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Abstract. We report on the measurement of the leptonic 
and hadronic cross sections and leptonic forward-backward 
asymmetries at the Z peak with the L3 detector at LEP. 
The total luminosity of 40.8 pb - I  collected in the years 
1990, 1991 and 1992 corresponds to 1.09.106 hadronic and 
0.98. 105 leptonic Z decays observed. These data allow 
us to determine the electroweak parameters. From the cross 
sections we derive the properties of the Z boson: 
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Mz = 91 195 4- 9 MeV Fz = 2494 -t- 10 MeV 

/"had = 1 748 4- 10 MeV /"e = 83.49 4- 0.46 MeV, 

assuming lepton universality. We obtain an invisible width 
of Fi,v = 496.5 -4- 7.9 MeV which, in the Standard Model, 
corresponds to a number of  light neutrino species of N~ = 
2.981 4- 0.050. 

Using also the three leptonic forward-backward asym- 
metries and the average tau polarization, we determine the 
effective vector and axial-vector coupling constants of  the 
neutral weak current to charged leptons to be: 

~e  = _0.0378+o6.~2 ~e  = -0 .4998  -t- 0.0014. 

Within the framework of the Standard Model, and includ- 
ing our measurements of  the Z ---+ bb forward-backward 
asymmetry and partial decay width, we derive an effective 
electroweak mixing angle of  sinZ0w = 0.2326-t-0.0012. 
We obtain an estimate for the strong coupling constant, 
C~s = 0.142 + 0.013, and for the top-quark mass, m t =  
158+_ 32 4- 19(Higgs) GeV, where the second error arises due 
to the uncertainty in the Higgs-boson mass. 

1 Introduction 

In 1992, the LEP e+e - collider at CERN ran at the center- 
of-mass energy 91.29 GeV, where the cross section for Z- 
boson production in e+e - annihilation is maximum. A total 
luminosity of  22.4 pb -  1 was recorded with the L3 detector at 
LEP corresponding to 678,000 hadronic and 59,000 leptonic 
Z decays selected. 

In this article we report on the measurements of the re- 
actions: 

1. e+e - -4 hadrons(7), 
2. e+e - --+ #+#- (7 ) ,  
3. e+e - --+ r + r - ( 7 ) ,  
4. e+e - --+ e+e-(7) ,  

where the (7) indicates the presence of radiative photons. 
These measurements are used to determine the parameters 
of the Standard Model (SM) [1, 2]. 

Earlier measurements of  the reactions 1-4 have been re- 
ported by the LEP experiments [3-5]. The inclusion of the 
1992 data doubles the peak event sample. Detailed studies 
are performed with this large sample of  events with the aim 
of decreasing the systematic errors. These studies allow us 
to exploit the full statistical accuracy of  our data. 

Since the data analysis is improved compared to our ear- 
lier work of the years 1990 and 1991 [3, 4], we also reana- 
lyze that data. Here we present the results derived from the 
data collected by L3 in the years 1990, 1991 and 1992, which 
correspond to a total luminosity of  40.8 pb -1, or 1.09 �9 106 
hadronic and 0.98- 105 leptonic Z decays observed. 

The organization of  this article is: in Sect. 2 we briefly 
describe the L3 detector. The measurement of  luminosity 
is discussed in Sect. 3. Section 4 presents the analysis of 
the reactions 1-4. Our results on the leptonic and hadronic 
cross sections and leptonic forward-backward asymmetries 

are given in Sect. 5. The determination of  the electroweak 
parameters is described in Sect. 6. A summary and conclu- 
sion are given in Sect. 7. 

2 The L3 detector 

The L3 detector [6] is designed to measure the energy and di- 
rection of  leptons, photons and jets with high precision. The 
detector consists of  a central tracking chamber (TEC), a high 
resolution electromagnetic calorimeter composed of  bismuth 
germanate crystals (BGO), a cylindrical array of  scintillation 
counters (SCNT), a uranium and brass hadron calorimeter 
with proportional wire chamber readout (HCAL), and a pre- 
cise muon spectrometer (MUCH). All elements are installed 
inside a magnet of  12 m diameter, which provides a uniform 
field of  0.5 T along the beam direction. 

In the L3 detector e+e - interactions are recorded based 
on several independent triggers [6]. The trigger decisions 
are derived from the energy depositions in the calorimeters, 
tracks in the central tracking chamber or the muon spec- 
trometer, or from multiple hits in the scintillation counters. 
The decays of  the Z into hadrons or charged leptons usually 
fulfill at least two trigger requirements which allows us to 
determine the individual and combined trigger efficiencies. 

The response of  the L3 detector is modeled with the 
GEANT 3.15 [7] detector simulation program which in- 
cludes the effects of energy loss, multiple scattering and 
showering in the detector materials and in the beam pipe. 
Hadronic showers are simulated with the GHEISHA 8 [8] 
program. 

