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Summary. Let E be a noncompact  locally compact  second countable Hausdorff  
space. We consider the question when, given a family of finite nonzero measures 
on E that  behave like harmonic  measures associated with all relatively compact  
open sets in E (i.e. that satisfy a certain consistency condition), one can construct 
a Markov  process on E and a multiplicative functional with values in [0, oo) 
such that the hitting distributions of the process "inflated" by the multiplicative 
functional yield the given harmonic measures. We achieve this construction 
under weak continuity and local transience conditions on these measures that 
are natural  in the theory of Markov  processes, and a mild growth restriction 
on them. In particular, if the space E equipped with the measures satisfies the 
conditions of a harmonic space, such a Markov  process and associated multipli- 
cative functional exist. The result extends in a new direction the work of many  
authors, in probabil i ty and in axiomatic potential theory, on constructing Mar-  
kov processes from given hitting distributions (i.e. from harmonic measures that 
have total mass no more than 1). 
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0 Introduction 

Let E be a locally compact  second countable Hausdorff  space. Let {E,} be 
a (countable) open covering of E where each E,  is relatively compact  and has 
a nonempty  complement.  Denote 

~#={U" Uis  open, UcE.forsomen}, ~={D'D=E--Uforsome Ue~ 

Consider a family of nonzero finite measures QD(x,') on E, where De~, x~E, 
such that each QD(x,') is concentrated on D, if xeD it is the point mass at 
x, and QD(', B) is Borel measurable (or more generally nearly-Borel measurable 
- see Sect. 1) if B is Borel. Assume the family satisfies the consistency condition 
that, if F c D, QF (x , ' )=  S QD(x, dy)QF(Y," )" The QD(x,') are then called harmonic 
measures, (and one may call the space E equipped with such a family QD(x,') 
a general harmonic  or balayage space). It  is natural to ask that under what 
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(additional) conditions on the Qo(x,.) one can construct a Markov process 
(more precisely, a right process) Y =(Y~, px, () on E, ~ the lifetime, and a multipl i- 
cative functional (Mr) in Y with values in [0, oo) such that for all x, D e 9  and 
bounded Borel f on E 

(0.1) ~ QD(x, d y) f (y)= W [ f  (Y(TD) ) M (TD); T. < ~] 
,= ~ f(Y(T.))M(TD)dW 

[ T D  < ~] 

where TD=inf{t>O: YteD}, the (first) hitting time of D. 
When the QD(x,') are subprobability measures, the multiplicative functional 

is not needed, and the problem is that of constructing a Markov process Y 
with the QD (x,-) as its hitting distributions px [ y(TD) ~ ' ,  TD < ~]. Since 1963 this 
latter problem has been studied in a number of papers, by P.A. Meyer, F. Knight 
and S. Orey, D.A. Dawson, N. Boboc and C. Constantinescu and A. Cornea, 
W. Hansen, C.T. Shih, J.C. Taylor, J. Bliedtner and W. Hansen, J.B. Gravereux 
and J. Jacod; see references in [9]. Different constructions under different sets 
of conditions were introduced in these papers, some of which use mostly potential 
theoretical methods. All of these papers assume stronger continuity conditions 
than [7], which constructs all transient Hunt  processes (up to a time change) 
and whose result is needed in this article. (We note that, using the theorem 
in [8], the construction in [7] easily extends to the recurrent Hunt  processes 
as well, and the result is stated as Theorem 3 in [-9]; [9] also corrected a gap 
in [7] in the proof of convergence of the time scale when holding points exist.) 

In the present article the measures QD(x,') may have total mass greater 
than 1. We assume the following natural conditions on the QD(x,'): local tran- 
sience, intrinsic right continuity, and quasi-left-continuity, (see Sect. 1 for their 
meaning). Furthermore assume the following growth condition: if F c D ~ (interi- 
or of D) then for any x 

(0.2) S QD(x, d y) qi,(Y) log qF(Y) < oO 

where q~(y) = Qv(y, E). (Note that S QD( x, dy) qv(Y) = qF(x) < ~ by the consistency 
condition; so (0.2) is not a severe restriction.) The following result is proved. 
Fix for each n an open set U, with closure U, c E ,  and denote Y = { D ~ 9 :  
E--D= Un for some n}; note that if there is a subsequence of E,  increasing 
to E, the U, can be chosen so that 9 ' = 9 .  Then there exists a right process 
Y on E, which is actually a standard process because of the quasi-left-continuity, 
and a multiplicative functional (Mr) such that (0.1) holds for all x, D E g '  and 
bounded Borel f on E. 

To our knowledge this result is new even in the context of the theory of 
harmonic spaces (see e.g. Constantinescu and Cornea [3]) and the more recent 
theory of balayage spaces (see Bliedtner and Hansen [I]), where the continuity 
conditions assumed are substantially stronger than the one assumed in this 
article, which consists of the intrinsic right continuity (a necessary condition) 
and the quasi-left-continuity. In this connection, however, it should be noted 
that our method is entirely probabilistic. 

Incidentally, the continuity condition assumed in the theory of harmonic 
spaces (or in that of balayage spaces) implies that for all bounded Borel f 
the function y -* ~QF(Y, dz)f(z) is continuous on E--F; therefore qF(Y) is contin- 
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uous on E - F  and so locally bounded there, and consequently, since in a har- 
monic space each QD(x,') is concentrated on the boundary of D if x(~D, the 
growth conditions (0.2) is always satisfied in such a space. 

The results are stated in Sect. 1. In Sect. 2 "local processes" are constructed 
based on the result in [7]. The heart of this work, however, is in Sects. 3 and 
4, where "transformation (multiplicative) functionals" are constructed to connect 
the local processes, from which a consistent family of local processes and associat- 
ed local multiplicative functionals are obtained, and finally a global process 
and associated multiplicative functional are defined by piecing together the local 
ones (with time changes). The reader not familiar with [7], but with one of 
the constructions (of a Markov process from hitting distributions) referred to 
above, may replace (some of) the hypotheses in Sect. 1 by his/her familiar ones, 
omit reading Sect. 2 except the definitions of local processes and their associated 
local multiplicative functionals (see Theorem 2.1), and proceed to read Sects. 3 
and 4. 

1 Statement of  results 

As in the introduction E is a locally compact second countable Hausdorff space. 
Let E~=Eu{A} be its one-point compactification. Let gd (resp. ~*) denote 
the a-algebra of Borel (resp. universally measurable) sets in EA. f~bgA (resp. 
feg~+), e.g., means f is a bounded (resp. positive) real gn-measurable function. 
All real functions f on Ea will satisfy f(A)= 0 as a convention. 

Let {E,, n > 1} be an open covering of E where each E, has (compact) closure 
E, c E, and E - E ,  is nonempty. (Again) let 

q /=  { U: U is open, U c E,  for some n} 
= {D: D = U c = E~ -- U for some U ~ q/}. 

Consider a family { (2D (x, .) :D ~ 9 ,  x e D} of (positive) measures on En that satisfies 
the following hypotheses (Q 1) through (Q 7). 

(Q 1) 0 < qD(x):=QD(x, EA) < o0 ; QD(x,') is concentrated on D; QD(x,') is the 
point mass ex if xeD; QD(x, {A}) = 0  if x +  A ; QD(', B)eg* if BegA. 
(Q2) (Consistency) If FcI),  Qe(x,')=~QD(x, dy)QF(y,'), i.e. QD(x, QFf) 
= QF(x,f) for all febg* where QDf(Y)= QD(y,f)-'=~QD(y, dz)f(z). 

To state the next hypothesis, we need to define the nearly Borel sets (relative 
to the family QD(x,')). A set AcE~ is nearly Borel if for every n and finite 
measure # on Ea there exist Borel sets B~, B2 with B~cAc~E, c B 2 c E ,  such 
that for all compact C c B 2 -  B~ we have 

c)= o. 

It will be seen that the family d~ of nearly Borel sets is a a-algebra. It is easy 
to see that ~ ~ ~ ~ g*.  

(Q3) (Nearly-Borel measurability) QD(', B)eg] if BeNd. 
(Q 4) (Local transience) If F ~ D and x q~D, then for some compact neighborhood 
C of x with C ~ F c 

~ QD(x, d y) Qe~c(X, F)>O. 
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(Q 5) (Intrinsic right continuity) For  any x, F and increasing sequence D~ with 
F c D , ,  if Qo.(X, dy)qv(Y) converges weakly to a finite measure v(dy), then for 
any C with F c C and febgA 

Qu, (x, d y) q~(y) ltQ~(r,f qF)~a,, 1 ~ v(d y) lte~(r,fq~,)~d~ 1 

vaguely when restricted as measures on the locally compact (E~ - C) x R. 
(Of course, weak convergence of measures on E~ means convergence of inte- 

grals of all (real) continuous functions, and vague convergence of measures on 
a locally compact space means convergence of integrals of all continuous func- 
tions vanishing at infinity.) 

