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Summary. Let E be a noncompact locally compact second countable Hausdorff
space. We consider the question when, given a family of finite nonzero measures
on E that behave like harmonic measures associated with all relatively compact
open sets in E (i.e. that satisfy a certain consistency condition), one can construct
a Markov process on E and a multiplicative functional with values in [0, o)
such that the hitting distributions of the process “inflated” by the multiplicative
functional yield the given harmonic measures. We achieve this construction
under weak continuity and local transience conditions on these measures that
are natural in the theory of Markov processes, and a mild growth restriction
on them. In particular, if the space E equipped with the measures satisfies the
conditions of a harmonic space, such a Markov process and associated multipli-
cative functional exist. The result extends in a new direction the work of many
authors, in probability and in axiomatic potential theory, on constructing Mar-
kov processes from given hitting distributions (i.e. from harmonic measures that
have total mass no more than 1).
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0 Imtroduction

Let E be a locally compact second countable Hausdorff space. Let {E,} be
a (countable) open covering of E where each E, is relatively compact and has
a nonempty complement. Denote

#={U:Uisopen, UcE,forsomen}, Z={D:D=E—U forsomeUec¥}.

Consider a family of nonzero finite measures Qp(x,-) on E, where De 2, xeE,
such that each Qp(x,-) is concentrated on D, if xeD it is the point mass at
x, and Qp (¢, B) is Borel measurable (or more generally nearly-Borel measurable
— see Sect. 1) if B is Borel. Assume the family satisfies the consistency condition
that, if F =D, Qp(x,*)={Qp(x,dy) Qx(y,*). The Qp(x,*) are then called harmonic
measures, (and one may call the space E equipped with such a family Q,(x,-)
a general harmonic or balayage space). It is natural to ask that under what
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(additional) conditions on the Qp(x,*) one can construct a Markov process
(more precisely, a right process) Y =(Y;, P*, {} on E, { the lifetime, and a multipli-
cative functional (M) in Y with values in [0, o0) such that for all x, De% and
bounded Borel f on E

(0.1) §On(x,dy) f)=P*[f (Y(Tp) M(Tp); T, <{]
= | f(Y(Tp) M(Tp) dP*

[Tp=<{]

where T, =inf{r>0: Y,e D}, the (first) hitting time of D.

When the Qp(x,+) are subprobability measures, the multiplicative functional
is not needed, and the problem is that of constructing a Markov process Y
with the Qp(x,*) as its hitting distributions P*[Y(Tp)e -, Tp<{]. Since 1963 this
latter problem has been studied in a number of papers, by P.A. Meyer, F. Knight
and S. Orey, D.A. Dawson, N. Boboc and C. Constantinescu and A. Cornea,
W. Hansen, C.T. Shih, J.C. Taylor, J. Bliedtner and W. Hansen, J.B. Gravercux
and J. Jacod; see references in [9]. Different constructions under different sets
of conditions were introduced in these papers, some of which use mostly potential
theoretical methods. All of these papers assume stronger continuity conditions
than [7], which constructs all transient Hunt processes (up to a time change)
and whose result is needed in this article. (We note that, using the theorem
in [8], the construction in [7] easily extends to the recurrent Hunt processes
as well, and the result is stated as Theorem 3 in [9]; [9] also corrected a gap
in [7] in the proof of convergence of the time scale when holding points exist.)

In the present article the measures Qp(x,} may have total mass greater
than 1. We assume the following natural conditions on the Qp(x,+): local tran-
sience, intrinsic right continuity, and quasi-left-continuity, (see Sect. 1 for their
meaning). Furthermore assume the following growth condition: if F < D° (interi-
or of D) then for any x

(0.2) JOb(x,dy) qr(y) log gr(y) < 0

where gz (y)=Qr(y, E). (Note that [ Q,(x, dy) gr(y) = qr(x) < co by the consistency
condition; so (0.2) is not a severe restriction.) The following result is proved.
Fix for each n an open set U, with closure U,<E, and denote &'={De2:
E—DcU, for some n}; note that if there is a subsequence of E, increasing
to E, the U, can be chosen so that 2'=%. Then there exists a right process
Y on E, which is actually a standard process because of the quasi-left-continuity,
and a multiplicative functional (M,) such that (0.1) holds for all x, DeZ’ and
bounded Borel f on E.

To our knowledge this result is new even in the context of the theory of
harmonic spaces (see e.g. Constantinescu and Cornea [3]) and the more recent
theory of balayage spaces (see Bliedtner and Hansen [1]), where the continuity
conditions assumed are substantially stronger than the one assumed in this
article, which consists of the intrinsic right continuity (a necessary condition)
and the quasi-left-continuity. In this connection, however, it should be noted
that our method is entirely probabilistic.

Incidentally, the continuity condition assumed in the theory of harmonic
spaces (or in that of balayage spaces) implies that for all bounded Borel f
the function y — [ Qr(y, dz) f (z) is continuous on E — F; therefore g, (y) is contin-
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uous on E—F and so locally bounded there, and consequently, since in a har-
monic space each Qp(x,*) is concentrated on the boundary of D if x¢D, the
growth conditions (0.2) is always satisfied in such a space.

The results are stated in Sect. 1. In Sect. 2 “local processes” are constructed
based on the result in [7]. The heart of this work, however, is in Sects. 3 and
4, where “transformation (multiplicative) functionals™ are constructed to connect
the local processes, from which a consistent family of local processes and associat-
ed local multiplicative functionals are obtained, and finally a global process
and associated multiplicative functional are defined by piecing together the local
ones (with time changes). The reader not familiar with [7], but with one of
the constructions (of a Markov process from hitting distributions) referred to
above, may replace (some of) the hypotheses in Sect. 1 by his/her familiar ones,
omit reading Sect. 2 except the definitions of local processes and their associated
local multiplicative functionals (see Theorem 2.1), and proceed to read Sects. 3
and 4.

1 Statement of results

As in the introduction E is a locally compact second countable Hausdorff space.
Let E,=Eu{4} be its one-point compactification. Let &, (resp. &) denote
the o-algebra of Borel (resp. universally measurable) sets in E,. feb&, (resp.
feé&)), e.g., means f is a bounded (resp. positive) real &,~-measurable function.
All real functions f on E, will satisfy f(4)=0 as a convention.

Let {E,,n=1} be an open covering of E where each E, has (compact) closure
E,cE, and E—E, is nonempty. (Again) let

U ={U:U is open, UcE, for some n}
9 ={D:D=U*=E — U for some Ue}.

Consider a family {Q,(x,*): DeZ, xe D} of (positive) measures on E , that satisfies
the following hypotheses (Q 1) through (Q7).

(Q1) 0<gp(x)=0p(x, E,)<o0; Qp(x,*) is concentrated on D; Qp(x,-) is the
point mass &, if xeD; Qp(x,{4})=0if x&=4; Qp(-, B)e&} if Bé,.

(Q 2) (ConSiStency) If F CD, QF(x9 ') ZjQD(x’ dy) QF(ys')a IC QD(xa QFf)
=Qp(x, /) for all feb&F where Qp f ()= Qp (. f)=[Qp(y,d2) f (2).