3 Measurement of luminosity 

The total luminosity, ~ ,  is determined by measuring the 
number of  small-angle Bhabha scatterings, e§ - --+ e§ - (q,). 
For this purpose two cylindrical calorimeters with an inner 
radius of  68.2 mm and an outer radius of  191.4 mm are 
located on either side of  the interaction point at z = +2.7 m. 
Each is a finely segmented and azimuthally symmetric array 
of 304 BGO crystals which is split in the vertical plane. 

Event selection. The Bhabha event selection is based on the 
energy depositions in adjacent crystals of the two calorime- 
ters which are grouped to form clusters. The selection criteria 
are: 

1. One cluster is required to have the reconstructed radial 
(R) and azimuthal (qS) impact coordinates, determined in the 
plane transverse to the beam, more than one crystal size 
away from the calorimeter edges: 

a) 84.4 < R < 176.2 mm 
b) IvY-90~ > 1 1 . 2 5  ~ and 14,-270~ > 11.25 ~ 
We impose no restrictions on the reconstructed impact 

coordinates on the opposite side. 
2. The reconstructed energy on one side, Emax, must be 

greater than 0.8Ebeam, and that on the other side must be 
greater than 0.4Ebeam, where Ebeam is the energy of  the e+e - 
beams in LEP. 
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Fig. 1. a,b Distributions of variables used for the selection of luminosity e+e - ~ e+e-(7)  events, comparing the 1992 data to the simulated Monte-Carlo 
Bhabha events. Only the statistical errors on the data are shown. The statistical errors on the Monte-Carlo simulation are approximately twice as large. 
a The average reconstructed radial impact coordinate, (R+z + R-z)/2. The wiggles in the distributions are due to the changing angular resolution across the 
face of each crystal, b The maximum of the reconstructed energies in the two luminosity calorimeters, Emax, normalized to the beam energy, Ebeam. The 
position of the selection cut is indicated by the vertical arrow. For energies below the cut, the errors on the data points are large, because the background, 
which has been subtracted, is significant 

3. The coplanarity angle between the two clusters, Aq~, 
corrected for the bending of the particle trajectory in the 
magnetic field, must satisfy lAmb - 180~ < 10 ~ 

Figure 1 shows the distributions of the average radial impact 
coordinate, R, and the maximum energy, Em~, comparing 
the data to fully simulated Monte-Carlo events. 

Two samples of Bhabha events are maintained. In the 
first (second) sample, the tight fiducial volume cut is im- 
posed on the cluster on the +z ( - z )  side. The average of the 
two samples is used to calculate the luminosity. This proce- 
dure greatly reduces the systematic effects on the luminos- 
ity measurement due to calorimeter misalignments and e+e - 
interaction point displacements. The asymmetric energy cut 
ensures that the acceptance is not sensitive to detector inef- 
ficiencies. In addition, most of the radiative Bhabha events 
are retained. Almost all the background from random beam- 
gas coincidences has an energy less than 0.8Eb~,m in each 
calorimeter and is therefore substantially reduced by the en- 
ergy requirement. 

The coplanarity requirement is used to further suppress 
beam related background. The remaining background in the 
signal region is subtracted separately for each LEP fill, us- 
ing the sidebands of the coplanarity distribution, 10 ~ < 
[Aq5- 180~ < 30 ~ after imposing the requirement that 
the energy on neither side is within 5% of Ebeam [3]. The 
residual background level of 0.1% is mainly due to random 
coincidences of beam-gas interactions. 

Theoretical cross section. To determine the visible cross sec- 
tion, e+e - ---+ e+e-(7) events are simulated at a fixed center- 
of-mass energy, x/G, of 91.18 GeV using the event generator 
BHLUMI 2.01 [9, 10]. For center-of-mass energies, v/-s 7, off 
the Z peak, the visible cross section is rescaled by s / s ' .  The 
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Fig. 2. The energy of photon candidates in radiative luminosity Bhabha 
events, ET, normalized to the beam energy, and compared to the simu- 
lated Monte-Carlo Bhabha events. Only the statistical errors on the data are 
shown. The statistical errors on the Monte-Carlo simulation are approxi- 
mately twice as large 

event generator BABAMC [11] is used to include, missing 
electroweak corrections. A contribution of 0.02% from the 
process e+e - ~ 77(7) is taken into account [12]. 

Including all contributions, the visible cross section at the 
Z peak is 90.3 nb for 1992, 90.7 nb for 1991 and 84.7 nb 
for 1990. The differences are due to shifts in the detector 
position along the beam axis. Inside our angular acceptance 
the theoretical error on the Bhabha cross section is estimated 
to be 0.25% [10, 13]. 



