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Choosing Category Size in a Stage Projection Matrix 
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Summary. A basic problem associated with choosing category size in a stage 
projection matrix is described. "Errors of estimation" are large if the 
category size is chosen too small and "errors of distribution" are large if 
the category size is chosen too large. An approximate technique of balancing 
these two error types is suggested as a solution to this dilemma. 

Introduction 

The development of demographic techniques has stemmed largely from the study 
of human populations. As a result, almost all of demographic analysis assumes, at 
the start, that an overwhelming fraction of the individual variability in survivorship 
and fecundity is accounted for by age. Thus, individuals are partitioned into age 
categories and age specific survivorship and fecundity values are estimated and 
plugged into well known formulas (Lotka, 1926). In particular, the population 
projection matrix of Leslie (1945, 1948) and Lewis (1942) has become a standard 
tool (Goodman, 1968; Keyfitz, 1968; Keyfitz and Flieger, 1971). 

In a variety of situations this approach is difficult. For example, in many 
biological populations the individuals cannot be aged. The standard approach is 
useless in such a situation. In other cases, biological constraints inhibit using the 
standard metods. The most obvious examples are in various plant species where 
some variable other than age accounts for most of the variability in survivorship 
and reproduction (Harper and White, 1974; Werner, 1975). 

In response to problems of this sort, Lefkovitch (1965) proposed an alternative 
model, analytically similar to the Lewis-Leslie model (Vandermeer, 1975), but 
applicable to a broader spectrum of biological situations. Rather than categorizing 
individuals according to their age, this approach categorizes individuals according 
to some arbitrary morphological or physiological feature. For example, instead of 
defining stage one as composed of all individuals between the ages of 0 5, we define 
stage one as all first instar larvae, or all seedlings between 0 and 20 cm in height. The 
Lefkovitch approach, hereafter referred to as the stage projection matrix, is 
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particularly useful for populations of long-lived individuals such as most perennial 
plant species. 

The stage projection matrix has not yet been used widely. Lefkovitch (1965a) 
used the approach in studying the cigarette beetle, Lasioderma serricorne, 
Hartshorn (1974) applied the method to the dominant rainforest tree Pentaclethra 
macroloba, and Bosch (1971) made an abortive attempt at modeling the California 
redwood population with this model. The model will undoubtedly receive much 
more attention in future years, especially as interest builds in the population 
dynamics of long-lived perennials. 

The Problem 

In developing a stage projection matrix, we must (1) establish stage categories 
and (2) estimate probabilities of transition from one stage to another over an 
arbitrarily selected time interval. Once we have grouped individuals into stage 
categories (e.g. seedlings between 0 and 15 cm) it is a simple matter to estimate 
transition probabilities. This is done by measuring each individual with respect to 
the categorization variable (height of seedling, length of body, etc.) at two points in 
time. Some of the individuals will die during this time interval, some will advance or 
regress to another stage, and some will stay in the same stage (retain the same value 
for the categorization variable). Estimates of transition probabilities follow directly 
and elementarily from such data. 

But the original establishment of stage categories is not so elementary. The way 
in which the categories are chosen may have a significant effect on the probability 
estimates. In particular, the probability estimates are subject to two types of 'error ' ;  
first, a 'sample error' increasing larger as the category size decreases, and second, an 
'error of distribution' increasing as the category size increases. 

The first error type is of the usual sort. Given a finite number of individuals, as 
the category size decreases, probability estimates will be made with a smaller and 
smaller number of individuals. Suppose, for example, that we have 25 seedlings, 14 
of which are from 1 to 5 cm tall and 11 of which are from 6 to 10 cm tall, at the 
begining of the time interval. If we choose the first stage category as 1 to 5 cm, the 
transition probabilities will be estimated with 14 individual plants. But if we choose 
the first stage category as 1 to 10 cm, the transition probabilities will be estimated 
with 25 individuals. From this point of view, obviously the larger category gives the 
better estimate. 