To state the next hypothesis, we need to define the nearly Borel sets (relative
to the family Qp(x,-)). A set A<E, is nearly Borel if for every n and finite
measure p on E, there exist Borel sets B;, B, with BjcAnE,=B,<E, such
that for all compact C = B, — B; we have

J(d%) Qs clx C)=0.
It will be seen that the family &% of nearly Borel sets is a g-algebra. It is easy
to see that &, &3 <&
(Q3) (Nearly-Borel measurability) Qp(-, B)e&y if Beé,.

(Q4) (Local transience) If F =D and x¢D, then for some compact neighborhood
C of x with Cc F*

§Op(x, dy) Qr.c(x, F)>0.
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(Q5) (Intrinsic right continuity) For any x, F and increasing sequence D, with
FcD,, if Qp (x,dy)qe(y) converges weakly to a finite measure v(dy), then for
any C with Fc C and febé,

00, dY) 4r(V) Ligcw, rameda = V(@Y Ligew. rareda

vaguely when restricted as measures on the locally compact (E,— C) xR,

(Of course, weak convergence of measures on E, means convergence of inte-
grals of all (real) continuous functions, and vague convergence of measures on
a locally compact space means convergence of integrals of all continuous func-
tions vanishing at infinity.)

(Q6) (Quasi-left-continuity) For any x,D,|D and FcD, Q) (x,dy)qp(y) con-
verges weakly to Qp(x, dy) gp(y).
(Q7) For any x and D, F with F =D°, {Q(x, dy) g¢(y) log gz (y) < co.

Theorem 1 Let {Q,(x,"): DeD, xeE } be a family of measures on E , satisfying
hypotheses (Q1) through (Q7). Assume E,1E. Then there exists a right process
Y =(Y,, P¥) on E, with A as the death point, (which is actually a standard process ),
and a multiplicative functional M =(M,) with values in [0,0) that is a.s. strictly
positive on [0, T,), Ty=inf{t=0: Y,= 4} the lifetime, such that for all xcE,De %,
febé,

(L.1) Opf (x)=P*Lf (Y(1p)) M(Tp); Tp < T,]
where T,=inf{t=0: Y,eD}.

If {E,} is arbitrary, ie. does not necessarily contain a subsequence increasing
to E, then, as in the introduction, we fix for each » an open U, with U,cE,
and denote

9'={De9: E,—Dc U,for some n}.

Theorem 2 Let {Q,(x,"): DD, xeE } be a family of measures on E , satisfying
hypotheses (Q1) through (Q7). Then there exists a right process Y =(Y,, P¥) on
E, with 4 as the death point, (which is actually a standard process), and a
multiplicative functional M =(M,) with values in [0, c0) that is a.s. strictly positive
on [0, T,), such that (1.1) is satisfied for all xeE, feb&, and De %'

Of course Theorem 1 is just a special case of Theorem 2. But it is separately
stated because it is the important case; also, in Sect. 4 we prove this case first
because the proof is easier.

In this article a multiplicative functional (M F) (M) in a right process (X,, P¥)
on E, is permitted to take values in [0,00), not just in [0,1]; otherwise it
satisfies the usual conditions: (M) is adapted to (%), the usual (right continuous
and suitable completed) filtration generated by the paths of (X}; t - M, is right
continuous a.s. (ie. a.s. P* for all xeE); M,=1as.; and for any stopping times
T, S wrt. (%), M(T+S<07)=M(T)-M(S)o0r as. on {T+Sc0r<o0} (6 the
shift operator). See [2], [6] or [4] for information about standard and right
processes.

A MF (W) is a transformation (multiplicative) functional (TMF) if P*[¥]1=<1
for all xeE and t. It is well-known that if (¥) is a TMF in a right process
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(X,, P*) on E,, then there exists a right process (X,, P*) on E, (with 4 as the
death point) such that for all x, t, feb&, (note the convention f(A4)=0

PLf&N=P[f(X) %]

See e.g. [5]. Such a process (X,) will be denoted (X, ¥).
Some remarks need to be made about the hypotheses.

Remarks about (Q2): The universal measurability is a preliminary measurability
condition; without it (Q2) and (Q3) cannot be stated. The point 4 will only
serve as the adjoined death point for (Y;) and the transformed processes (X, ¥)
constructed from the local processes (X,); thus it carries no mass in the measures
QOp(x,-) for xeE. If it is desirable to add mass to the measures Q,(x,-) at an
adjoined point, it is preferable to add an isolated point é to E , for this purpose,
(0 is then included in all De D).

No remarks need to be made about (Q2).
Remarks about (Q 3): First, if the conclusion of the theorem (Theorem 2) holds,
it is casy to see that &} is exactly the s-algebra of nearly Borel sets for (Y);
for M,>0 on [0, T,) as. Of course Borel measurability of {Q,(x,*)} implies
nearly-Borel measurability, and the latter is a natural measurability assumption.
In Sect. 2 we will see that it is equivalent to: Q, (-, B)e&} if Be&5.
Remark about (Q4): Under the conclusion of the theorem (Q4) must hold.
For if

j.QD(xa dy) Qrocly, F)=P*[M(Tp) M(Tp ) 0(Tp); Y(TFUC)OH(TD)GF_{A}]

(for convenience of writing we use the conventions Y,c0,=4,Y,=4and M =0
here and below) is 0 for all (sufficiently small) compact neighborhoods C of
x, then

P*[Y(Tr,) - 0(Tp)eF —{4}]1=0
for all such C, and by (Q6) we have
PX[Y (Ty )0 (T) e F ~ {4}]=0.

It is then easy to see that P*[Y(T;)e F —{4}]=0, which implies Qr(x, E )=0.
Remarks about (Q35): Under the conclusion of the theorem, this condition fol-
lows from the intrinsic right continuity of the right process (Y;), i.e. the right
continuity of the filtration (%), relative to which the strong Markov property
holds. To see this, first, with gebé&, continuous and T,=T, and T denoting
the decreasing limit of T, (of course T =T, where A=|{ ) D,), we have

[Qp.(x,dy) qr(v) g(y) = P*[g(Y(T})) M(T;)- M(T;)>0(T,)]
=P [g(Y(T)) M(T)] -» P*{g(Y(T) M(Tp)].

Thus Q, (x,dy)qr(y) converges weakly to v(dy)=P*[M(Ty); Y(T)edy] (note
these measures all have total mass gg(x)). Next, for feb&/, y—0cly, fqr)
=P (Y(1:)) M(T)] is easily checked to be excessive on E,—C and so a.s.
t—=Qc(Y,, fqr) is right continuous on t-intervals when Y,eE,— C. It follows
that Qc(Y(T,)).fqr) = Qc(Y(T), fqr) as. P* on {Y(T)eE,—C} for febé&,. (Actu-
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ally the latter fact is easy to prove directly by martingale convergence.) Thus
we have the following vague convergence on (E,—C) xR

QD,,(X: dy) qr(y) l[Qc(y,qu)sda] =P*[M(T;); Y(T)edy, Qc(Y(T,),fqr)eda]
= P*[M(Tp); Y(T)edy, Qc(Y(T), fgr)eda]
=v(dy) 1[Qc(y,qu)eﬂla]'

We remark that Qp (x, dy) qr(y) actually always converges weakly. This follows
from the other hypotheses, essentially (Q4) and (Q6); see a remark in Sect. 2
about (H5).