Table 1. Systematic uncertainties on the luminosity measurement 

Source of systematic uncertainty Contribution to 6~.~/~ [%l 
Selection cuts 03 
Monte Carlo statistics 0. I 
Geometry of  the calorimeters 0.4 
Background subtraction negligible 
Trigger inefficiency negligible 
Total experimental systematic uncertainty 0.5 
Theoretical systematic uncertainty 0.25 
Total systematic uncertainty 0.6 

Luminos i ty  determination.  The selection quantities show good 
agreement between the data and the Monte-Carlo prediction 
(Fig. 1). The small excess of data events at high energies 
in the energy distribution is due to real Bhabha interactions 
contaminated with a spurious beam-gas interaction. Study- 
ing the effect of changes in the selection requirements on 
the total luminosity, we assign a systematic error of 0.3% 
on the luminosity due to event selection. 

Radiative Bhabha events are used to investigate the qual- 
ity of the Monte-Carlo event generator. The photon is identi- 
fied as the smaller energy cluster in events with two separate 
clusters on the same side. Figure 2 shows the distribution of 
the measured energy, E- r, of the photon candidates, and the 
Monte Carlo prediction. The agreement is good. 

The geometry and position of the calorimeters is mea- 
sured to an accuracy of 0.2 mm except for the position along 
the beam axis which is surveyed with an accuracy of 0.5 
mm. This results into a systematic uncertainty of 0.4% on 
the luminosity. 

The luminosity trigger is described in detail in [3, 6]. The 
trigger inefficiency is found to be negligible for the selected 
event sample. 

The contributions to the systematic error on the lumi- 
nosity measurement are summarized in Table I. Combining 
them in quadrature we assign a systematic error of 0.6% to 
the measured total luminosity. 

4 Analysis of Z decays 

We analyze all the visible Z decays by measuring the re- 
actions e+e - ~ hadrons(7), e+e - ~ #+#-(7) ,  e+e- --~ 
r+r  - ('~), and e§ - ~ e+e - (3'). Below we describe the event 
selection applied to the 1991 and 1992 data and the deter- 
mination of the total cross sections and forward-backward 
asymmetries. The selection criteria for the 1990 data differ 
slightly [3], as the end-cap electromagnetic calorimeter was 
added in 1991. 

4.1 e+e - --, hadrons (3') 

Even t  selection. The selection of the hadronic Z decays is 
mainly based on calorimetric information. The process is 
identified by the large amount of energy deposited in the 
detector, and a high particle multiplicity in the final state. 
Energy depositions in adjacent cells of the calorimeters are 
grouped to form clusters [14]. Since a hadronic event con- 
tains on average about 40 clusters we easily reject the low- 
multiplicity leptonic Z decays. The selection criteria are: 
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Table 2. Systematic uncertainties on the total hadron cross section, Ohad, 
excluding the luminosity error 

Source of systematic uncertainty Contribution to ~Crhad/O'ha d [%] 
Selection cuts 0.06 
Monte-Carlo acceptance and efficiency 0.10 
Background subtraction 0.08 
Trigger inefficiency 0.03 
Total systematic uncertainty 0.15 

I. The total energy observed in the detector, including 
the momenta of muons measured in the muon spectrometer, 
Evis, is restricted to the range 0.5 < Evis/V~ < 2.0. 

2. The energy deposited in the hadron calorimeter, Ehad, 
must be larger than 2.5 GeV. 

3. The energy imbalance along the beam direction, Ell, 
must satisfy [E[l/Evis [ < 0.6. 

4. The transverse energy imbalance, E•  must satisfy 
E l / Evis <( 0.5.  

5. The number of energy clusters, Nclusters , reconstructed 
in the calorimeters is required to satisfy: 
a) Nciu~ter~ _> 13 for [cos0tl < 0.74 (event in the barrel 
region), 
b) Ncju~ers _ 17 for Icosatl > 0.74 (event in the end-cap 
region), 
where Ot is the polar angle of the event thrust axis. 

Figure 3 shows the distributions of the visible energy, the 
parallel and perpendicular energy imbalance, and the number 
of clusters, comparing the data to fully simulated Monte- 
Carlo events. All cuts except the indicated one have been 
applied. 

Cross section. The  hadron calorimeter covers 99.5% of the 
full solid angle which results in a selection efficiency for 
e+e - ~ hadrons(7) events of (99.19 + 0.10)%, determined 
from Monte-Carlo events. The uncertainty on this number 
is estimated by comparing different fragmentation models 
as implemented in the Monte-Carlo event generators JET- 
SET 7.3 [15] and HERWIG 5.3 [16]. 

For all distributions we find a good agreement between 
the data and the Monte-Carlo prediction, especially in the 
region of the cut position. The systematic error originating 
from the event selection estimated by varying the above se- 
lection cuts is found to be small, 0.06%. The deviation in 
the distribution of the number of clusters for Nclusters ~> 70 is 
attributed to the imperfect simulation of low energy hadrons 
in the calorimeters. We have verified that the events in this 
region are hadronic events. 