(Q6) (Quasi-left-continuity) For  any x ,D~D and F e D ,  Qo.(x, dy) qF(Y) con- 
verges weakly to QD(x, d y) qF(Y). 
(Q7) For  any x and D, F with F ~ D  ~ ~QD(x, dy) qF(Y) log qt(y)< o0. 

Theorem 1 Let {QD(x,'): D ~ ,  x~E~} be a family of measures on E~ satisfying 
hypotheses (Q1) through (Q7). Assume E,~E. Then there exists a right process 
Y = (Yt, P~) on E A with A as the death point, (which is actually a standard process), 
and a muItiplicative functional M=(Mt)  with values in [0, oo) that is a.s. strictly 
positive on [0, Ta), T A =inf{t=>0: Yt= A} the lifetime, such that for all x~E, D6~,  
f~bg~ 

(1.~) QDf (x) = P~ [ f  (Y(TD)) M(TD); To < Tz] 

where T D = inf{ t > 0: Yt e D}. 

If {E,} is arbitrary, i.e. does not necessarily contain a subsequence increasing 
to E, then, as in the introduction, we fix for each n an open U, with U,, c E,  
and denote 

9 ' =  {De@: E A - D C  U, for some n}. 

Theorem 2 Let {QD(x,.): D e ~ ,  XeEA} be a family of measures on EA satisfying 
hypotheses (Q1) through (QT). Then there exists a right process Y=(Yt,PX) on 
E~ with A as the death point, (which is actually a standard process), and a 
multiplicative functional M = (Mr) with values in [0, oo) that is a.s. strictly positive 
on [0, TA), such that (1.1) is satisfied for all xeE,  f ~bg~ and De@'. 

Of course Theorem 1 is just a special case of Theorem 2. But it is separately 
stated because it is the important  case; also, in Sect. 4 we prove this case first 
because the proof is easier. 

In this article a multiplicative functional (MF) (Mr) in a right process (X~, px) 
on E~ is permitted to take values in [0, oo), not just in [0, 1]; otherwise it 
satisfies the usual conditions: (Mr) is adapted to (4) ,  the usual (right continuous 
and suitable completed) filtration generated by the paths of (X~); t ~ M t is right 
continuous a.s. (i.e.a.s. px for all xeE) ;  Mo = 1 a.s.; and for any stopping times 
T, S w.r.t. (~t), M(T+S~176 a.s. on {T+SoOr<oO} (0 the 
shift operator). See [2], [6] or [4] for information about  standard and right 
processes. 

A MF  (k~) is a transformation (multiplicative)functional (TMF) if p x [ ~ ]  __< 1 
for all x e E  and t. It is well-known that if (~r9 is a T M F  in a right process 
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(X,, W) on Ea, then there exists a right process ()~t, P~) on Ea (with A as the 
death point) such that for all x, t, fEbgA (note the convention f ( A ) = 0  

P~ [/()~,)] = p~ [ f  (Xt) ~] .  

See e.g. [51. Such a process ()~t) will be denoted (X,. t/~). 
Some remarks need to be made about the hypotheses. 

Remarks about (Q 2): The universal measurability is a preliminary measurability 
condition; without it (Q2) and (Q3) cannot be stated. The point A will only 
serve as the adjoined death point for (Y~) and the transformed processes (Xt" Tt) 
constructed from the local processes (X0; thus it carries no mass in the measures 
QD(x,') for xeE. If it is desirable to add mass to the measures Qo(x,') at an 
adjoined point, it is preferable to add an isolated point ~ to E~ for this purpose, 
(~ is then included in all D e ~). 

No remarks need to be made about (Q 2). 
Remarks about (Q 3): First, if the conclusion of the theorem (Theorem 2) holds, 
it is easy to see that E] is exactly the a-algebra of nearly Borel sets for (Yt); 
for M,>O on [0, Ta) a.s. Of course Borel measurability of {QD(x,')} implies 
nearly-Borel measurability, and the latter is a natural measurability assumption. 
In Sect. 2 we will see that it is equivalent to: QD(', B)~C~ if Bsg]. 
Remark about (Q4): Under the conclusion of the theorem (Q4) must hold. 
For if 

~ Qo(x, dy) Qwc(y, F)=PX[M(TD) M(Tv~c)oO(TD); Y(Tv~c)oO(Tn)~F--{A}] 

(for convenience of writing we use the conventions Yto 00o = A, Y~ = A and Moo = 0 
here and below) is 0 for all (sufficiently small) compact neighborhoods C of 
x, then 

Px[Y(TF~c) oO(TD)~F--{A}] = 0  

for all such C, and by (Q 6) we have 

px [y(Tru (x}) o O(TD ) ~F-- {A }3 = 0. 

It is then easy to see that PX[ Y(TF)~ F--{A }1 = 0, which implies Qv (x, E~)= 0. 
Remarks about (Q 5): Under the conclusion of the theorem, this condition fol- 
lows from the intrinsic right continuity of the right process (Yt), i.e. the right 
continuity of the filtration (~-t), relative to which the strong Markov property 
holds. To see this, first, with gEbE A continuous and T,= TD, and T denoting 
the decreasing limit of Tn (of course T = T A where A = ~ D,), we have 

n 

QD. (x, d y) qF(Y) g(Y) = px [g (Y(T,,)) M (T.). M ( Tv)o 0 (T.)] 

= Px [g(Y(T,)) M (TF)] ~ P~ [g (Y(T)) M (TF)]. 

Thus Qon(x, dy)qF(y) converges weakly to v(dy)=px[M(TF); Y(T)Edy] (note 
these measures all have total mass qe(x)). Next, for fEbE +, y-+Qc(y, fqv) 
=PY[f(Y(Tc))M(Tv) ] is easily checked to be excessive on Ea--C and so a.s. 
t~Qc(Yt,  fqF) is right continuous on t-intervals when Yt6E3--C. It follows 
that Qc(Y(Tn)),fqF)---* Qc(Y(T),fqF) a.s. n~ on {Y(T)~E~-  C} for febo~A . (Actu- 
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ally the latter fact is easy to prove directly by martingale convergence.) Thus 
we have the following vague convergence on (E~ - C) x R 

Qo.(x, dy) qF(Y) 1EQ~(y, fqFl~a~l = P~ [M(TF); Y(T.)~dy, Qc(Y(T~),fqF)eda ] 

P~[M(TF); Y(T)edy, Qc(Y(T),fqF)~da] 
= v(dy) 1Ee~(y ' Sq~)~a~l" 

We remark that Qo,(x, c/y) qF(Y) actually always converges weakly. This follows 
from the other hypotheses, essentially (Q4) and (Q6); see a remark in Sect. 2 
about (H 5). 

Remarks about (Q6): This condition is satisfied if the underlying right process 
(Yt) is a standard process. For  if g~bga is continuous, D,~.D, F c D ,  then by 
the quasi-left-continuity of (Yt), To,yTo and Y(To, ) --+ Y(To) on {To< TA} a.s. P~, 
and so 

~Qo,(x, dy) qv(y) 9(y) 

= P~[g(Y(To,)) M(TF); TF < TA] -~ P~[g(Y (To)) M (TF); TF< TA] 

= ~ Qo(x, d y) qv(Y) g(Y). 

Note that we did not write (Q 6) in the following form: 

if D,$D then Qo,(x, dy) convergesweaklyto Qo(x, dy), 

which would reflect the additional requirement that the MF (M~) is also "quasi- 
left-continuous ". 

2 Local processes 

In this section we fix an (open) set G ~  and denote F=GC=E~-G. Let 9 o  
= {D s ~ :  F c D}. We will prove the following theorem. 

Theorem 2.1 There exists a right process (X t, px) on E~ such that for all Ds~o ,  
xEEa thehittingdistributionP x [-X (To) ~. ,  T o < oo] (where T o =inf{t  >O:Xt~D}) is 

(2.1) Ho(x, dy):=Qo(x, dy) qv(x) 1 qF(Y) 

and such that each x s F  is an absorbing point. Furthermore, 

(2.2) 4.'=qv(Xo) qv(X~) - ~ 

defins a MF (with values in [ 0 , ~ ) )  such that for all x, D e ~ o , f  ~bgA 

(2.3) Qo(x,f) = px [f(X(TD)) J(To); To < c~]. 