Remarks about (Q6): This condition is satisfied if the underlying right process
(Y) is a standard process. For if gebé&, is continuous, D,|D, F<D, then by
the quasi-left-continuity of (Y), T 17, and Y(Tp ) — Y(Tp) on {Tz<T,} as. P%,
and so

100, (x,dy) 4 (»)9()
=P [g(Y(Tp,) M(Tp); Tr<T4] - P*[g(Y(Tp)) M(Ty); Tr < T,]

=[Qp(x,dy) qr(y) g(¥).

Note that we did not write (Q6) in the following form:
if D,JD then Qp (x,dy) convergesweaklyto Qp(x,dy),

which would reflect the additional requirement that the MF (M,) is also “quasi-
left-continuous”.

2 Local processes

In this section we fix an (open) set Ge# and denote F=G°=E,~G. Let 9,
={De9: F = D}. We will prove the following theorem.

Theorem 2.1 There exists a right process (X,, P¥) on E, such that for all De9,,,
x€E 4 the hitting distribution P*[ X (Tp)e -, Ty < co] (where Ty =inf{t 20: X,e D} ) is

2.1) Hp(x,dy)==0p(x, dy) q:(x)" ' gr(»)

and such that each xeF is an absorbing point. Furthermore,

(2:2) J=qp(Xo) gp(X,) 7!
defins a MF (with values in [0, 00) ) such that for all x, De D, febé&,

23) Op(x.f)=P*Lf (X(Tp)) J (Tp); Tp<0].

The P* in (X,, P¥) is not the same as that in (Y, P*) in Theorems 1, 2.
Note the measures Hp(x,) are probability measures (since [Qp(x,dy)qr(y)
=qrp(x) by (Q2)) and Hp(x,{4})=0if x + 4; therefore Ty < oo a.s. and the lifetime
T,=w0 as. P* for xeE. (T, will be called the proper lifetime of (X,).) For (J)
to be a MF, one needs only to prove that J; is right continuous a.s. (2.3) is
immediate from (2.1) and (2.2).
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For the existence of (X,) we will need Theorem 1 of [ 7]. Denote K =G U {4*}
the one-point compactification of G. K is (obtained from) E, by identifying
all points in F as the single point 4% 2, is also regarded as the family of
compact sets D in K that contain 4%, ie. {(G—U)u4*:Ue%, U<=G} (note
that we will often write {4*} as 4%). Thus Hp(x,*) in (2.1) is also taken to
be a measure on K (when D < K), with of course Hp(x, 4%) equal to the original
Hy(x, F).

With {Hp(x,*):De2,, xeK} regarded as a family of measures on K, we
will prove that it satisfies hypothesis (H1) through (H6) in [7], (in doing so
D is often regarded as a set in E,, x as in E,, and Hp(x,") as a measure
on E,, and no harm will be done). Denote by # the o-algebra of Borel sets
in K and #* that of universally measurable sets in K.

{H1) Each Hp(x,*) is a probability measure concentrated on D; Hp(x,")=e¢,
if xeD; Hp(+, B)e# if Be #*.

Proof. It has been observed that Hp(x,") is a probability measure; the rest
is immediate from (Q1). [J

(H2) (Markov property, or consistency) If D,cD,, Hp,(x,")={Hp (x,dy)
HDz(yi')‘

Proof. By (Q2)

Hp,(x,d2)=Qp,(x,d2) qr(x) " q¢(2)
:jQDl(xa dy) gz ()" qe(y) 0p,(y,dz) gr(y) ! qr(2)
=jHD1(x’ dy) sz(ya dz). O

The family %" of nearly Borel sets of K relative to the family Hp(x,-) is defined
as follows. A subset B of K is in #" if for any finite measure y on G there
exist Borel B;, B,, with B, =B~ G< B, <G, such that for all compact C< B,
- Bl >

(2.4) Hey pops C)==f,u(dx) He o p(x, €)=0.

Obviously B H"<=%*. From the definitions of % and %", it is easy to see
that Ae&)) iff AnGeB"nG for all Ge¥ (note #" depends on G). It is proved
in {7, Sect. 2], that 4" is a o-algebra; from this the following proposition is
immediate.

Proposition 2.2 & is a ¢-algebra.
(H3) (Nearly-Borel measurability). Hp(-, B)e#" if De 9, Be 4.

Proof. Let feb#™ and h=Hp(-,f); we show he#". By a standard argument
it suffices to show that, given a finite measure p on G, there exist h,, h, in
A" with 0< hy <h < h, such that, for all compact C < {h,>h,}, (2.4) holds. Below
we regard D<E,, fe&; with f constant on F, and write Cu4* as FuC.
Now

h(x)=Hp(x,)=qr(x)"" Qp(x.f ).

Note gz =Q¢ (-, E Je&% by (Q3). Define v(-)={u(dx) gr(x) " Qp(x,"). Then there
exist functions k,, k, in &, with 0=k, <q=k, and k;=¢gr=k,=1 on F such
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that for all compact C,<={k;>k;}, Qp, ¢, (v, C;)=0. We may change k,, k,
on D¢ to k, =k, =0 there. Now let

hi(x)=qp(x) "' Qp(x.f k).

Then h;e&” and 0<h; <h<h,. Let us show that for all compact C={h,>h,},
Hc (1, ©)=0, equivalently Qg (u, C)=0 (although Qp (x.*) may not be
a finite measure). Suppose O , (i, C)> 0 for some such C; then we claim

(2.5) OQroc,(u, C)>0  forsome compact C, < {k,>k}.

But this leads to a contradiction since C; =D and so

Oruc, (1, C1):jQ1)(H: dy)Qrpoc,(y, C)=0,

which follows from Q. ¢, (v, C;)=0, a consequence of the choice of k;. To show
(2.5), let C'=C n D; then since obviously {h,>h,;} "D {k,>k;}, C'<{k, >k}
By (Q2) we have

Oroc it C/):jQFuC(#a dy)Qrc (3, C).

If Qpo (i, C)>0 then Qp, (i C)>0. Otherwise Qp, e, C—C)>0. But if
yeC— ', then since h,(y)>h,(y), Qp(y,{k;>k,})>0, and so

QFUC'(y’ C/)=,[QD(ya dZ) QFUC/(Z: CI)>0

if C' is sufficiently large (i.e. C is sufficiently large). Thus (2.5) follows, where
C, is C’ when C is sufficiently large. []

Itis proved in [7, Sect. 2], that H,(-, B)e %" for DeZ, Be#", using an argument
resembling the above. In the present situation, we can prove the fact (not needed
in the sequel) that Q,(+, B)e&) for DeD, Bed}, using a similar but slightly
more careful argument. Of course, once we obtain a process (), this also follows
from a standard fact in a right process.