Applying the selection to e+e - ~ T+T--("[) events sim- 
ulated by the KORALZ 3.8 [17] Monte Carlo, we find a 
background contribution of (0.204-0.02)%. The background 
from all other Z decays is negligible. The non-resonant back- 
ground contribution, e.g., two-photon processes, beam-gas 
interactions and cosmic rays, is estimated by extrapolat- 
ing the observed event rate at low visible energy, 0.2 < 
Evis/v/-s < 0.5, into the signal region. We find a V'-s- 
independent contamination of (35 + 15) pb. The total back- 
ground subtraction leads to a systematic error on the cross 
section of 0.08%. 
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Hadronic events are triggered by the energy, central 
track, muon or scintillator multiplicity triggers. The cross 
section is corrected for the overall  trigger inefficiency of  
(0.16 + 0.03)%. The contributions to the systematic error on 
the cross-section measurement are summarized in Table 2. 
We assign a systematic error of 0.15% on the total cross 
section of  the reaction e+e - ~ hadrons(7), excluding the 
error on the luminosity measurement. 

The number of  selected events and the total cross sec- 
tions for the different center-of-mass energy points are listed 
in Table 9 of  Sect. 5. The cross sections are compared to the 
result of a fit to the complete data set in Fig. 13 of Sect. 6. 

4.2 e+e - --+ i s  

Event  selection. The  event selection for the process e+e - 
# + / : ( 7 )  requires two identified muons within the fiducial 
angular region of  [cos 01 < 0.8. In the L3 detector, muons 
are primarily identified by a track in the muon spectrometer. 
For particles traversing at least 2 out of the 3 muon chamber 
layers, the track is reconstructed and its momentum as well 
as its charge is measured. 

Muons are also identified by their minimum ionizing par- 
ticle (MIP) signature in the inner subdetectors, if  less than 2 
muon chambers are hit. Including these muons in our sample 
makes the selection less sensitive to the exact  knowledge of  
the uncertainties in the eff• and geometry of  individ- 
ual subdetectors. Figure 4 shows a 45 GeV muon with its 
typical MIP signature in the detector. 

A muon candidate is denoted as a MIP, if  at least one 
of the following conditions is fulfilled: 



Fig. 4. A high energy muon seen m the different subdetectors of L3, with 
a track in the central tracking chamber (TEC), a low energy cluster in 
the electromagnetic calorimeter (BGO), a hit in the scintillation counters 
(SCNT), a track of low energy hits in the hadron calorimeter (HCAL) and 
hits in the inner muon chamber (MUCH) 

1. A track in the central tracking chamber must point 
within 5 ~ in azimuth to a cluster in the electromagnetic 
calorimeter with an energy less than 2 GeV. 

2. On a road from the vertex through the barrel hadron 
calorimeter, at least 5 out of  a maximum of 32 cells must 
be hit, with an average energy of  less than 0.4 GeV per cell. 

3. A track in the central chamber or a low energy elec- 
tromagnetic cluster must point within 10 ~ in azimuth to a 
muon chamber hit. 

In addition, both the electromagnetic and the hadronic en- 
ergy in a cone of  12 ~ half-opening angle around the MIP 
candidate, corrected for the energy loss of the particle, must 
be less than 5 GeV. 

To reject the background from hadronic Z decays we 
require each event to have less than 15 energy clusters in 
the calorimeters. To reduce the cosmic-ray background at 
least one of  the particles should have an associated scintilla- 
tion counter hit in a t ime-of-flight corrected time window of  
+3  ns around the beam crossing. Addit ional  cosmic-ray re- 
jection is achieved by requiring one muon to be associated 
with a central chamber track, which must have a distance 
of closest approach to the beam axis (DCA) of less than 
5 mm. An acollinearity angle cut, ~ < 40 ~ is applied on the 
directions of  the two muons. 

To reduce the background from the ~'+~--('7) final states 
and two-photon processes, the highest momentum measured 
in the muon spectrometer, Pmax, must exceed 2 Ebeam. For 
,events without reconstructed tracks in the muon chambers, 
we make an acollinearity angle cut of  ~ < 5 ~ and require 
two tracks in the central tracking chamber, one of  which 
must have a transverse momentum larger than 3 GeV. 

The final event sample consists to 81.8% of  events with 
two tracks in the muon chambers, 11.6% with one recon- 
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Table 3. Systematic uncertainties on the total dimuon cross section, au, 
excluding the luminosity error 

Source of systematic uncertainty Contribution to 6a~/au [%] 
Selection cuts 0.39 
Monte-Carlo acceptance and efficiency 0.25 
Background subtraction 0.11 
Trigger inefficiency 0.15 
Total systematic uncertainty 0.50 

structed muon chamber track, and 6.6% of  events with both 
muons identified by their MIP signature. Figure 5 shows 
the distributions of the cos 0 of the two muon candidates in 
an event, the highest momentum reconstructed in the muon 
spectrometer, and the acollinearity angle, comparing the data 
to fully simulated Monte-Carlo events. 