The px in (X,, PX) is not the same as that in (Yt,P x) in Theorems 1, 2. 
Note the measures Ho(x,') are probability measures (since yQo(x, dy)qe(y) 
= qe(x) by (Q 2)) and H o (x, {A }) = 0 if x # A ; therefore TF < ~ a.s. and the lifetime 
T~= ~ a.s. P~ for xeE. (TF will be called the proper lifetime of (X,).) For  (J,) 
to be a MF, one needs only to prove that J~ is right continuous a.s. (2.3) is 
immediate from (2.1) and (2.2). 
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For  the existence of (Xt) we will need Theorem 1 of [7]. Denote K = G ~ {A*} 
the one-point compactification of G. K is (obtained from) EA by identifying 
all points in F as the single point A*. 9 o  is also regarded as the family of 
compact sets D in K that contain A*, i.e. { (G-U)uA*:  Ueql, U c G }  (note 
that we will often write {A*} as A*). Thus HD(x;. ) in (2.1) is also taken to 
be a measure on K (when D c K), with of course HD(X, A*) equal to the original 
HD (X, F). 

With {HD(x,'):Dego, xeK}  regarded as a family of measures on K, we 
will prove that it satisfies hypothesis (H 1) through (H6) in [-7], (in doing so 
D is often regarded as a set in E~, x as in Ez, and HD(x,. ) as a measure 
on E~, and no harm will be done). Denote by  N the a-algebra of Borel sets 
in K and ~ *  that of universally measurable sets in K. 

(HI)  Each He(x," ) is a probability measure concentrated on D; Ho(x , . )=~  ~ 
if xeD; HD(" , B)eN if BEN*. 

Proof. It has been observed that HD(x,. ) is a probability measure; the rest 
is immediate from (Q 1). []  

( H 2 )  (Markov property, or consistency) If D2cD1, HD~(X,')=~HD,(x, dy) 
H~dy,-). 
Proof. By (Q 2) 

HD~(x, dz)= QD~(x, dz) qv(x)- 1 qv(z) 
= ~ (2m (x, d y) qF (x)- t  qF (Y) QD~ (Y, d z) qv (Y)-I qv (z) 

=~Hm(x, dy)HD~(y, dz). [] 

The family N" of nearly Borel sets of K relative to the family HD(X,') is defined 
as follows. A subset B of K is in N n if for any finite measure # on G there 
exist Borel B1, B2, with B l c B c ~ G c B 2 c G ,  such that for all compact CcB2  
--B1, 

(2.4) Hc ~ A* (#, C)-'= ~ # (d x) Hc ~ ~. (x, C) = O. 

Obviously N ~ N" o N * .  From the definitions of d~ and N", it is easy to see 
that AeN~ iff Ac~GeN"~G for all GeY/(note  N" depends on G). It is proved 
in [7, Sect. 2], that N" is a a-algebra; from this the following proposition is 
immediate. 

Proposition 2.2 ~ is a a-algebra. 

(H 3) (Nearly-Borel measurability). HD (', B) c N" if D ~ 90 ,  B ~ N. 

Proof. Let f ~ b N  + and h=HD(.,f);  we show heN". By a standard argument 
it suffices to show that, given a finite measure # on G, there exist h~, h 2 in 
N ~ with 0 = ht < h =< h2 such that, for all compact C c {h 2 > hi}, (2.4) holds. Below 
we regard DcE~,  f ~ N f  with f constant on F, and write C~A* as F u C .  
Now 

h(x) = HD(x,f)= qe(x)- 1 QD(x,f qF). 

Note qF = Qe (', EA) e ~ by (Q 3). Define v (.) = f # (d x) qv (x) - 1 QD (x,-). Then there 
exist functions kl, /% in Ea with O<k~<qF<k 2 and k l=qe=k2= 1 on F such 
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that for all compact Clc{k2>ka}, Qr~c~(v, CO=O. We may change ka, k2 
on D e to k 1 = k 2 = 0 there. Now let 

hi(x) = q F ( x )  - 1  Qe(x,f ki). 

Then hi~g ] and O<ha <=h~h2. Let us show that for all compact Cc{h2>hl}, 
H c u A , ( f l  , C ) = 0 ,  equivalently QF~C(#, C)=0  (although Qv~c(#,') may not be 
a finite measure). Suppose QF ~ c (#, C)> 0 for some such C; then we claim 

(2.5) Qr~c~(#,c1)>O for some compact Cac{k2>ka}. 

But this leads to a contradiction since C a c D  and so 

Qr~ cl(P, C 0 =  ~Qe(#, dy) Qvuc,(y, C 0 = 0 ,  

which follows from Qv ~ cl (v, Ca)= 0, a consequence of the choice of ki. To show 
(2.5), let C '=  C c~ D; then since obviously {h2 > hi} c~ D c {k2 > ka}, C ' c  {k2 > ka}. 
By (Q 2) we have 

QF uC,(#, C')= ~ QFuc(#, d y) QF ~c,(Y, C'). 

If QF,,c(#,C')>O then Qv~c,(#,C')>O. Otherwise Qv~c(l~, C - C ' ) > 0 .  But if 
y ~ C -  C', then since h2 (Y) > ha (Y), Qe (y, {k2 > k l }) > 0, and so 

Qv ~c,(y, C')= ~ Qe(y, dz) Qv ~ c,(Z, C')>0 

if C' is sufficiently large (i.e. C is sufficiently large). Thus (2.5) follows, where 
Ca is C' when C is sufficiently large. [] 

It is proved in [-7, Sect. 2], that He( ' ,  B)EN" for D e ~ o ,  BEN", using an argument 
resembling the above. In the present situation, we can prove the fact (not needed 
in the sequel) that QD(.,B)Eg~ for DE~,  Beg~, using a similar but slightly 
more careful argument. Of course, once we obtain a process (Y~), this also follows 
from a standard fact in a right process. 
(H4) (Quasi-left-continuity) If D,+D, He,(x,.  ) converges weakly to He(x,. ). 

Proof. This is immediate from (Q 6) and the definition of He(x,'). [] 

(H5) (Intrinsic right continuity) For any x in K, increasing sequence D, in 
~o,  and letting (W,) be the nonhomogeneous reversed Markov chain on K 
(under a single probability measure P) with P(W,e.)=He,(x,') and 
P(W,+a~'IWm, m<n)=HD,+,(W,,'), we have: if W~=l im W, exists a.s., then, 

for any C6~o  and f~b~,  Hcf(W, ) ~ Hcf(W~) a.s. on { Woo ~ K -  C}. 

Proof. We first show that (H5) follows from condition (H5') below and then 
prove (H 5') from (Q 5). 
(H 5'). For x, D, as in (H 5), if He,(x,') converges weakly (as measures on K) 
to a measure #, then for any C, f as in (H 5) the measures 

He, (x , d y) ltuc(y.:)~aa I ~ #(d y) 1Euc(y,f)~da 1 

vaguely when restricted to (K-- C) • R. 
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If W ~  W~ a.s. in (H5), then HD,(x,') converges weakly to #(.)=P(Wooe.) .  
Now by an easy application of martingale convergence Hcf(VV,) converges a.s. 
on { Woo ~ K - C } .  The conclusion in (H 5') says the measures 

P(W,,edy, Hc(W~,f)~da ) ~ P(Woo ~dy, Hc(W~ ,f) eda) 

vaguely when restricted to { Woo e K - C } .  From this it is clear that the conclusion 
of (H5) follows. To prove (H5'), assume HD.(x,. ) converges weakly to # as 
measures on K; then we claim that QD.(X, dy)qr(y)=qF(X)HD.(X," ) converges 
weakly as measures on E~ (which has a coarser topology at the boundary 0G). 
For if not, it is not difficult to construct a sequence D',J.D' where F c D '  such 
that QDa(X, dy)qe(y) does not converge weakly, and so (Q6) is contradicted. 
(We do not give the detail of this part of the proof since we feel that it would 
be quite reasonable to assume in (Q5) that QD,(x, dy)qv(Y) converges weakly. 
Incidentally, it was proved in [-7] that the (W,) in (H 5) always converges weakly, 
essentially by (H 6) below; therefore also does HD,(X,') in (H 5'). In this article, 
it can also be proved that QD,(x, dy)qF(Y) in (Q5) always converges weakly, 
using (Q4) and (Q6).) Let v be the weak limit of QD.(x, dy)qt(y); then #(dy) 
= qf(x)- lv(dy) with the understanding # {A*} = qf(x)- ~ v(F). Applying (Q 5) 
with C = F and f = 1 we have 

QD,. (x, d y) qF(Y) ltq~-(r)~aal -" v(d y) ltqFty)~d. 1 

vaguely on (EA- F) x R. Combining this with the vague convergence of 

QD.(x, d y) qe(Y) l[Qc(y,f qF)eda] --~ v( d y) lte~(y,yqF)~e~ ~ 

o n  (E A - C ) •  R for the given f ,  and noting that qv(Y)>0, we obtain 

QD~(X, d y) qe(y) ltqF~y )-~ Qc(y,f qF)~l ~ V (d y) 1EOF(y ) ~ Qc(y, y qF)~d~ 

vaguely o n  (Ezl--C) • R. Dividing the above by qF(X) we have the conclusion 
of (H 5'). [] 

(H6) (Transience) For any D e ~  o and xq~D, there exists a compact neighbor- 
hood C of x such that SHD(x, dy) H c ~ A*(Y, C) < 1. 