(H4) (Quasi-left-continuity) If D,|D, Hpj, (x,*) converges weakly to Hp(x,*).
Proof. This is immediate from (Q 6) and the definition of Hp(x,*). [

(HS5) (Intrinsic right continuity) For any x in K, increasing sequence D, in
9D, and letting (W,) be the nonhomogeneous reversed Markov chain on K
(under a single probability measure P) with P(W,e-)=H) (x,©) and
PW, 1€ |W,,m=n)=Hp  (W,,*), we have: if W, =lim W, exists a.s., then,

for any Ce %, and feb®B, Hof(W,)— H. f(W,) as. on {W,_eK—C}.
Proof. We first show that (H5) follows from condition (H5') below and then
prove (H5') from (Q5).
(H5). For x, D, as in (H5), if Hy (x,-) converges weakly (as measures on K)
to a measure u, then for any C, f as in (HS5) the measures

Hp, (x,dY) L. preda - u(dy) Litcw. neda

vaguely when restricted to (K —C) x R.
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If W,—» W, as. in (H5), then Hj, (x,*) converges weakly to u(+)=P(W_e").
Now by an easy application of martingale convergence H.f (W,) converges a.s.
on {W,eK —C}. The conclusion in (H5’) says the measures

P(V[/;,Gdy, HC(VVn,f)eda)_)P(Wooedy: HC(Woo ’f)Eda)

vaguely when restricted to {W,,e K — C}. From this it is clear that the conclusion
of (HS) follows. To prove (H5'), assume Hj (x,*) converges weakly to p as
measures on K; then we claim that Qj, (x,dy)q:(y)=qr(x) Hp (x,*) converges
weakly as measures on E, (which has a coarser topology at the boundary 6G).
For if not, it is not difficult to construct a sequence D,|D’ where F <D’ such
that Qp, (x,dy) qx(y) does not converge weakly, and so (Q6) is contradicted.
(We do not give the detail of this part of the proof since we feel that it would
be quite reasonable to assume in (Q5) that Qj (x,dy)qr(y) converges weakly.
Incidentally, it was proved in [7] that the (W) in (H5) always converges weakly,
essentially by (H6) below; therefore also does Hy, (x,+) in (HS'). In this article,
it can also be proved that Qp (x,dy)qr(y) in (Q5) always converges weakly,
using (Q4) and (Q6).) Let v be the weak limit of Qp (x,dy)gr(y); then u(dy)
=qr(x) " 'v(dy) with the understanding p{4*}=gqy(x)"*v(F). Applying (Q5)
with C=F and f =1 we have

QD,. (x,dy) qr(y) l[qp(y)eda] —v(dy) 1[qF(y)eda]

vaguely on (E,— F) x R. Combining this with the vague convergence of

Op,(x, dY) 4r (V) Ligc o, rameaa = V(@ Y) Ligc, rareda

on (E,— C) xR for the given f, and noting that g, (y) >0, we obtain

0p,(%, dY) 4ry) Ligroy- 1006 rapeda = VA Y) Lget)- 1000, 1 apreda

vaguely on (E,—C)xR. Dividing the above by gz(x) we have the conclusion
of(H5). O

(H6) (Transience) For any De%, and x¢D, there exists a compact neighbor-
hood C of x such that {Hp(x,dy) Hc (v, C)<1.

Proof. This is immediate from (Q4) and the fact that the H(y,*) are probability
measures. [}

Now that (H1) though (H6) are established, it follows from Theorem 1 of [7]

that there exists a right process (actually a Hunt process) (X,, P*) on K with

A* as the death point and with finite lifetime T. such that the hitting distribu-

tions are the given Hp(x,-). The process (X,, P¥) in Theorem 2.1 can be obtained

as follows. One shows that for febé&,, ITl;n H.f(X,) exists a.s. P* for each
t A%

xeG and has P*-expectation Hpf(x) (because Hy f is excessive and in fact har-

monic on G). Thus we can define (X,,t<Ty) as (X,,t<Ty), and then define

the distributions P*[X(Tp)edy|X,,t<Ty] by requiring P*[ f(X(Tp)X,,t

<TF:|=1TirTn H;f(X,) for all continuous f. Then since each yeF is to be an
t1Tr

absorbing point, the existence of (X,) as desired follows.
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However, there is an easier way to define (X,). Let X} be the process obtained
from (X,) by changing each xeF —4 to a holding point, from which a jump
is made to 4 with probablhty 1. We know what the hitting distributions H}(x,*)
should be. Let 2,={D: D is closed in E,, AeD}. Define {H}(x,-): De D, erA}
as follows:

Hi(x,")=g*) if xeD; Hi(x )=g,(-) if xeF—D;
and otherwise

H%(X, B)=IHFUD(xady) H})(y: B)
=Hpp(X, DN B)+15(4) Hp, p(x, F—D).

(In particular, if F < D, Hp(x,*)=Hp(x,").) It is easy to see that { H}(x,*)} satisfies
(H 1) through (H6). Thus there exists a right process (X}) on E, with the H}(x,*)
as its hitting distributions. Now change each holding, point xeF—4 to an
absorbing point to obtain (X,) from (X}).

To complete the proof of Theorem 2.1, it remains to show (J) defined is
(2.2) is a MF. Note Jy=1 and J,,=J-J(8,) for all t,5s. So one needs only
to show J, is right continuous a.s. This of course will follow from

Proposition 2.3 g5(X) is right continuous as.

Proof. By a standard theorem it suffices to show g is nearly Borel and finely
continuous w.r.t. (X,). We have already that g, is nearly Borel. Since each xeF
is absorbing, to prove that g, is finely continuous we need only to show the
fine continuity at each xeG. Define A={yeG:|gz(y)—qr(x)| =06} where 6>0.
We show that P*(T, >0)= 1. Suppose not; then P*(T,=0)=1. Let C, be increas-
ing compact subsets of 4 such that T, |T, as. P*. Let D,=C,UF. Then
Qp,(x,dy) gr(y)=qr(x) P*[X(Tp )edy]  converges  weakly to  v(dy)
=qp(x) P*[X(T)edy]=qp(x) &.(dy). By (Q5) with C=F and f =1 we thus have
that (X (T},)) under P* converges in distribution to Q(x, )= Qr(x, 1)=qr(x),
which is a contradiction. [

3 The multiplicative functional connecting two local processes

From now on a right process (X, P¥) is simply written as X, and a MF (M)
as M,. We will occasionally write the probability measure P} in (X%, P!) as P~.
All (right) processes X, will have as sample space the space of right continuous
paths :[0, 0)—> E, such that w,= A implies w,=A4 for s>t; furthermore we
can require all w to have left limits on (0, T,) where T, =inf{t: w,= 4}. Of course
X (w)=w,, and the same notation T,=inf{t>0:X,eD} is therefore used for
all X;. A MF M, (in a process X} is said to be “trajectory-dependent” (more
appropriately trajectory-dependent-only) if for any finite measure u on E, there
exists 4 such that P#(4°)=0 and for all w,, w, in A and ¢,, t,>0, and increasing
homeomorphism ¢:[0,¢,]—[0,£,] with X, (w,)=X,¢(w,) on [0,¢,], we have
M {w)=M,{w,) on [0,1,;]. All MFs will be trajectory-dependent, but we will
still usually mention the fact explicitly for emphasis. If U is an open set in
E, a MF M, is said to be “constant off U” if a.s. the following holds: for
any t,<t,, if X, (w)eU* for all te[t,,t,] then M,(w) is constant on [t;,t,].
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If two processes X! and X? are time changes of each other (which is the case
iff they have the same hitting distributions), we will write X}~ X?2. If U is
an open set in E, the process Z, obtained by stopping X, at the exit from
U, (le. Z,=X,, r where T=Ty.,), will be written as X,|;. In this section we
prove the following theorem that is of central importance.