Cross section. The efficiency of the selection is determined 
from e+e - --+ #+#- (3 ' )  Monte-Carlo events generated with 
KORALZ to be (92.64 4-0.15)% inside the fiducial volume, 
where the error is statistical. A systematic error of 0.10% 
must be added, which reflects the uncertainty in the deter- 
mination of  the subdetector inefficiencies. 

The selection quantities show good agreement between 
the data and the Monte-Carlo prediction (Fig. 5). The system- 
atic error due to the event selection is estimated by varying 
the selection criteria. Significant contributions arise from the 
cuts on the muon momentum (0.30%) and the polar angle 
defining the fiducial volume (0.25%). 

Using e+e - ---+ ~-+~--('0 Monte-Carlo events gener- 
ated by KORALZ,  we determine this background to be 
(1.28 + 0.08)%. The contribution of all other Z decays to 
the background is negligible. A contribution (0.05%) of the 
non-resonant e+e - --* e + e - # + #  - two-photon process [18] is 
found only for the subsample of  events with no reconstructed 
track in the muon chambers. The sidebands of the DCA dis- 
tribution for the central chamber tracks in the region from 
5 mm to 20 mm are used to determine the cosmic-ray con- 
tamination. We estimate the cosmic-ray background for the 
nominal value of the DCA cut, 5 mm, to be (0.15 +0 .05)%.  

Dimuon events are triggered by the central track or 
muon triggers. The trigger inefficiency is negligible for the 
events with two tracks reconstructed in the muon spectrom- 
eter. For the samples of events with one or zero recon- 
structed muons in the muon chambers, we rely mainly on 
the charged track trigger. The trigger inefficiency is deter- 
mined to be (1 .9+0 .5 )% and ( 8 . 0 •  1.5)%, respectively. The 
cross section is corrected for the overall  trigger inefficiency 
of  (0.75 + 0.15)%. 

The contributions to the systematic error on the cross- 
section measurement are summarized in Table 3, including 
the Monte-Carlo extrapolation to the full solid angle. We 
assign a systematic error of 0.5% on the total cross section 
of  the reaction e§ - ~ / z §  excluding the error on the 
luminosity measurement. 

The number of selected events and the total cross sec- 
tions for the different center-of-mass energy points are listed 
in Table 10 of Sect. 5. The cross sections are compared to the 
result of  a fit to the complete data set in Fig. 14 of  Sect. 6. 



558 

o 
o 

1500 
O 

"5 
1000 

r~ 

E 
Z 

500 

(a) 

C u t  

~ 

I I [ 

�9 1992 Data 
�9 Data mips Cut 
[] M.C. total 

, [] M.C. mips § 

-0.5 0 0.5 

c o s 0  

o 
C. 

,,>, 
O 

E 
z 

10:to 
10 

10 2! 

10 

I I ' 

�9 1992 Data 
I-I M.C. total 
[] M.C. background 

i 
ut 

, J i 

20 40 60 80 100 

[degrees] 

O 
o 10 4. 

e- 

> 10 a_ tl.l 
O 

.~ 10 2. 
E 
z 

10 

0 

I f I 

(b) �9 1992 Data FqM.C. total 
I~M.C. background 

C u i L  

0.5 1 1.5 2 

Pmax [ Ebearn 

o 
t.O 
c5 

r 

> 
uJ 
O 
$ 

d3 
E 
z 

10 3. 

10 2 - 

10 

(d) �9 1992 Data _ 
[] M.C. total 

i [] M.C. background 

i 

I t 

 NIITN 
0 10 20 30 

[degrees] 

Fig.  5. a---d. Distr ibutions o f  var iables  used for  the selection o f  e+e - ~ #+/z- (~ , )  events,  compar ing  the 1992 data  to the s imulated s ignal  and background  
Monte-Car lo  events. The posi t ion o f  the selection cuts are indicated by vertical arrows,  a The cos 0 values for  both mnons  o f  an event,  showing  the muons  
identified in the muon  spect rometer  (87.6%) and  the muons  identified as MIPs (12.4%). b The m a x i m u m  reconst ructed  muon  m o m e n t u m  for  events with at 
least one reconst ructed  t rack in the muon  chambers ,  Pmax, normal ized  to the beam energy,  e The acoll ineari ty angle,  ~, be tween the directions o f  the two 

muons  for  events wi th  at least one reconstructed t rack in the muon  chambers ,  d Same  as c for  events with no reconst ructed t rack in the muon  chambers  

Forward-backward asymmetry. The forward-backward asym- 
metry, Afb, is defined as: 

An, - o-f - o- b 

o-f + o- b 

where af (orb) is the cross section for events with the fermion 
scattered into the hemisphere which is forward (backward) 
with respect to the e -  beam direction. 

Events with hard initial bremsstrahlung are removed 
from the sample by requiring that the acollinearity angle 
of the event is less than 15 ~ . This allows the angular dis- 
tribution in the region [cos01 < 0.8 to be approximated by 
the lowest-order Born formula: 

3 
dcosO oc ( l+cos20)+AfbCOS0 ,  

where 0 is the polar angle of  the scattered fermion with 
respect to the e -  beam direction. A comparison with calcu- 

lations including higher order corrections, as implemented 
in the analytical program ZFITI 'ER [19], shows that this 
approximation in the determination of  the asymmetry does 
not introduce any significant systematic bias. 