The second error type is somewhat less obvious. The estimates of transition 
probabilities will depend in part on the distribution of individuals within the stage 
category. For example if the stage is defined as all seeedlings between 0 and 10 cm, 
and the sample includes only individuals 1 cm tall, the estimated transition 
probability likely will be much different from a probability calculated from a 
sample composed of only individuals 10cm tall. The way individuals are 
distributed within the stage category will influence the probability estimate. 
Theoretically, the individuals within the stage category should be distributed 
according to the stable stage distribution (Vandermeer, 1975). The finer the 
category, the less likely that a skewed within-category distribution will influence 



Choosing Category Size in a Stage Projection Matrix 81 

the probability estimate (theoretically, an infinitely small category size does not 
generate a distribution error). 

Thus, if the category size is too small, the error due to sampling is potentially 
great; and if the category is too large, the error due to distribution is also potentially 
great. How then does one choose the size of categories so as to minimize, in some 
sense, these two errors? 

A Proposed Solution 

In general, we wish to estimate the potential error incurred through sampling and 
through distribution. The error due to sampling should be a decreasing function of 
category size, while the error due to distribution should be an increasing function of 
category size. The point at which the two functions intersect will be called the 
'opt imal '  category s ize-c lear ly  an arbitrary optimization criterion. 

Though there is no absolutely correct way of computing the two errors, because 
they are of such a different nature, the following is presented as a reasonable 
procedure for minimizing a particular manifestation of each error type. 

Let Xi( t  ) be the value of the categorization variable for the ith individual at time 
t. Define the category size as X* to X**. Let N1 be the number of individuals for 
which X* <X~(1)< X** at the beginning of the time interval, and let M~ be the 
number of those individuals for which X*<=X~(2)<X** at the end of the time 
interval. Def ine/~= M 1 / N  1. 

Compute the 'growth increment' for each individual as I ~ = X i ( 2 ) - X i ( 1  ). 
Consider only those N1/2 individuals with the smallest I~ (or (N 1 - 1)/2 i fN 1 is odd). 
Let M 2 be the number of individuals for which X* < X~(2) < X**, considering only 
those individuals with the smallest I~. Define P~(1)= 2 M 2 / N  ~ . 

Similarly, consider only those NI/2  individuals with the largest I~. Let M 3 be the 
number of individuals for which X * < X i ( 2 ) < X * *  , considering only those in- 
dividuals with the largest I~. Define P~(2)--2M3/N ~. Finally, let the error due to 
sampling be, 

= (P~(1) - fi)2 + (P~(2) -/3)2. 

This term is similar to a variance one would get if two samples had been tken, the 
first time sampling only the very slowest growing organisms and the second time 
only the fastest growing organisms. 

Next we compute the error due to distribution. Let M 4 be the number of 
individuals for which X* < X * +  I i__<X** and define Pe (1 )=MJN 1. Similarly let 
M 5 be the number of individuals for which X * <  X * * +  Ii < X** (note that I~ will 
not necessarily be positive since individuals may decrease in the value of the 
categorization variable), and define Pd(2) = M J N  1. Let the error due to distribution 
be, 

r = (~(1)- P)~ + (~(2)- P)~. 

This term is again similar to a variance. This time, however, all individuals were 
changing by exactly the same amount as those individuals actually sampled, but 
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one sample had all individuals concentrated at the beginning of the stage category, 
while the other sample had them all concentrated at the end of the category. 

Begin with the largest possible category size and compute 0 and 4). Shorten the 
category size and recompute ~b and qS. Continue shortening the category size until 
the number of individuals within the category is smaller than some predetermined 
level and plot ~ and q5 against category size. Draw smooth curves through the 
points and determine where the curves intersect. The intersection point gives the 
optimal category size for the first stage category. Repeat the process for the second, 
third, etc . . . .  categories. 

A n  E x a m p l e  

The following example is presented to illustrate the computations involved. It is 
obviously an unrealistic example, the numbers being chosen for heuristic 
simplicity. 