Theorem 3.1 Let G, G, and U be in % with UcG,<G,. Let X! be the right
process X, defined in Sect.2 when G=G,;, i=1, 2. Then there exists a TMF
¥ in X7 such that X}?-¥|y~ X}!|y. Furthermore, ¥, satisfies the following proper-
ties:

(1) it is trajectory-dependent;

{1i) it is constant off U,

(iii) a.s. ¥ is strictly positive on [0, T)).

Let F;=Gj, g;=qr,, and denote {;= T, (again for both X, ! and X7), the proper
lifetime of X}. The hitting distributions of X! for DeZ containing F, are

(3.1) Hiy(x, dy)=Q0p(x,dy) ¢:(x) " ¢:(v)
and with the MF J! in X! defined by
(3.2) JF=g:(Xp) (XD

we have, for xe E, DeZ containing F,, febd,

Op/f (x)=P*[f (X (Tp)) J'(T,)].

We will regard J} as also defined in X2 by J'=gq,(X})q,(X?)~*. Denote Z,
=X7|g,- The following defines a MF in Z,:

(33) b= TN

Denote by % the filtration generated by the paths of X7 that is, as always,
right continuous and completed in the usual way. Of course ¢, is adapted to
7.

Lemma 3.2 (i) Let T, S be &7-stopping times with T <S<{, and pe(F#) " ; then
B2[po(S)/o(T)1=L2[p]

for all x.
(i) If S is as above, P*[p(SY1=1 for all x; consequently ¢, is a TMF in

(i) Z,- gy~ X
Proof. (i) First, by (3.1), (3.2) and (3.3)
B[P )1=0p, (0,d2) 4:(3) " 4, (2)[42(») 42(2) * V9, (M) q:(2) "1 ]=1,
since gr, ()= QF, (¥, qr,)- Thus

B eS)s(T=R [0 20 B ] =22 [0 2]

=B‘2 (o (Ly)-01] =Rc2 [PPXZ(T)(@(C:))] = Rcl Lol
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(ii) follows from (i) with p=1, T =0.

(iii) will follow if Z,-¢, and X! have the same hitting distributions on sets
De% containing F;, noting that each xeF| is an absorbing point for both
processes. But by a computation similar to the above, the hitting distributions
of Z,- ¢, for such D are

P2LA(X*(To) ¢(To)1 = 0p(x. dy) f (1) 4:(x) " L q: () =Hp(x, f). O

We will construct the part of the TMF ¥ in Theorem 3.1 up to time {; (ie.
its part in Z); its part after time {, w111 be determined by the requirement
that ¥ be a MF and be constant off U, noting U< G and {; =T, (the part
of ¥ up to {, has this latter property). To this end choose compact sets C,,
nzO with C,tU and C,=0 (the empty set), denote V=U*, and define, for
nx1, % -stopping times T,;, R,;,j=0, and S,;, j=1, as follows:

T,0=0, R,o=Ty(=inf{r=0:X?eV}), andforj=1
T _an 1+TC uF;oG(Rn,j~1)a

S T +TC,, luyoe( )

Rn]——Sn,—I—TV 0(S,)="T,;+ Ty 0(1,).

Since paths (of X?2) have left limits on (0, T,), we have for a fixed n, 1,;=S,;
=R,;={, for all sufficiently large j. Note the intervals [T,;,S,;, n=1, ]>1
(most of them bemg 0), are disjoint, and their union is (T, {;) m{t X 2EU}
Note also [T,;,R,), j=1, is [T,;, S, or its union with some [S, ;; R, ;)
Define

¢(Rn1/\t) il
?,(t)= JEIOMT—/W) JH()(/) Ty A Tnj)) 0(T,))

(where in the last expression both T,; are evaluated at w). Note the products
are finite, and @,(f)= &, (t A {;). &,(t) is not a MF (in Z,), but satisfies the follow-
ing properties: @,(0)=1; &,(¢) is right continuous; @,(t+s5)=&,(t)- D,(s)- 6, for
all t, s with t<{; and X?¢U—C,; it is trajectory-dependent; it is constant
off U and &, (t)>0 for all t. Observe that

&, (1) H ¢ S"f”) 1 &(Te oy AE—T,)")-O(T,).

gpn—l(t) j=1 t) j=1

Lemma 3.3 P2[®,(S)]1<1 for all x and F,*-stopping time S<{,.

Proof. @,(S) is the limit, as j — oo, of HqS(R,,J/\S)/q,’)( T,;~S), whose
ji=0

PZ_expectation is P?[1]=1 by repeatedly using (i) of Lemma 3.2. [
Lemma 3.4 P*[log ¢({,)]> — oo for all x.
Proof.

P?[log ¢(()]={Qr, (x,dy) 4:(x) ' q:(») log[g2(x) 42 (1) 41 (x) " " 4, ()]

JOF, (x,dy) 4, (x) ™ g2 (y) [log(g2 (x) g, (x) ™) —log g, (¥)]
=10g(q>(x) 4, (x) ") —q2(x) " [ Qp, (x, dY) 42(¥) log g, (y)> — 0

Il
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by applying (Q7) with D=F,;, F=F,; in the second equality we used g,=1
onF. [J

¢n2(t)
2,,(1)

Proof. Suppose not. Then for some x and § >0 there exist l <m; <m( = ... <my
<m = ... such that for all

Theorem 3.5 For all x and >0, sup P? [sup

t

—1’>5]—>0 as ny — oo,

ny >Ry

@mi (t)
P, (1)

(3.4) E?[sup
t

—1‘>5]>5.

Fix [ and denote n; =m;, n, =m;. In the above ¢ can be restricted to belonging to

U U I:T;lja Snj)

ni<ns=m 1=j=jo
2,00,
2,,(1)
a minimum by the a.s. right continuity of ¢(t) and therefore of @,(t). Arrange
the disjoint intervals [T,;A Y, S,;AY), 1< =ny, 1£j<j,o, (some of which may
be empty), as [z, 0y), ..., [T}, 03), Where k'=jy(n,—n,), with 1, <6, =2 ... L1
<o, <{, being Z,2-stopping times. By (3.4)

D,,(0r)
PxZ [ na
in (Gk’)

Now &,,(0,)/®,,(o,)= |] ¢(6)/¢(r;). From Lemma 3.2(i) (see Lemma 3.3)

EZk!

for some j,. Let y=inf{t:

‘;5}; note that if y<co, the inf is as.

—1125]>5.

sz[ H ¢(o)/p ()] =1.

k<k’

Combining the above we have

(3.5 Pllog [] ¢(o)/dp(zdl<e

K<k

where ¢>0 depends only on §. Denote the above k' by k;, and 1, 64 by 154, o3,
(recall ny =my, ny=mj). The intervals [, o), 1 <k=Zk, 111, (I, arbitrary),
are disjoint. Let the complement in [0, {,) of their union be the union of disjoint
intervals [tgs, 001), 1Sk=k,, (again some may be empty), where 74, =0,
< ST, S 004, are F2-stopping times. Of course B[ [| ¢(oop)/d(ton)] =1.
Now k=ko

PED=9 PO =TI T $low)(ru
So by (3.5) and Lemma 3.4
—c0 <R20log (0,11 = Y, 2|10t [ dlowiotond|< 11

This is a contradiction since [, is arbitrary. [
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Corollary 3.6 For any x and 6>0, sup P? [sup]@nz(t) @, (t)>6]-0 as n;

— O0. ny>ny

Proof. Fix n and b>0 and let S={; Aninf{t:®,(t)>b}. Then &,(S)2b if
sup @,(t)>b. Since P?[®,(S)]<1 by Lemma 3.3, P2[sup®,(t)>b]<1/b for all
i t

n. Thus

D,,(1)

P2 [suplcb,,z(t) @, ()|>51<P? [sup . (0

i>5/b:|+1/b

and the corollary follows from Theorem 3.5. [J

Definition. For each x let integers 1 =n,(x)< ... <m(x)< ... be defined inductively
by
1 1 (x)=1nf{n>n, (x): supP2 [supl@ (D)—D,0>2 <278

(the n,(x) exist by Corollary 3.6 ); then set

D, () =1im®,, x2(?).
k

Theorem 3.7 (i) A.s. (B} for any finite measure p) @, x3(t)— @, (t) uniformly
int.