The asymmetry at a given center-of-mass energy point is 
determined by a maximum likelihood fit to our data where 
the likelihood function is defined as the product over the se- 
lected events labeled i of the differential cross section eval- 
uated at their respective cos 0i value: 

L -~ H(~(l+cos2OO+ArocosOi) 

This method does not require an exact knowledge of  the 
acceptance as a function of the polar angle provided that the 
acceptance is independent of the muon charge. 
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Table 4. Systematic uncertainties on the dimuon forward-backward asym- 
metry, A~o 

Source of systematic uncertainty Contribution to 6A~ 
Charge confusion 0.0022A~ 
Acceptance asymmetries 0.0015 
Cosmic-ray background 0.0010 
Total systematic uncertainty 0.0020 

For the measurement of  the asymmetry we use only 
those events where at least one muon is reconstructed in 
the muon spectrometer. From the sample with two recon- 
structed muons only the events with unlike charges are used. 
The probabili ty for a reversed assignment of the charges in 
the event is (2.5 �9 0.2) �9 10 -5,  derived from the number of 
like sign events. For  the events with only one reconstructed 
muon the probabili ty is (0.85 + 0.14)%. 

We have studied possible asymmetries in the acceptances 
for # -  and/~+ in the forward or backward hemispheres. The 
effect of  discrepancies in the observed momentum spectra on 
the measured asymmetry is estimated to be at most 0.0015. 
Since the asymmetry of  Z decays into tau pairs is expected 
and measured to be close to that of Z decays into muon 
pairs, the remaining background of tau-pair events does not 
change the observed muon asymmetry. The influence of the 
cosmic-ray background is small (0.0010). 

The contributions to the systematic error on the asymme- 
try measurement are summarized in Table 4. We assign an 
absolute error of  0.002 on the forward-backward asymmetry 
of the reaction e+e - --+ #+#-( ' ) ' ) .  

The differential cross section, dau/dcosO, of the reac- 
tion e+e - ~ #+#-('~) for events collected at 91.29 GeV 
(1992 data) is shown in Fig. 6. The result for the forward- 
backward asymmetry obtained from a fit to this distribution 
agrees with the result from the maximum-likel ihood method. 
The forward-backward asymmetries for the different center- 
of-mass energy points are listed in Table 13 of Sect. 5. The 
asymmetries are compared to the result of a fit to the com- 
plete data set in Fig. t7 of  Sect. 6. 

4.3 e+e - --~ r + r - ( 7 )  

Event selection. The visible decay products of  a tau form a 
jet, which consists of  either an electron, a muon, a charged 
hadron or a few highly collimated charged and neutral 
hadrons. Although there does not exist a unique event sig- 
nature, the aim is to select T+~--(7) events of all tau decay 
modes. This is achieved by excluding other final states from 
a sample of  selected Z decays. 

Tau pairs are selected within a fiducial volume defined 
by Icos0t[ < 0.73 where the polar angle, Or, is given by the 
thrust axis of  the event. The event is required to have at least 
two jets, corresponding to the two taus, with minimal visible 
energies of 7 and 3 GeV. The acollinearity angle between the 
directions of  the two highest energy jets,  ~, must be smaller 
than 14.3 ~ 

High multiplicity hadronic Z decays are removed by 
requiring less than 13 reconstructed energy clusters in the 
calorimeters. In addition, there should be no track in the cen- 
tral tracking chamber with an azimuthal angle, Ar  larger 
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Fig. 6. The differential cross section, d~r~/d cos 0, as a function of the polar 
scattering angle, cos 0, of the final-state fermion for e+e - ~ /z§ 
events on the Z peak (1992 data) 

than 14.3 ~ with respect to the axis of  the nearest jet. In 
order to reject e+e - ~ e+e-(-7) events, the two highest 
energy clusters in the electromagnetic calorimeter with an 
electromagnetic shower shape must have energies below 
0.90Ebeam and 0.65Ebeam. In order to reduce the background 
of e+e - ~ #+#-(7) events, the momentum measured in the 
muon chambers must be less than 0.9Ebeam for the highest 
energy, and 0.4Ebeam for the second highest energy muon 
candidate in the event. The requirement of  at least 2 GeV of 
energy deposited in the electromagnetic calorimeter rejects 
dimuon events, where the muons are not reconstructed in 
the muon chambers, as well as minimum ionizing cosmic- 
ray events. The cosmic-ray background is further reduced 
by requiring a scintillation counter hit within 2.5 ns of the 
beam crossing. 

Figure 7 shows the distributions of the acollinearity an- 
gle between the two jet  directions and the largest azimuthal 
angle between a track in the central chamber and the axis of  
its nearest jet, comparing the data to fully simulated Monte- 
Carlo events. 