Proof. This is immediate from (Q4) and the fact that the Ho(y,. ) arc probability 
measures. [] 

Now that (H 1) though (H 6) are established, it follows from Theorem 1 of [7] 
that there exists a right process (actually a Hunt  process) ()(t, px) on K with 
A* as the death point and with finite lifetime T~. such that the hitting distribu- 
tions are the given HD(x,'). The process (X,, px) in Theorem 2.1 can be obtained 
as follows. One shows that for f e b g f ,  lim HFf(Xt) exists a.s. PX for each 

t T T,j* 

x~G and has PX-expectation Hff(x)  (because HFf  is excessive and in fact har- 
monic on G). Thus we can define (X~, t< TF) as (Xt, t <  T~,), and then define 
the distributions P~EX(TF)~dyIX, t<Tr] by requiring P~Ef(X(TF))IXt, t 
< Tel = lim Hff(Xt)  for all continuous f .  Then since each y ~ F  is to be an 

t~TF 

absorbing point, the existence of (X~) as desired follows. 
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However, there is an easier way to define (Xt). Let Xt ~ be the process obtained 
from (Xt) by changing each x e F - A  to a holding point, from which a jump 
is made to A with probability 1. We know what the hitting distributions Hi(x,.)  
should be. Let ~A = {D'D is closed in Ez, A eD}. Define {H~(x,-): D ~ ,  x~E~} 
as follows: 

H~(x,-)=e~( ' )  if x~D; H~(x,-)=e~(-)  if x6F--D;  

and otherwise 

Hi(x, B)= ~ H e ~ D(x, d y) H~(y, B) 

= HE ~ D(X, D c~ B) + 1B(A ) H e ~ D(X, F - -  D). 

(In particular, if F ~ D, H~(x,.)= Ho(x,').) It is easy to see that {H~(x,.)} satisfies 
(H 1) through (H6). Thus there exists a right process (Xt 1) on Ea with the H~(x,.) 
as its hitting distributions. Now change each holding, point x e F - A  to an 
absorbing point to obtain (X,) from (X~). 

To complete the proof of Theorem 2.1, it remains to show (4) defined is 
(2.2) is a MF. Note Jo=l and Jt+s=Jt.ds(Ot) for all t,s. So one needs only 
to show Jt is right continuous a.s. This of course will follow from 

Proposition 2.3 qF(Xt) is right continuous a.s. 

Proof. By a standard theorem it suffices to show qF is nearly Borel and finely 
continuous w.r.t. (X,). We have already that qF is nearly Borel. Since each x c F 
is absorbing, to prove that qe is finely continuous we need only to show the 
fine continuity at each x~G. Define A = {y~G:[qF(y)--qr(x)l >--_ 6} where 6 >0.  
We show that px (T a > 0)= 1. Suppose not; then W (T a = 0)= 1. Let C, be increas- 
ing compact subsets of A such that TcJ.T a a . s . W .  Let D,=C,  uF.  Then 
Q,,(x, dy) qe(Y) = qe(x) W [X(To,)~dy ] converges weakly to v(dy) 
= qF(x) P* [X(TA)~dy] = qe(x) e~(dy). By (Q 5) with C = F and f = 1 we thus have 
that q~(X(TDn)) under W converges in distribution to Qe(x, qe)= Qe(x, 1)= qF(x), 
which is a contradiction. []  

3 The multiplicative functional connecting two local processes 

From now on a right process (X,, px) is simply written as X t and a MF (Mr) 
as M,. We will occasionally write the probability measure P] in (X~, Pj) as px. 
All (right) processes Xt will have as sample space the space ~2 of right continuous 
paths 0~:[0, Go)~Ea such that co~=A implies o)s=A for s>t; furthermore we 
can require all co to have left limits on (0, Tz) where Tz = inf{t: cot = A }. Of course 
Xt(ro)=cot, and the same notation TD=inf{t>=O:XtED } is therefore used for 
all Xt. A MF Mt (in a process Xt) is said to be "trajectory-dependent" (more 
appropriately trajectory-dependent-only) if for any finite measure ~ on Ea there 
exists A such that W(AC)=0 and for all 0)1, co 2 in A and tl ,  t2>0,  and increasing 
homeomorphism a:[0,  t l]  ~ [0, t2] with X~(col)=X~(t)(co2) on [0, tl],  we have 
Mt(o91)= M,r(t)(r on [0, ti]. All MFs will be trajectory-dependent, but we will 
still usually mention the fact explicitly for emphasis. If U is an open set in 
E, a MF Mt is said to be "constant  off U" if a.s. the following holds: for 
any t l < t 2 ,  if Xt(co)~U ~ for all ~6[ t l , t2]  then Mr(co ) is constant on [ t t , t2] .  
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If two processes X~ and X~ are time changes of each other (which is the case 
iff they have the same hitting distributions), we will write X~ ~ X { .  If U is 
an open set in E, the process Zt obtained by stopping X ,  at the exit from 
U, (i.e. Z~=X~^T where T=Tvc), will be written as X~lv. In this section we 
prove the following theorem that is of central importance. 

Theorem 3.1 Let G1, G2 and U be in ~ with U c G t c G 2 .  Let X~ .be the right 
process X t defined in Sect. 2 when G=Gi,  i=1 ,  2. Then there exists a T M F  

in X~ such that X 2. ~]v~X] lv .  Furthermore, ~ satisfies the following proper- 
ties: 

(i) it is trajectory-dependent; 
(ii) it is constant off U; 
(iii) a.s. ~ is strictly positive on [0, T~). 

Let F~ = G~, qi = qv,, and denote ( i=  T~ (again for both X~ and X2), the proper 
lifetime of X[. The hitting distributions of XI for D e @ containing F i are 

(3.1) H~(x, d y)= QD(x, dy) qdx)-  ~ q~(y) 

and with the M F  J / in  X~ defined by 

(3.2) J / =  qdX~o) q~(X~)- i 

we have, for xeE,  D ~  containing F~, febCA 

QDf (x) = W [ f  (X~(TD)) Y (T,)]. 

We will regard J~ as also defined in X 2 by Jt t=qt(XZ)q~(X{)  -1. Denote Z t 
=Xta]~. The following defines a M F  in Z t : 

(3.3) 47= ~ ' 4~ /4~ .  
Denote by ~tt 2 the filtration generated by the paths of Xt z that is, as always, 
right continuous and completed in the usual way. Of course q~t is adapted to 
fit 2 . 

Lemma 3.2 (i) Let T, S be ~ - s t o p p i n g  times with T <S  <<_(t and p ~ ( j 2 ) + ;  then 

Pg Ep O(S)/~ ( T)3 = pz  [P3 

for all x. 
(ii) I f  S is as above, Pff[q~(S)]=l for all x; consequently (at is a T M F  in 

Zt. 
(iii) Z,. G ~ X] .  