(i) As. @(0) is right continuous; @ ,(0)=1; @ ()=D (tALy); P () is
adapted to F,% ; @, (1) is trajectory-dependent, and is constant off U.

(iii) P*[®.,(S)] <1 for any F-stopping time S, .

(iv) For Z*-stopping time T, S with T+Sc0;<(,, @, (T+Sc0;)=d(T)
@ (S)o0r as.

(V) Z,- P (0)ly~XLly, ( from the above @ (t) is a TMF in Z,).

(vi) A.s. @, (1) is strictly positive on [0, {,] (or on [0, c0)).

Proof. (i) follows form the definition of n; (x). (ii) follows from (i), the correspond-
ing properties of @,(t) and the fact that {x:nk(x)=n}e¢§j‘. (iii) follows from
(i) and Lemma 3.3. To show (iv) holding a.s. P?, choose a subsequence nk(,)(x)
of n,(x) such that a.s. B2, n,q(x)>n,(X%) for all sufficiently large i; then using
the fact that, if n(i)>n,(y) for all large i, @, (t) and @,,,(t) converge umformly
in t to the same limit a.s. P?, and using the fact @ (T+ 8)e0;)=,(T) D,(S)-0
except possibly on {X7 eU C,}, which set |0 since C,tU, one obtains the
desired equality. (v) follows from Lemma 3.2(iii) since & (t)=P,(t)=¢(t) for
t=T,=T;,_p. It remains to show (vi). Let

B, ()= ¢ (1)/ P, (0).

Then we can write
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where Y, ST,y < ... £9,;S1,;S ... are F -stopping times with y,,J:—-th:(:l for

ny=

all sufficiently large j; in fact the union of [y,;,7,;) is [0,{;)— U [T.;,R,)). As

is with @,(t) we have P’ [.(S)]<1 for Z2-stopping times S <{,. Since
®,,(1)/,,(t)=®,, (t)/P,,(t), Theorem 3.5 implies that for all x and 6>0

sup Pz[supl@nz(t)/d"nl( )—1|>6]—>0 as n, - 0.

na>ny

It follows that Corollary 3.6 also holds for &,(t). Let A, (x) be defined in a
similar way to n,(x) but with the additional requirement of being a subsequence
of m(x): A,(x)=1 and

fiy+  (x) =1inf {n > A, (x): n=n;(x) for some i,

supPz[supd) () —&, @) >27]<27%).

n'>n

Define &, (1) =lim &;, x2,(t). Then a.s. &, x2(1) > B, (1) uniformly in t; s0 a.s.
k

()= likm Dix2) (1) @auxg)(t) =®,(1) B, () on[0,{,].

Since ¢ (t) is strictly positive on [0, {,], (vi) follows. [
We now define ¥ on [0,,] by

:(poo(t): t_s_Cl

and extend to te[0, o) by the requirement that % be a MF (in X7) and be
constant off U (using the fact that ¥,t<{,, is constant off U). To make this
definition precise, let T, be defined by 7, =0 and

Thys1= T+ Tgo0(Thy), k=0;
Tou=Top 1+ Tp,00(T5 1), k=1

Of course T, = oo for sufficiently large n. Define

1—[¢ (Cl t_T'2k+1) ) 6(7—‘2k<i—1)

k=0
n D, ((1)o0(Tor-1) if T Zt<Thme
lP(sz D Pu(t—Tpi 1)00(Topr1) U Topy1 <t<Thpys

(an empty product stands for 1).

Proof of Theorem 3.1 From Theorem 3.7 and the definition of ¥ we have:
a.s. ¥ is right continuous, %=1, ¥>0 on [0, ), and ¥ is constant off U
(note ¥ i8 constant on [T, T3, .])- It is routine to show that ¥ is adapted
to %?, and that for two 4Z2-stopping times T, S we have Y(T+S-0;)
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=Y(T)-¥(S)o0; as. We now show P2[¥]<1 for all x, t. For this it suffices
to show P2[¥(t A T,)] < 1. Now

RIPAT]=P[P@);t<T,— J+ P[P T);t2T,-,].

The second term on the right hand side is P*[¥(T,_,);t=T,_,] if n—1 is
even, (since ¥ is constant on [T, T5,,+11), and if n—1 is odd it is

PAY(T,—1) Do ({y At— T, 1)) O(T,—y); t 2 T, ]
Rcz[lp(nﬂ)P)?Z(T,.,l){@oo(Cl AE—T—))}t2 T, 4]
sz

[P(T,-1);t2T,- ]

=
by Theorem 3.7(iii). Therefore,
PPIPEATISRPEAT, IS ... SP[YEATYISL

Thus ¥ is a TMF in X?. Finally, the assertion X?- ¥|y~X}|y is just Theorem
37(v). O

4 The global process and associated multiplicative functional

We prove Theorem 1 using two methods. The first method is simpler but not
quite rigorous (but perhaps could satisfy some readers); the second method
is involved but rigorous. The two methods are not essentially different in the
case of Theorem 1. The proof of Theorem 2 uses an extension of the second
method.

4.1 First proof of Theorem 1

Here E,}E. We may assume E,cE,cE,.,. Choose U,c% such that
E,_,<U,<E,. Denote F,=E;, q,=qr, and 9,,={DeZ: F,cD}. Let X} be
the right process X, constructed in Sect. 2 with G=E,,, and J" be the MF
in all X¥, N=m, defined by

I =4n(XD) gum(X7) .
Then
(4.1) Op(x,f)=RB"[f(X™(Tp) J"(Tp)], xe€E,, DeZ,.
Let {,,= Ty, . Let %™ be the TMF (in X7**') constructed in Sect. 3 with G, =E,,,
G,=E,.,, U=U,and X}, X? there being X", X™*'. Thus