Cross section. The efficiency of  the selection is determined 
from e+e - ~ ~-+T-("/) Monte-Carlo events generated with 
KORALZ to be (78.79 + 0.11)% inside the fiducial volume, 
where the error is statistical. Because the acceptance depends 
on the decay modes of  the two taus in the event, an additional 
systematic uncertainty of  0.25% must be added due to the 
uncertainties on the tau branching fractions. 

The distribution of the number of clusters is evaluated 
from the data based on a sample of tau-pair events selected 
using the multiplicity of tracks in the central chamber in- 
stead of  clusters in the calorimeters. This study leads to a 
correction on the total cross section of  (0.8 z~ 0.4)%. The 
other selection quantities show good agreement between the 
data and the Monte-Carlo prediction (Fig. 7). Their system- 
atic uncertainties are derived from varying the corresponding 
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Table 5. Systematic uncertainties on the total tan-pair cross section, try-, 
excluding the luminosity error 

Source of systematic uncertainty Contribution to 6(rr/(r~ [%] 
Selection cuts 0.60 
Monte-Carlo acceptance and efficiency 0.21 
Tan-decay branching fractions 0.25 
Background subtraction 0.14 
Trigger inefficiency 0.05 
Total systematic uncertainty 0.70 

cuts. A total systematic error of 0.6% is assigned to the event 
selection. 

In this sample a background of (2.75 -4- 0.12)%, deter- 
mined by Monte Carlo, remains from the other Z decay 
channels. The contamination of cosmic rays is estimated to 
be (0.15 4- 0.05)%. The background from two-photon pro- 
cesses is negligible, (0.9 4- 0.5) pb. 

Tau-pair events are triggered by the energy, central 
track, muon or scintillator multiplicity triggers. The cross 
section is corrected for the overall trigger inefficiency of 
(0.10 + 0.05)%. The contributions to the systematic error on 
the cross-section measurement are summarized in Table 5, 
including the Monte-Carlo extrapolation to the full solid an- 
gle. We assign a systematic error of 0.7% on the total cross 
section of the reaction e+e - ~ T+~--('7), excluding the error 
on the luminosity measurement. 

The number of selected events and the total cross sec- 
tions for the different center-of-mass energy points are listed 
in Table 11 of Sect. 5. The cross sections are compared to the 
result of a fit to the complete data set in Fig. 15 of Sect. 6. 

Forward-backward asymmetry. The determination of the for- 
ward-backward asymmetry is carried out in the same way 
as for the e+e - --~ #§  events, i.e., independent of the 
acceptance at each value of the scattering angle. The charge 
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Fig. 8. The differential cross section, da~-/d cos 0, as a function of the polar 
scattering angle, cos0, of the final-state fermion for e+e - ~ ~-+7--(7) 
events on the Z peak (1992 data) 

of a tau is derived from the sum of the charges of its decay 
products as measured in the central tracking chamber. As the 
background of e+e - ~ e§  events is mainly concen- 
trated at the edges of the barrel electromagnetic calorimeter, 
events used in the asymmetry determination are restricted to 
Icos0tl < 0.7. 

For the determination of the forward-backward asymme- 
try we take only those events where the charges of the two 
tau jets have unequal sign (85% of the 1992 data sample). 
The probability for a reversed assignment of the charges in 
these events is determined from the ratio of like and unlike 
sign events in the data to be (1.20 4- 0.05)%. We correct the 
observed asymmetry for the charge confusion and assign a 



Table 6. Systematic uncertainties on the tau-palr forward-backward asym- 
metry, A~o 

Source of systematic uncertainty Contribution to 6A~b 
Charge confusion 0.001A~o 
Fiducial volume 0.003 
Cosmic-ray background 0.001 
Total systematic uncertainty 0.003 

residual systematic error on the asymmetry of  0.00lAmb due 
to charge confusion. 

The systematic uncertainty due to the subtraction of the 
e+e - ~ e+e-(3") background in conjunction with a variation 
of the fiducial volume cut in Icos0tl is estimated to be at 
most 0.003. Since the asymmetry of Z decays into muon 
pairs is expected and measured to be close to that of  Z 
decays into tau pairs, the remaining background of dimuon 
events does not change the observed tau asymmetry. The 
uncertainty introduced by the cosmic-ray background is less 
than 0.001. 

The contributions to the systematic error on the asymme- 
try measurement are summarized in Table 6. We assign an 
absolute error of  0.003 on the forward-backward asymmetry 
of  the reaction e+e - --+ T+T-(3"). 

The differential cross section, da~-/dcos 0, of the reac- 
tion e+e - ~ T+T-(3') for events collected at 91.29 GeV 
(1992 data) is shown in Fig. 8. The result for the forward- 
backward asymmetry obtained from a fit to this distribution 
agrees with the result from the maximum-likelihood method. 
The forward-backward asymmetries for the different center- 
of-mass energy points are listed in Table 13 of  Sect. 5. The 
asymmetries are compared to the result of  a fit to the com- 
plete data set in Fig. 18 of  Sect. 6. 

