣Q(B | x, a) − Q(B | x′, a′)
∣∣ � 1 − θ < 1, (A.9)

which satisfies (A.8).
To complete the proof of the second assertion, it remains to show that φ(G) > 0

for any open set G. Let γ be the counting measure defined on Z
+ and κ the Lebesgue

measure on R
+. For any set G ⊆ X

P , G can be written as a triplet (G1,G2,G3), where
Gi , i = 1, 2, 3, represents a set of elements for each dimension of the state space. Define
the product measure ψ on X

P as ψ(G) ≡ γ (G1) × γ (G2) × κ(G3).
Since the first two elements of the state space are discrete, open sets under the

measure ψ correspond to open sets in [0, T ). Recall that class 1 customers are always
allowed entry into the system as long as it is not full. Next note that for B ⊂ X

P ,
such that ψ(B) > 0, Q2(B | x, a) > 0 for all (x, a) ∈ Gr(A) (we may require two
steps since we embed at the end of the horizon). That is to say, the Markov chain
generated by any deterministic, stationary policy is ψ-irreducible. Given that φ is a
limiting probability measure, the following two facts are evident: (i) the probability
measure φ on X

P is subinvariant (in fact, invariant) since φn = φ for all n ∈ Z
+ and

(ii) φ(B) � 1 since φ is a probability measure. Therefore, we can apply lemma A.5
and conclude that φ 
 ψ . By the definition of absolute continuity, φ(G) = 0 implies
ψ(G) = 0. Thus, the contrapositive of the definition leads to the conclusion that any set
of positive ψ measure has positive φ measure. In particular, this fact holds for any open
set G. The last assertion holds since b(·) = p1[1 + �(T + E

π∗
(m,0,0)τ0)] is constant. �

Lemmas A.3, A.4 and A.6 now imply that theorem 5.6.3 of Hernandez-Lerma and
Lasserre [5] can be applied to prove proposition 3.7 directly.
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