@2) ==t Ao, for 12Ty,

m m+1

and

(4-3) X:"H'q{m]UmNX;"[UW



Construction of Markov processes 201

Now the TMF ¥™~' in X}* depends only on the trajectories of X7|; | and
is constant off U,,_,. Since E,,. ; = U, (4.3) implics that the trajectory-dependent
Ym-1 can be regarded as a TMF in X7*!. ¥™, first defined up to time {,_,
then to all ¢ by the requirement that it be a MF and be counstant off U,
by the procedure at the end of Sect. 3, (note a slight abuse of notation is involved
because this ¥™~! should be written as ¥™* "™~ 1!), Thus we can form the
transformed process (X"*!.¥m).@m~1  which will be written as
Xrtiogmym=! (1t is not difficult to argue that ¥~ ! exists as a MF in X7**!
and Y™ ¥™ ! is a TMF. However we will use a different method in Subsect. 4.2
to construct directly (in X™*') TMF’s ¥"¥™"! and ¥" ¥ ... ¥* below.)
It satisfies

m+ 1 mgpm—1 m—1 m+1 m ygm—1 n ym—1
X7 g, ~ X7 XU y, ~ AT

Proceeding in this manner we construct processes

((Xmriogmy ) pk=Xxmtlogm gk
(again "I{f in the above should be written as ¥™**+), which satisfy

XPEL Wy, ~ X,
and more importantly
(4.4) XIS
Define right processes ¥,” on E, by
=X}y, V=X W mz2

Since each X7 is a Hunt process, each Y™ is a standard process; we again
call U, the proper state space of Y* (each xeV,,=U; is absorbing), and its
proper lifetime (;, = Ty is finite. By (4.4)

(4.5) ¥y, ~ %, mzL

From the theorem in [8], (4.5) implies that there exists a right process Y, on
E, (which is a standard process with lifetime T,=1im{},) such that

(4.6) Yy, ~¥", mzl

Let us define the desired MF M, in Y,. First, if X, is a right process on E,
with death point 4 and if ¥ is a TMF in X, that is strictly positive on [0, T)),
then ¥~ 1,74, which we simply write as ¥ !, is a MF of the transformed
process X,=X,-¥, (noting that both X, and X, have sample space_ Q— see
the begmnmg paragraph of Sect. 3, and we regard ¥ as defined in X, as well
with the understanding (or requirement) that if w, (s)=w,(s)eE for all se[0, ¢}
then ¥(w,)=¥(»,)), and

PLfX BB =P [f(X)BE 1=P[f(X)], febé&, (with f(4)=0).
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Now in X™ ¥™ ! %! we have the MF (¥~ !...¥})~!, (again the TMF
ym=1  @lis to be rigorously defined in Subsect. 4.2), which satisfies

4.7 A WACCRL At AL AR A I
=PLfXTE" BT ED T =R

Define M}* by
(4.8) M{=Jly: Mi= mcm(q{/\:m V) m=2
M7 is a MF in Y. We have the consistency
4.9) Mrrt=MY,  tZ0,
since by (4.2)
JETHEm T =N =0 S

Since all MFs are trajectory-dependent, (4.6) implies that MY can be regarded
as defined in Y,. The consistency (4.9) permits the definition

(4.10) M;=M{" on [0,{,], mz=1
=0 on [T,=lim{,,c0].

M, is obviously a MF in ¥;. It remains to show equality (1.1). For x€E, De&
(so U =D for some m), febé&,, and with P*, P, P denoting the probability
measures for Y, X7, ;" and writing T = T}, (also noting M, =0 on [T, «o])

PXLf(Yo) Mp]=Br[f () MA=Br[f (Y7 (8~ )1
=PI fXp(F ) e )T
=B f(X7) JF]= QDf(x)

by (4.10), (4.5), the definition of ¥;*, the computation (4.7), and (4.1).

4.2 Second proof of Theorem 1

Fix N>2. We will construct directly in X} MFs ¥", 1<m<N, that appeared
in 4.1, and show that ¥¥~1...¥" are TMFs. Let C,,, be compact sets with
Cro=0, C,.,1U, as n— oo and C,,, increasing in m for each n. With XY, X7
(respectively XT7*1), Ey, E,, (respectively E,,,), and U, playing the roles of
X2, X!, G,, G, and U in Sect. 3, and with C,,,=C,, we obtain a TMF ™
(respectively ¥V™) that is the TMF ¥ in Sect. 3. (Note ¥¥¥~'=1.) Thus

Xiv'g_’ivmmeX;nlUm, Xiv‘qlgvm|UmNX;"H|Um-

Recall the approximating functionals @,(t) for ¢, (t)=¥ ., in Sect. 3; if we
extend the definition of @,(t) to t<{,, by replacing {; =Tz by {, =T, in the
definition of @,(¢), then obviously we have as. @, xz(t)— ¥(¢) uniformly on
[0,¢,] (or on [0, c0)), where n,(x) is similarly defined (see below). Let @™ (z)
(respectively @Y™(¢)) denote the approximating functional ®@,(t) when ¥(t) is
the
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above PV™(1) (respectively PN™(1)), (they will be explicitly defined in the proof
of Theorem 4.1 below). Thus a.s. in XV

@nNkTXéV)(t) — PV(g), ®nk(XN) — PV (1)
uniformly in £ on [0, {], where n, (x)=1 and

et 1 (x)=1nf{n>n, (x): supPN[sup|¢7N"‘(t) SN >2" <27 and

n'>n

supPN[supldiN'”( )—cDQ“"(t)|>2 M<27k for1<m<N}.

Since a.s. PV"(t)> 0 for all ¢, we can define
7 (e) =N (1) =PV () PN (0).

P™(f) is a MF (but not a TMF) in XV. We have a.s. &V™(t)/®¥" (1) » ¥™ (1)
uniformly on [0, {y], as n=7n,(X}) — c0.

Theorem 4.1 PN~ * @N=2 @™ isq TMF in XV for I<m<N.

Proof. We need only to prove the case m=1. Let
L(I:Hﬂ’"(t )/ DY (1)

It suffices to prove that for any x and %"-stopping time S=<(y, we have
PF[L,(S)]£1. Define for 1 <m,; <m, <N

(4.11) Br = I = (G, Gy ) XN ' ) (XT)

and to simplify expressions write for r<s (and only when X¥e U, forr=<i<s)

P73 [1,5)= ™™ (5™ 1),

Define %,"-stopping times ’I;,';‘, Ry, 1=m<N, nz1, j=0 as follows (for a fixed
m, these are the stopping times 7,;, R,; in Sect. 3 when C,,=C, and U,=U,

njs

but with {, = Ty, there replaced by {,= TF2 ; here {, is {y="Tg,), where V,,=U,:

(4.12) 20=0; RuE=T5+T, -0(T));
T;lj+1 an_i_qﬂFNqu,l Q(an)

Again, for sufficiently large j, T,7=Ry;={y. Note [Ty;, Ry)= {t: X} eU,}. Now
form<m; <m, <N define

(4.13) ramim(x)= [T ™™ [T AL, RIS A L),
j=0

P2 () = P (f),

(Note &Y™ (t)= Y™™ (1), D)™ (t)= Y™ " +"(1), and so since ¢ 1" = pF™/pNm**
we have a.s.