Proof. (i) First, by (3.1), (3.2) and (3.3) 

Pr z [ q5 (~1)] = ~ Qe~ (Y, d z) q 2 (Y) - i q 2 (z) [ q 2 (Y) q 2 (z) 1 ] / [ql (Y) q t (z) -1 ] = 1, 

since qe, (Y) = Qr~ (y, qF~). Thus 

P: It P '~}s! "P~'(+ (~1))] = ~ F o ~ - ,  ~ lP.~I~G)] p2 Ep (~ (S)/c~ ( T)] = 

= P~ [P + (~t)~ 0 :r] = p2 [p/92(T) (4 ((~))] = P~ [P]- 
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(ii) follows from (i) with p = 1, T = 0. 
(iii) will follow if Z,.~b, and X 1 have the same hitting distributions on sets 
D ~  containing Fa, noting that each x~Fx is an absorbing point for both 
processes. But by a computation similar to the above, the hitting distributions 
of Zt" c~t for such D are 

p2 [ ' f (X 2 (TD)) ~b (TD)] ~ QD(x, dy) f(y) q~ (x)-~ q~ (y) = H~(x, f). [] 

We will construct the part of the T M F  ~ in Theorem 3.1 up to time ~ (i.e. 
its part in Zt); its part after time ~ will be determined by the requirement 
that ~ be a M F  and be constant off U, noting (7cG1 and ~I=TFI, (the part 
of ~ up to ~ has this latter property). To this end choose compact sets C., 
n=>0, with C.~U and C o = 0  (the empty set), denote V =  U ~, and define, for 
n => 1, ~t2-stopping times T.j, R.j ,  j >= 0, and S.j, j => 1, as follows: 

T.o = 0, R.o=Tv(=inf{t>=O:X~sV}), and forj=> 1 
T~j = R, d - ~ + Tc.~F~ oO(R~.~_ ~), 
S.j= r.~+ rc . . . .  voO(r.~), 

R . ~ =  S . ~ +  T~oO(S.~)= %~+ r~oO(r~). 

Since paths (of X~) have left limits on (0, T3), we have for a fixed n, T, j= S,~ 
= R , i = ~  1 for all sufficiently large j. Note  the intervals [T~, S~), n >  1, j >  1, 
(most of them being 0), are disjoint, and their union is (Tv, ~)c~ {t: X ~ U } .  
Note also [T~,R,~), j > l ,  is [T~,S,j)  or its union with some [S, ~,~,R,_,;z). 
Define 

q~, ( t ) = i ~  ~ q5 (R,3 qb (T,,i/x t)/x t ) _  j=ol~ ~b(Tv A ( t -  T,j)+)o 0 (T~) 

(where in the last expression both T,j are evaluated at co). Note the products 
are finite, and 4~,(t)= ~,( t  ~, ~'0. q~,(t) is not a M F  (in Z~), but satisfies the follow- 
ing properties: ~,(0) = 1; ~,(t) is right continuous; ~,( t  + s) = q~,(t)- 4~.(s) o 0t for 
all t, s with t < ~  and XatCU-C,; it is trajectory-dependent; it is constant 
off U and ~ , ( t )>0  for all t. Observe that 

e.(t) _ ~ 4 , ( s .~  A t) _ l ~  
4,,,_1(t) ~1= 4)(To~/,t) j=~ 4)(TCn-'~'~A(t-- T"S)~ 

Lemma 3.3 P~ [~,(S)] < 1 for all x and ~t2-stopping time S < ~l- 
j" 

Proof. q~,(S) is the limit, as j '~oo,  of I~O(R,iAS)/O(T,4AS), 
j=o 

whose 

P~-expectation is P~ [1] = 1 by repeatedly using (i) of Lemma 3.2. [] 

Lemma 3.4 P~ [log q~((1)] > -- oc for all x. 

Proof. 

P~ [log q~ (~i)] = S QF1 (x, d y) q2 (x) 1 q2 (Y) log [q2 (x) q2 (Y)- 1 q l (x) 1 q l (y)] 
= S QFI (x, dy) q2 (x)-I q2 (Y) [log (q2 (x) q~ (x) - 1) _ log q2 (Y)] 
=log(q2(x) ql(x)-l)-q2(x)-a~Qvl(x, dy)q2(y)logq2(y)> co 
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by applying (Q7) with D=F1,  F = F 2 ;  in the second equality we used q1=1 
onE, .  [] 

[ ~b'2(t)-- 1 > b ] ~ 0  as nl ~ oo. Theorem 3.5 For all x and 6 > 0, sup p2 sup ~,,  (t) 
n 2 > n l  

Proof. Suppose not. Then for some x and 6 > 0  there exist 1 _-<ml <m'x _-< ... __<rn~ 
< m'~ <= ... such that for all l 

(3.4) P~[sup ~ " ~ ( t ) - i  > 6]>6.  
~,(t) 

F i x  l and denote n z = m r ,  n 2 = m '  z. In the above t can be restricted to belonging to 

U U IT, j, S,j) 
nt < n ~ n 2  l <j<=jo 

for some Jo. Let 7= in f  t: ~ . ( t ) - I  >8  ; note that if 7<o% the inf is a.s. 

a minimum by the a.s. right continuity of ~b (t) and therefore of ~,(t). Arrange 
the disjoint intervals [T,j/x 7, S~ A 7), n l < < n2, 1 <j__<jo, (some of which may 
be empty), as [zl, al), ..., [Zk,, O'k,), where k ' = j o ( n 2 - n l )  , with zl < o l  =< ... <Zk, 
< ak, < (1 being ~2-stopping times. By (3.4) 

Pff[ ~'~ (ak') 5]>6.  ~.~(ak') 1 > 

Now ~,:  (%)/~,1 (Ok,)= [ I  q5 (O-k)/~b (Zk). From Lemma 3.2 (i) (see Lemma 3.3) 
k < k '  

P~ [ [ I  ~b (~ ) / r  (~)3 = 1. 
k ~ k '  

Combining the above we have 

(3.5) p2 [log I1 qS(ak)/qS(Zk)] <~ 
k<=k" 

where e > 0  depends only on 6. Denote the above k' by k~, and "Ok, O k by Z~k, ~k, 
(recall n I = ml, n 2 = re'l). The intervals Phk, Ohk), 1 <= k <= kt, 1 <-_ 1 <-_ 11, (la arbitrary), 
are disjoint. Let the complement in [0, (1) of their union be the union of disjoint 
intervals [%k,O-0g), 1--<k--<ko, (again some may be empty), where %1___0-0~ 
=<--- --< ZOko--< ~0ko are ~2-stopping times. Of course p2 [- I~ ~(OOk)/O('Cok)] = 1. 
Now k-<ko 

11 k t 

~b(~0=~((0/~(0)= I] 1-I 4>(o-,.)/~(-~,,<). 
/ = O k = l  

So by (3.5) and Lemma 3.4 

" r ~, 1 
-- oo < P: [log 4b (~1)] =,~o P: [log k__l~I ~ 4, < - , ,  .. 

This is a contradiction since l~ is arbitrary. [] 
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Corollary3.6 For any x and 6>0 ,  sup PZ[suplq~,~(t)-~b,~(t)[>6] ~ 0  as nt 
0 0 .  n 2 > n  1 t 

Pro@ Fix n and b > 0  and let S=( lA in f { t :~b , ( t )>b} .  Then 4~,(S)>b if 
sup 4~,(t) > b. Since p2 [-4~,(S)] < 1 by Lemma 3.3, p2 [sup 4~,(t) > b] < 1/b for all 

t t 

n. Thus 

e~fsupl~b.2(t)-~.,(t)l>~]<P sup  4~.,(t) 1 >O/b +l/b 

and the corollary follows from Theorem 3.5. [] 

Definition. For each x let integers 1 = n x (x) < ... < nk (x) < ... be defined inductively 
by 

nk+ l (x)=inf{n>nk(x):  supp2[supl~b, ,( t)-4),( t) l> 2 k]<2-k} 
n ' > n  t 

(the nk(X ) exist by Corollary 3.6); then set 

~ (t) = lim~.ktx~)(t). 
k 

Theorem 3.7 (i) A.s. (p2 for  any finite measure #)  cb,k(xa)(t)~cbo~(t ) uniformly 
in t. 

(ii)A.s. # ~ ( t ) i s  right continuous; ~ ( 0 ) = 1 ;  # , ( t ) = q ~ ( t / x ( 1 ) ;  q ~ ( t ) i s  
adapted to ~t 2 ; q~o (t) is trajectory-dependent, and is constant off U. 

(iii) p2 [ ~ .  (S)] < 1 for any Yta-stopping time S < ~1. 
(iv)For ~2-stopping time T, S with T+SoOr<=( 1, q ~ ( T + S o O r ) = q ~ , ( T )  

�9 q ) ~  (S)  o 0 T a . s .  

(v) Z,. ~b~o(t)lv~Xr ( f rom the above q~o~(t) is a T M F  in Zt). 
(vi) A.s. ~ (t) is strictly positive on [-0, (1] (or on [0, oo)). 