The first three columns of Table 1 give the raw data (i, Xi(1 ), and Xi(2)) for 10 
individuals. The X's can represent any categorization variable (e.g., height of plant 
in cm). The fourth column gives the growth increment, Ii. Columns 5 through 12 
give appropriate calculations for each category size (for convenience, only category 
sizes that include an even number of individuals were used). 

For  category 1-10, all but individuals 9 and 10 remained in the category, giving 
/~ = 8/10 = 0.80. Setting all individuals equal to 1 and adding the increments gives 4, 
0, 4, 1, 4, 2, 3, 0, 4, 2 for individuals 1-10 respectively. All but two of these (the two 
zeros) are within the appropriate stage category, making Pd(1) = 8/10 = 0.80. Setting 
all individuals equal to 10 and adding the increments gives 13, 9, 12, 10, 13, 11, 12, 9, 
13, 11 for individuals 1-10 respectively. Only three (two 9s and a 10) are within the 
appropriate stage category, making Pd(2)=3/10=0.30. Thus, ~b=(0.80-0.80) 2 
+(0.80-0.30)  2--0.25. Considering the N1/2 individuals with the smallest incre- 
ments, we have individuals 2, 8, 4, 6, and 10, the first four of which stayed in the same 
stage categorization, making P~(1)=2MI/Nt=2(4)/lO=0.80. Those Na/2 in- 
dividuals with the largest increments are individuals 3, 7, 1, 5, and 9, four of which 

Table 1. Exemplary data for finding optimal category size (see text for explanation) 

i XI(I) XI(2) Ii Cat. P P,(1) P,(2) P a ( l )  Pc(2) 4 25 
size 

1 1 4 3 
2 2 1 -1 
3 3 6 3 
4 3 3 0 
5 4 7 3 
6 5 6 1 
7 7 9 2 
8 7 6 - 1  
9 8 11 3 

10 10 11 1 

1-10 0.80 0.80 0.80 0.80 0.30 0.00 0.25 
1-7 0.88 1.00 0.75 0.75 0.38 0.03 0.16 
1-5 0.50 0.67 0.33 0.83 0.33 0.06 0.14 
1-3 0.50 1.00 0.00 0.75 0.50 0.50 0.06 
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Fig. 1. Graph of "errors" against category 
sizes. Dotted line is sampling error and 
solid line is distribution error 
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stayed in the same stage, making P~(2)=2(4)/10=0.80. Thus, @=(0.80--0,80) 2 
+ (0.80 - 0.80) 2 = 0. 

Consider the next smaller stage category by removing the last two individuals 
from the computation (individuals 9 and 10) and repeat the above. 

Repeat the procedure until no fewer than three individuals are in the category 
(three was chosen arbitrarily - in practice the number would surely be larger), and 
plot r and ~b against size as has been done in Figure 1. 

Once the first (smallest) category size has been chosen, the entire process is 
repeated for the next largest category. 

Discussion 

The method proposed in this paper is based on a minimization of two error types so 
as to choose category sizes in which the effects of sampling and within-category 
skeweness will be minimal. While certainly not the only procedure which could be 
used, it seems reasonable and is certainly easy to apply. The method unfortunately 
is limited to the a posteriori analysis of data. It provides no basis for the a priori 
selection of category sizes. Similarly the method is not meant to apply to those 
situations in which stages are defined biologicaly, such as insect instars. 

It is important to realize that there is no guarentee that the relationship of 
category size to either of the two error types will be monotonic. It is only held as a 
reasonablle postulate that the sampling error should decrease with category size 
and the distribution error should increase with category size. The example in this 
paper was constructed to behave well for heuristic pruposes. Especially with small 
samples, the behavior of the two error terms could be quite erratic, unlike this 
contrived example. 

Undoubtedly, in any real situation a relatively large amount of data will have to 
be dealt with, leading to rather lengthy and tiresome calculations. A F O R T R A N  
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p r o g r a m  wi th  a c o m p l e t e l y  w o r k e d  o u t  real  e x a m p l e  is ava i l ab l e  f r o m  the  a u t h o r  on  

reques t .  
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