PrrLm(gy=PNmm(£)/ PN M+ L™ (1) > W (1), as n=m (X D) - 0.)
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Now define #"-stopping times 5, ya; with T, <yro < ... <<y < ... such
that [7,;,7.)=[T}, Rs)), and for m=2, U[Tnp“/m) U[Tn'j‘,Rm) U[T'j-‘*l,

Ry~1), (note | J [Ty, Ry) is increasing in m). We have
Jj

- N-1 w

=TT #5170 = T1 116" "[T5 At R a0
m=1 m=1j=1
N—-1 N—-1

= ﬂl_[ ¢ ALY A
=T [Te¢" L=mint iAo,

As alway this is a finite product. As in Lemma 3.3, to show BN[L,(S)<1]
is suffices to prove

N—1 ji
(4.14) Px”[n (16" [en A S,y A S)] < 1
m=1j=1

As in Lemma 3.2, for &"-stopping times T; < T, <{y with [Ty, )= {t: XY e U,},
and pe FN(T)*

(4.15) PX[p¢"™(T,)/"™(T\)]= P [p]

whose proof relies only on the fact that BY [ng (. J]=1for yeE,,. By rearrang-
ing the stochastic intervals [, A S, 77 A S) in all possible increasing orders and
applying (4.15) repeatedly to the probability in (4.14), we obtain (4.14). [

We now have the transformed processes XY-¥¥~1 . W' They satisfy
XY gN eyt Wy, ~ XY BT LB g,

For XM*'. ¥, ~X}|, and in these processes, " ' ... ¥' are the “same”
trajectory-dependent functional; alternatively, onc can argue directly that for
UscD, febé&,

PN L =R (XD ]

where T=T,. The rest of the proof of Theorem 1 (involving the definition
of YN, Y,, MY and M,) is identical to that in Subsect. 4.1 (after (4.4)).

4.3 Proof of Theorem 2

Assume as we may that the E,, are all distinct, {E,,} is closed w.r.t. finite non-

empty intersection, and E,,¢E if m<n. Choose open U, with U, CE such

that {Um} is a covering of E, U, < U, if E,,<E,, and U,=U, n. U,, if E,

=E, 0. mE . Let compact sets Cm,,TUm with Cmoz(l) and satlsfy Con
C fE,=E, n...nE,

myn ) mkn
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We write m; <m, if E,, <E,, and m;<m, (so that E,, +E,,). If m; <m,,
we write m,\m =1 if there exists no m with m; <m<m, and m,\m; > 1 other-
wise. If m;<m,, a “route” connecting m, and m, is a sequence (1, ..., n,)
with m;=n, <n,< ... <my=m, such that n;, \n;=1. Two routes (n,, ..., n,),
(", ...,m) connectmg m, and m, are said to be distinct if n;#n] except ny
—nl,nk—n, If m; <m,, the number of distinct routes connectlng My, m, is
denoted v(m,, m,).

For each m we have a right process X7 on E, with proper state space
E,, and finite proper lifetime (,,=T, , and an associated MF J”, as in Sub-
sect. 4.1.

Fix N for which there exist m<N. For m; <m, <N (m,<N or my=N),
let P™™ be the MF in XV defined in a similar way to the MF ¥™ at the
beginning of Subsect. 4.2, with the roles of X, X™*! and U, replaced by X™
X and U, . That is, with &¥™ (resp. ¥¥™2"1) denoting the TMF ¥ in Sect. 3
when XY, X"‘1 (respectively X72), Ey, E,,, (respectively E, ) and U, play the
roles of X2, X,l, G,, G, and U in Sect. 3, we have

q/mZml lPle/'PNmZml
(A precise definition of ¥™™ is in the proof of Theorem 4.2 below.)
Definition.

;IZN: H q{mzml ]_[ ((I{mzml)—v(ml,mz)+l‘

my<my<N my<myIN
mo\my =1 mo\my > 1

Note that in the situation of Theorem 1, ie. that in Subsect. 4.2, ¥¥ reduces
toyN-1.. gl

Theorem 4.2 (i) %" is a TMF in XV

(i) If N<N', XY 8N |y ~ XY BNy,

Proof. The proof of (i) is similar to that of Theorem 4.1. Define, for my %mz <N,
¢"2™ as in (4.11). Define, for m< N, #"-stopping times T,%, R, as in (4.12).

Then define for m<m, <m,<N the approximating functionals tI>”‘2'”1"’( ) and
@™ (t) as in (4.13). We have a.s.

p2mi(t) » P (t) uniformlyin ¢, as n=n,(X{)—

where . (x) is defined in the same way as in Subsect. 4.2 to guarantee a sufficient
number of a.s. uniform convergences. (V2™ is defined to be lim (15'"2(3“(1\: {t). Since

all $m™ are strictly positive MFs ¥V is a well-defined MF. To show it is
a TMF, it suffices to show B¥[L,(S)] <1 for an % -stopping time S <y, where

L.(t)= H Pt H (¢rzm1(t))*v(m,,mz)+1'

my<myiN my<my<N
mo\my=1 my\my > 1

Define for m < N disjoint (increasing) stochastic intervals [, y) by the require-
] nj» Ynj) OY q

ment
U[T;znpynm}):U[n';laR U U[ nj o
Jj i

m<m j
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(the set difference being proper), so
U [7’;,7;11’ le = U U I:T:lnja ynmj)’
r .

Now

L= T[] [l¢™™[Th ARy Al

m1<m7_<N j
my\my =1

[T TL@™™[Tm At, R Ag)”mema*t

m1<m2 <N i
ma\my > 1

=1 TIC II  em™Imiatmmnag

m<N j mEZm;<myEN
ma\my =1

[T @mmleatyman oem

mEm; <myEN
moa\my > 1

The product inside the brackets simplifies to VLAt v A ). The reason
is roughly that if m, <m, and v(m,,m,)=v, then there exist v distinct routes
connecting m,, m,, and corresponding to each such route (m;=ny,n,, ...,
=m,) the first product inside the above brackets contains the subproduct
(Qr2mr sz @MY [T AL Y AL =@M [T AL, Y A T), and now its vi® power
multiplied by the corresponding factor in the second product inside the brackets
is g™ T AL Y A t). Successive “cancellations” like this will finally yield the
simplified expression. Therefore,

Ln(t)—_- 1—_[ H(bNm[T:‘j A t: ,})'rlnj A t)'

m<N j

Now the rest of the proof of (i) is the same as the last part (the simplification
of L,(t) there) of the proof of Theorem 4.1. To prove (ii), we claim

(4.16) B =gy NBY on [0, Tye 1.
For on [0, Tye 1, if N <m; <m, <N’ then %™™ = @™ ; s0

momy mam\—v{my,ma)+1 _ LN'N
I = [T = = ¢,
NEZmi<my <N’ NiZmi<myEN'

ma\my =1 mo\my > 1

by the same argument as the one used to simplify L,(t), and (4.16) follows
from this and the definitions of @Y and @Y. Since XV Y My~ X |yy» (i)
is established. [

Define for each N

=XMy, if there exist no m<N,
=XY.¢¥, . ifthereexist m<N.

YN is a right process (actually a standard process) on E, with proper state
space Uy and finite proper lifetime (= Ty . From (i) of Theorem 4.2 the family
{Yy} is consistent, in the sense that for any N, N’ we have Yyly, ~ vy ~ Yarlvg o vn -
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Again by the theorem in [8] there exists a right process (actually a standard
process) Y, on E 4 such that

Yt{UNN YtN9 NzL
Define a MF MY in YN by

MY =N ., if there existno m<N
=JN (BN )7 ifthereexist m<N.

(Compare with (4.8)). The trajectory-dependent M} are consistent: MY = MY
on [0, [y {y]; see (4.9). Therefore we can define a MF M, in ¥, is an obvious
way so that M,= MY on [0, {}] for all N. That (Y,, M,) is as desired is proved
as at the end of Subsect. 4.1.
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