Proof. (i) follows form the definition of nk(X ). (ii) follows from (i), the correspond- 
ing properties of 4~,(t) and the fact that {x: nk(x)=n}eg* .  (iii) follows from 
(i) and Lemma 3.3. To show (iv) holding a.s. Px z, choose a subsequence nk(i)(X ) 
of nk(x) such that a.s. P~, nk~O(x)>n~(X2r) for all sufficiently large i; then using 
the fact that, if n(i)> nz(y) for all large i, r and 4~,~(y)(t) converge uniformly 
in t to the same limit a.s. py2, and using the fact ~b, (T+ S)o Or)= q~,(T). ~b, (S)o 0 T 
except possibly on { X ~ e U - C , } ,  which set $0 since Cn'fU, one obtains the 
desired equality�9 (v) follows from Lemma 3.2(iii) since eb~o(t)=~b,(t)=O(t) for 
t < Tv = T~ _ u. It remains to show (vi). Let 

Then we can write 

r (t) = ~ (t)/q~ (t). 

- =  r  A t) 
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where 7.~ <'c,1 < ... < 7 , j < z , j <  ... are ~t2-stopping times with "~nj=Z72nj=~1 for 
+ 

all sufficiently large j; in fact the union of [~,j, z,j) is [0, ( 1 ) -  ~ [ ~ i ,  R,j). As 
j=O 

is with ~,(t) we have P 2 [ ~ , ( S ) ] < 1  for ~2-s topping times S < ( 1 .  Since 
~,~(t)/~,~(t)= cb,~ (t)/q~,~(t), Theorem 3.5 implies that for all x and c5 > 0  

sup PZ[sup[43,~(t)/~,~(t)- 1 1 > 6 ]  ~ 0  as n 1 ~ oo. 
n 2 > n l  t 

It follows that Corollary 3.6 also holds for 43.(t). Let ~k(X) be defined in a 
similar way to nk(X) but with the additional requirement of being a subsequence 
ofnk(X): fl~(X)= 1 and 

fik + t (X) = inf {n > fig (X): n = ni(x) for some i, 
sup p2 [sup ~,, (t)-- 43 (t)l > 2-  ~3 < 2-  k}. 
n ' >  ll t 

Define 43+ (t)= lim ~,~(x~)(t). Then a.s. ~,(x~)(t)--+ ~+ (t) uniformly in t; so a.s. 

~b (t) = lira +~<x 2) (t) 43h~<x~)(t) = ~b+ (t) ~+ (t) on [-0, (13- 

Since qS(t) is strictly positive on [0, ~1], (vi) follows. [] 

We now define ~ on [0, (1] by 

and extend to re[O, oe) by the requirement that ~ be a M F  (in X 2) and be 
constant off U (using the fact that ~ ,  t=<~l  , is constant off U). To make this 
definition precise, let T. be defined by To = 0 and 

T2k + 1 = T2k q- TO ~ 0(T2k), k > 0;  

r2k= T2k_ ~ + r~loO(T2k_ O, k > l. 

Of course T~ = oe for sufficiently large n. Define 

k = O  

m - 1  

= I k _~I0 e +  (~1) ~ 0(T2k- a) if T2m<=t<=T2m+l 

[~t'(T2,,_O.q~+(t-T2m+l)oO(T2m+O if T2m+~<t<T2m+2 

(an empty product stands for 1). 

Proof of Theorem 3.1 From Theorem 3.7 and the definition of ~ we have: 
a.s. ~ is right continuous, % =  1, ~ > 0  on [0, 00), and ~ is constant off U 
(note ~ is constant on [T2m, T2m+~]). It is routine to show that ~ is adapted 
to 4 2 , and that for two ~2-s topping times T, S we have ~P(T+SoOr) 
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=~(T) .~(S)oOr a.s. We now show P~217~=< 1 for all x, t. For this it suffices 
to show p2 [~v(t A T.)] = 1. Now 

P2[T(t  A T.)] = P2[T(t); t< T~_ I] + P2[tp(t A r.); t>= T._,]. 

The second term on the right hand side is p2[T(T._O;t>=T._I] if n - 1  is 
even, (since ~ is constant on [T2,., T2,.+ 1]), and if n -  1 is odd it is 

nx 2 E~(T~- 2)' q~ (~, A (t -- T. _ 1))o 0(T n _ 1); t ~ T n _ 1] 

= p2 [T(T._ 1) P2~(T._ ,){(1)~ (~1 A (t-- r._ 1))}; t ~-- T._ 1] 
_--< px2 [~(Tn_ i); t >_- Tn_ ,]  

by Theorem 3.7(iii). Therefore, 

P~ [~ ' ( t / ,  ro)3 __< P~ [ ~ ( t / ,  r ,_  1)3 __< ... _-<P~ W ( t  A r0]_-< ~. 

Thus ~ is a TMF in X 2. Finally, the assertion X 2. ~lv~X~lv is just Theorem 
3.7(v). [] 

4 The global process and associated multiplicative functional 

We prove Theorem 1 using two methods. The first method is simpler but not 
quite rigorous (but perhaps could satisfy some readers); the second method 
is involved but rigorous. The two methods are not essentially different in the 
case of Theorem 1. The proof of Theorem 2 uses an extension of the second 
method. 

4.1 First proof of Theorem I 

Here EmTE. We may assume E, ,cE, ,cE, ,+I .  Choose U,,e~# such that 
Em_~ c/Fro cEm. Denote F,,=E~, qm=qFm and ~ , , =  {De@: F,,cD}.  Let X]' be 
the right process X t constructed in Sect. 2 with G=E,,, and Jr' be the MF 
in all Xt N, N > m, defined by 

J~" = qm (X~) q,, (xNt ) ~. 
Then 

( 4 . 1 )  QD(X,f)=P~m[f(Xm(TD)) Jm(TD)], xffEa, D ~ m .  

Let ~,.= TF. .. Let ~m be the TMF (in X~ "+1) constructed in Sect. 3 with G 1 =Era, 
G2=Em+I, U= Um and X~, Xt 2 there being X t ,  X~ +1. Thus 

(4.2) l m + l / l m  qm+ltxm+l) q~m (Xrn+l), for t<Tvo 
~ ' = . ' t  / . ' t  = q , .  t o q , ~ +  l ~ ~ = m 

and 

(4 .3 )  X t +  1. ~ttrn]um~Xtlum. 
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Now the TMF ~m-1 in XT' depends only on the trajectories of XT'IE~ ~ and 
is constant off U,,_ ~. Since E,,_ x c U,,, (4.3) implies that the trajectory-dependent 
~ ' - '  can be regarded as a TMF in X7+1-~  ~", first defined up to time ~,~ i, 
then to all t by the requirement that it be a MF and be constant off U,,_ ~, 
by the procedure at the end of Sect. 3, (note a slight abuse of notation is involved 
because this ~ '~ - '  should be written as ~,,+i,~-1). Thus we can form the 
transformed process (X~ +l.Ttm).Ttt"-l, which will be written as 
XT,+~. ~,, ~ - 1 .  (It is not difficult to argue that ~ ' - ~  exists as a MF in X~ '+1 
and ~ "  Tt"-~ is a TMF. However we will use a different method in Subsect. 4.2 
to construct directly (in X~ '+~) TMF's ~'~ ~, ,-1 and Ttm ~'~-~ ... ~ below.) 
It satisfies 

" ~t [Um" 

Proceeding in this manner we construct processes 

( . . . ( x?  + ~. ~") . . . ) .  ~ = x ?  + ~. ~ " . . .  ~ 

(again Tt i in the above should be written as ~'~+ 1,2), which satisfy 

X t +  1. it~tm.." ~tkluk ~ X~l~ 

and more importantly 

(4.4) X ? + ~ ' ~  "---  ~ v , , , ~ ,  " . . . 7 '~ lv~ .  

Define right processes Yt" on E3 by 

Ytt =X~lv~ ; Y~m=X~"'~m-l...TJ~tlV~, m>2. 

Since each X~' is a Hunt process, each Yt" is a standard process; we again 
call Um the proper state space of Yy (each xeV,,= U,~ is absorbing), and its 
proper lifetime ~';, = T% is finite. By (4.4) 

(4.5) Yt"+' lyre ~ Yy, m > l .  

From the theorem in [8], (4.5) implies that there exists a right process Yt on 
E~ (which is a standard process with lifetime T~ = lira ~;,) such that 

m 

(4.6) Yt] v,, ~ Yt m, m > 1. 

Let us define the desired MF Mt in Yr. First, if Xt is a right process on E~ 
with death point A and if ~ is a TMF in X t that is strictly positive on [0, TA), 
then ~ - t .  l~<r~], which we simply write as ~ - 1 ,  is a MF of the transformed 
process J f t=X~-~,  (noting that both X~ and X~ have sample space Q -  see 
the beginning paragraph of Sect. 3, and we regard ~ as defined in JT, as well 
with the understanding (or requirement) that if co 1 (s)= (o2 (s)EE for all s e [0, t] 
then ~(col)= ~(o)2)), and 

P~[f(x,. ~) T-~] =W[f(X, )  ~ T-~]=W[f(Xt)] ,  febgz (with f(A)=O). 
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Now in X~'. ~ ' - ~  ... ~1 we have the M F  (t/~tm-1 . . .  }//1)-1, (again the T M F 
~ " - a . . .  ~ is to be rigorously defined in Subsect. 4.2), which satisfies 

(4.7) ~ x m [ f ( X ~ . l t ~ t m - 1 . . . l t ~ t l ) ( l t ~ t m - 1 . . . l t ~ t l )  1] 
=Pg[-f(X~')(~ "-1 ... ~ ) ( ~ - ~  . . .  I/{t 1) -1  ] = P~ [f(Xr 

Define M~ by 

(4.8) M ] = j t l  i; M r ~ = l m  ( l I I m - 1  I[.tl ~ - 1  ~ ' t / x ~ C ~ t ~ t / x ~ ,  " ' "  tA~_~,] , m>2. 

M~' is a M F  in Y[~. We have the consistency 

(4.9) M~ +~ = MT', 

since by (4.2) 

t__<(~ 

J ~ + ~ ( ~ ) - ~ = 4 ~ + ~ ( 4 ~ + 1 / 4 " )  - ~ = 4  ~, t____(;. 

Since all MFs are trajectory-dependent, (4.6) implies that M~ can be regarded 
as defined in Y~. The consistency (4.9) permits the definition 

(4.10) Mt=M'~ on [-0,~,], m > l  
= 0  on [-TA = lim (~,, o�9 

m 

M~ is obviously a M F  in Yr. It remains to show equality (1.1). For x~E, D e ~  
(so U,]cD for some m), f~bEA, and with P~, PE, P~ denoting the probability 
measures for Y~, X~", YF and writing T =  To, (also noting M r = 0  on [TA, ~ ] )  

P~ [f(YT) MT] = PY [-f(Y~') MT] = Px ~ [ f  (Y~) J~ (~gr"-l.-- 7~r~)- 1] 
= P x m [ f ( X r ~ ) ( l [ t ~  n - 1  . . .  I/tT1)J~ (~[rt~n-1 . . .  t/iT1)- 1 ] 

= Px m [ f ( X T )  J~'] = Q. f (x )  

by (4.10), (4.5), the definition of Y[", the computation (4.7), and (4.1). 

4.2 Second proof of Theorem 1 

Fix N > 2. We will construct directly in X N MFs ~ ,  1 < m < N, that appeared 
in 4.1, and show that ~N-~. . .  ~ are TMFs. Let C,,, be compact sets with 
C,,o=0, C~,~U~ as n ~  and C,,, increasing in m for each n. With X~, XT' 
(respectively X~+l), EN, E~ (respectively E~+I), and Um playing the roles of 
X 2, Xt 1, G2, G1 and U in Sect. 3, and with C, , ,=  C,, we obtain a T M F  ~Nm 
(respectively ~Nm) that is the T M F  ~ in Sect. 3. (Note ~N,N- ~ _ 1.) Thus 

X N . - - N m  m ~t Iv~-Xe ivy, X N" ~'um~ x m+~ x t  I Um ~ t I Um " 

Recall the approximating functionals ~o,,(t) for ~b~(t)=~A~ 1 in Sect. 3; if we 
extend the definition of qs,(t) to t < ( a ,  by replacing (1=  Tr, by (2=  TF2 in the 
definition of ~b,(t), then obviously we have a.s. 4),~(x~)(t)--. 7J(t) uniformly on 
[0, (2] (or on [0, oo)), where rig(X) is similarly defined (see below). Let ~Nm(t) 
(respectively ~ " ( t ) )  denote the approximating functional ~bn(t ) when 7~(t) is 
the 
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above ~PNm(t) (respectively ~Nm(t)), (they will be explicitly defined in the p roof  
of Theorem 4.1 below). Thus  a.s. in X, n 

- -N m ~nk(X~)(t) --~ ~Nm(t), ~Pnk(X~)~Nm __~ ~Nm(t ) 

uniformly in t on [0, (2v], where nl (x) = 1 and 

nk +~ (x) = inf{n > nk (x): sup PuN I-sup ] ~ ~ ( t ) -  ~ m ( t ) [ >  2 -k] < 2 - k  and 
n'>n t 

sup P~ [sup ] ~ m ( t )  - ~m(t ) ]  > 2 -k] < 2  -k, for 1 < r e < N } .  
n'>n t 

Since a.s. ~Nm(t)>0 for all t, we can define 

~ ' ( t )  = ~Nm(t)= gTNm(t)/~Nm(t). 

--Nm ~Nm __~ qJm(t) is a M F  (but not  a T M F )  in X~. We have a.s. ~ ,  (t)/43 n (t) 9Pro(t) 
uniformly on [0, (iv], as n = nk (Xo N) ---* oo. 

Theorem 4.1 ~N-  i ~tr  2...  ~t,~ is a T M F  in X ~  for  1 <= m < N.  

Proof. We need only to prove the case m = 1. Let  

N - 1  

L , ( t )=  H ~ ' ~ ( t ) / ~ m ( t )  �9 
m = l  

It suffices to prove that  for any x and ~tN-stopping time S < ( N ,  we have 
P~ [Ln(S)] < 1. Define for 1 < ml < m2 < N 

(4.1 1) ~o~ 2m~ = JF~/Jt "~ = (qm~ qT,~l)(Xg)(q~ ~ qm,)(X~) 

and to simplify expressions write for r < s (and only when X ~ e  Urn, for r < t < s) 

~)t2 m l Jr, s) = ~ . . . .  (S)/~) . . . .  (r). 

Define ~N-s topp ing  times T~, R,"), 1 < m < N, n > 1, j > 0 as follows (for a fixed 
m, these are the s topping times Tnj, R~j in Sect. 3 when Cm, = C, and Um= U, 
but  with (1 = TF~ there replaced by (2 = TF~ ; here r is (N = T~,), where Vm = U~: 

m m m (4.12) T , ;0-0 ;  R, j=Tn j+TvmoO(T~) ;  
T m  _ m m ,O+1 - -R~j+ TF~,,cm oO(R,j). 

Again, for sufficiently large j, T,I']=R,mj=[N. Note  [7~j, R ~ ) c  {t: Xene Urn}. NOW 
for m < m ~  < m a N N  define 

(4.13) ~'~ . . . .  (X)  = f i  ~) m2ml [ r s  A t, Rn~. A t), 

j=0 

4 r ~ ( t )  = a~ . . . .  (t). 

(Note--Nm _ Nmm --Nm N,m+ l ,m q ~ m + l , m  @Nm/~)N,m+ l 45 ( t ) - ~ ,  (t), 45 ( t )=  ~ ,  (t), and so since = 
we have a.s. 

~ + l , . , ( t  ) N.,,~ N,m+ = ~ ,  (t)/q), i'm(t) --+ ~m(t), as n = n~(X~) ~ oo.) 



204 C.T. Shih 

m q m  Now define ~,~N-stopping times "c,j, y,j with r~0<7~o < ... <z~i<7~j< ... such 
m m m m m 1 that [z~j, 7~j) = [T,~, R~j), and for m > 2, ~ [~,j, 7 , )  = ~ [T~j, R,j)-- ~) [T,j , 

J J J 
R,~- 1), (note ~) [T~, R,~) is increasing in m). We have 

J 

N - 1  N - 1  

L.(t)~ 1] ~.~+',~(t)= lq [ I  r R'5 At) 
m = l  r e = l  j = l  

N - 1  cc N - 1  

m = l  j = 0  k=rn  

N - 1  0o 

q~ [~ . j  A t, 7,~ A t). 
m = l j = l  

As alway this is a finite product. As in Lemma 3.3, to show P~[L,,(S)<I] 
is suffices to prove 

(4.14) Pff I~ ~)Nm["CnmjAS''/~jAS)] <=1" 
l j = l  

As in Lemma 3.2, for ~U-stopping times T~ < Tz<~N with [T 1, T2)c {t: X~eU,,,}, 
and ps~.~U(Tl)+ 

(4.15) Px N [p r T2)/ dS~( TO ] = P~ [p] 

whose proof relies only on the fact that pyu [~bU~((m)] = 1 for yeE~. By rearrang- 
ing the stochastic intervals [z,~ A S, 7,~ A S) in all possible increasing orders and 
applying (4.15) repeatedly to the probability in (4.14), we obtain (4.14). [] 

We now have the transformed processes X~. ~ u -  ~ ... ~ .  They satisfy 

x~+x ~ ~,~-~... ~ ~ ~ - ~  �9 ~ I ~ ~ x ~  - . . .  W I ~ .  

For x~+~,~%~ and in these processes, ~N-1 ... ~1 are the "same" 
trajectory-dependent functional; alternatively, one can argue directly that for 
U~cD, f~bEA 

pff+~[f(X~+I) TJTN TtTN ' . . .  7J)]=nff[f(X~) tP N ~ . . .  ~ 4 ]  

where T=T~ .  The rest of the proof of Theorem 1 (involving the definition 
of Yt N, Y~, M~ and Mr) is identical to that in Subsect. 4.1 (after (4.4)). 

4.3 Proof of Theorem 2 

Assume as we may that the Em are all distinct, {Era} is closed w.r.t, finite non- 
empty intersection, and En~Em if m<n.  Choose open Um with U~cE,,  such 
that {Urn} is a covering of E, U,,c Un if Em~E,, and Urn= U~ 1 c~ ... c~ U,, k if E,, 
=Emlm...mE,,,c Let compact sets C,,,,TU,, with C,no=O and satisfy Cmn 
=Cm~nm ... ~Cmk,~ if E ~ = E ~  c~ ... c~E,~ k. 



Construction of Markov processes 205 

We write ml<m 2 if Em, cE, ,  2 and m l < m  2 (.so that E,,,~Em2). If m,<m2,  
we write rn2~.rn ~ = 1 if there exists no m with rn~ < m < m  e and mz\m~ > 1 other- 
wise. If ml<.m2, a " rou te"  connecting m 1 and m2 is a sequence (nl . . . .  , nk) 
with rn 1 =n~ <he  < ... <nk=rnz such that hi+ l \ni  = 1. Two routes (n~ . . . . .  nk), 
(n'l . . . . .  n'z) connecting m 1 and m 2 are said to be distinct if ni:#n} except n 1 
=n'x,nk=n'~. If rex<m2, the number of distinct routes connecting rn~, m2 is 
denoted v(ml, m2). 

For  each rn we have a right process X~ on Ea with proper state space 
E,, and finite proper  lifetime ~== TFm, and an associated MF Jt m, as in Sub- 
sect. 4.1. 

Fix N for which there exist m<N.  For  m~<m2<__N (mz<N or m2=N),  
let ~ . . . . .  be the MF in Xt u defined in a similar way to the MF ~"~ at the 
beginning of Subsect. 4.2, with the roles of X~', X~ '+l and Um replaced by X t  1, 
X~ 2 and U,,,. That  is, with ~u,,  (resp. ~m,m,)  denoting the T M F  ~g in Sect. 3 
when X~, X~" (respectively X7'2), EN, Em~ (respectively Era=) and Urn, play the 
roles of X~, X 1, G2, G, and U in Sect. 3, we have 

. . . . .  . . . .  

(A precise definition of ~ . . . .  is in the proof of Theorem 4.2 below.) 

Definition. 

ra~ <Zm2 <_N ml  ~:m2 &=N 
m2\ml  = 1 m2\ml  > 1 

Note that in the situation of Theorem 1, i.e. that in Subsect. 4.2, ~v  reduces 
t o ~ N - 1  . . ~ 1 .  

Theorem 4.2 (i) ~N is a T M F  in X~. 
(ii) I f  N < N', XNt ". ^N, U ~N 

Proof. The proof of (i) is similar to that of Theorem 4.1. Define, for m I Z m 2 "=<N, 
qS~ ~"1 as in (4.11). Define, for re<N, ~N-stopping times T~, R,~ as in (4.12). 
Then define for rn<=ml 2<m2 :~N the approximating functionals ~b~ . . . .  (t) and 
~2~m(t) as in (4.13). We have a.s. 

~b~ m I (t) ~ ~'~m' (t) uniformly in t, as n = n~ (X0 ~) ---, o~ 

where n~(x) is defined in the same way as in Subsect. 4.2 to guarantee a sufficient 
�9 m2 m number of a.s. uniform convergences. (~'~"~ is defined to be ll~n~b,~(xo~)(t ). Since 

all ~ '  .... are strictly positive MFs ~u is a well-defined MF. To show it is 
a TMF,  it suffices to show pU [-L,(S)] < 1 for an ~tU-stopping time S < ~r where 

[ ]  I] 
rnl < .mz~Pl  ml  <m2 <=N 
rn2\rnl = i m2\mi > 1 

Define for m & N disjoint (increasing) stochastic intervals [~,~, 7~"j) by the require- 
ment 

UI-'~:J,Y.'J)=UETg, R:~) - U UETg',Rm.j) 
j j m " ~ m  j 
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(the set difference being proper), so 

m I __ m q m  U [ T g ~ , R , j )  - ~) U[z , j ,~ , j )  �9 
J ~ "__~/~/1 J 

Now 

L. ( t )=  H H~'~'~[T~'j~At, R'2) At) 
ml <m2 <=N j 
m2\ml = 1 

H H(O ~2m~ [T~ '  A t, R~) A t)) -~( . . . . .  )+1 
m t < m 2 ~ N  j 
m2kml > 1 

= I~ I ] [  I ]  @ . . . .  [Zn~At, y mjAt) 
m < N  j m<_m~<rn2<_N 

m2kml = 1 

m2m 1 ra m 
H (~) rT/nj A t ,  ~n j  A t ) ) - v (  . . . . . .  ) +  1 ] .  

m2\ml > 1 

The product inside the brackets simplifies to ~bN"[%mj A t, 7~ A t). The reason 
is roughly that if m l ~ z m  2 and v (m~ ,m2)=v ,  then there exist v distinct routes 
connecting m l , m 2 ,  and Corresponding to each such route ( m l = n l , n 2  . . . .  , n k 
=m2) the first product inside the above brackets contains the subproduct 

. . ,  m __ m2m 1 m m ((~ . . . .  ~)t13t/2 ~ . . . . .  1) [Z~j A t, ?,j A t) -- 0 [Z,j A t, ?,j A t), and now its v ~h power 
multiplied by the corresponding factor in the second product  inside the brackets 

m ~ t). Successive "cancellations" like this will finally yield the is (y"~"' E%j A t, '/nj A 

simplified expression. Therefore, 

L.( t )  = H H ~n~ [z~j A t, y~'~j A t).  
m < N  j 

Now the rest of the proof of (i) is the same as the last part (the simplification 
of L,( t )  there) of the proof  of Theorem 4.1. To prove (ii), we claim 

(4.16) ~N'=~b~'Nq3~ on [0, Tv;~]. 

For  on [0, Tv;~], if N "=< ml < m2 ~ N' then ~t m2ml = ( ~ t  ~2ml ; SO 

H [ I  . . . .  . . . . .  
N <_ml <m2 ~ N '  N ~ m l  2~m2 <=N" 

m2kml = 1 m2\ml > 1 

by the same argument as the one used to simplify L.(t), and (4.16) follows 
from this and the definitions of 4~ and 4~'. Since XtN' "~tN'N[v,c~XtNIv~r (ii) 
is established. [] 

Define for each N 

Y f  = X~ lv~  if there exist no m & N, 
= X y .  ~Nlv~, if there exist m & N .  

Yt N is a right process (actually a standard process) on Ea with proper state 
space UN and finite proper lifetime (~v = Tv~. From (ii) of Theorem 4.2 the family 
{YN} is consistent, in the sense that for any N, N' we have YNlv,r ~ v~,, ~ YN'[vN ~ v~.. 
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A g a i n  by the t heo rem in [-8] there  exists a r ight  process  (actual ly  a s t a n d a r d  
process)  Yt on  Ea such tha t  

Define a M F  MS in Yt N by 

M N ~N 

Yttv~, ~ Yf ,  N > 1. 

if there  exist no rn < N 
N AN = J~ A ~ , ( ~ A  ~,) -1  if there  exist m,2,N. 

( C o m p a r e  wi th  (4.8)). The  t r a j e c t o r y - d e p e n d e n t  M S are  consis tent :  Mst=M~" 
on [0, ~;4 c~ _~v,] ; see (4.9). Therefore  we can define a M F  Mr in Yt is an  obv ious  
way  so tha t  M~=M~ on I-0, ~}] for all N. Tha t  (Yt, Mr) is as des i red  is p roved  
as at  the end of  Subsect.  4.1. 
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