4.4 e+e - --+ e+e-(3") 

Event  se lec t ion.The selection of e+e - ---+ e+e-(3') events 
makes use of  the fact that such events deposit a large amount 
of  electromagnetic energy concentrated in a small number 
of  BGO clusters. The events must satisfy at least one of the 
following three requirements: 

1. There must be at least two clusters in the electromag- 
netic calorimeter. The highest energy cluster must have an 
energy measured in the BGO, Emax, larger than 0.9Et~am. 
The second cluster must have an energy larger than 2 GeV. 

2. The sum of the energy of the four highest energy 
clusters in the electromagnetic calorimeter, EBco, must be 
larger than 70% of the center-of-mass energy. 

3. When there is no second cluster in the electromag- 
netic calorimeter with an energy larger than 2 GeV, we re- 
quire a cluster in the hadron calorimeter with electromag- 
netic shower shape and at least 7.5 GeV energy opposite 
to the leading cluster. This recovers events (0.4% of the fi- 
nal sample) with energy leaking through the BGO support 
structure. 

The acollinearity angle, (, between the directions of the two 
clusters of  highest energy is required to be less than 25 ~ . 
We also require less than 15 clusters in total to suppress the 
hadronic Z decays. 
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Table 7. Systematic uncertainties on the e+e - ~ e+e-(') ,) cross section, 
ere, excluding the luminosity error 

Source of systematic uncertainty Contribution to 6ae/ae [%] 
Selection cuts 0.26 
Monte-Carlo acceptance and efficiency 0.11 
Background subtraction 0.13 
Trigger inefficiency 0.01 
Total systematic uncertainty 0.31 

The cross section and forward-backward asymmetry are 
measured at large polar angles, where the relative contribu- 
tion of  the s-channel Z exchange is dominant. 

Two event samples are maintained as in the luminos- 
ity analysis. The first sample consists of  the selected events 
where the highest energy cluster on the +z side has a po- 
lar angle 0 > 44.69 ~ The second sample consists of the 
selected events where the highest energy cluster on the - z  
side has a polar angle 0 < 135.31 ~ These angles correspond 
to a distance of  1.5 crystal widths away from the edges of  
the barrel electromagnetic calorimeter. The average cross 
section of  the two samples has a reduced sensitivity to beam 
offsets and differences in the beam spot shapes between data 
and Monte-Carlo events. A symmetric fiducial volume cut, 
44 ~ < 0 < 136 ~ for the two highest energy clusters, which 
excludes the outermost ring of  barrel crystals, gives consis- 
tent results once the beam spot parameters in the simulation 
are tuned to the experimental values. 

Figure 9 shows the distribution of  the energy of  the high- 
est energy cluster and the energy sum of the four highest en- 
ergy clusters, comparing the data to fully simulated Monte- 
Carlo events. 

Cross section. The efficiency of  the selection, (97.29+0.10)%, 
is determined using Monte-Carlo events generated with the 
program BHAGENE3 [20], which generates up to three 
radiative photons in the final state. As a cross-check we 
also use events generated to first order with the program 
BABAMC [11]. The efficiencies estimated with the two 
event generators agree to within 0.1%. 

The exact knowledge of  the geometry of  the barrel elec- 
tromagnetic calorimeter is important for the angular cuts. 
By comparing the survey measurements with the data from 
the central tracking chamber and the hadron calorimeter we 
estimate the error in the definition of the fiducial volume to 
be less than 0.05 ~ which corresponds to a systematic error 
of 0.15% in the measured cross section. 

The selection quantities show good agreement between 
the data and the Monte-Carlo prediction (Fig. 9). The sys- 
tematic uncertainties of  the selection are estimated from vari- 
ations of the cuts around their nominal values. The energy 
cuts contribute with 0.21% and the angular cuts with 0.16% 
to the total systematic error. 

The background, estimated using fully simulated Monte 
Carlo events, consists of  (1.53-t-0.09)% T§ events and 
(16.4 +0 .1 )  pb of e+e - ~ 3'7(')') events at the Z peak. The 
background of hadronic events is below 0.1%. 

The e§ - ~ e+e-(3") events are triggered by the energy, 
central track or scintillator multiplicity triggers. The cross 
section is corrected for the overall trigger inefficiency of  
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Fig. 10. a,b Distributions of quantities used for the charge assignment in e+e - ~ e+e - (9") events�9 a Scatter plot of sin A~b versus Ap (defined in the 
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(0 .06 i 0 .01)%.  T h e  con t r i bu t i ons  to the  sys temat ic  error  on  
the c ros s - sec t ion  m e a s u r e m e n t  are s u m m a r i z e d  in Table  7. 
W e  ass ign  a sys temat i c  e r ror  o f  0 .3% on  the  total  cross  sec- 
t ion of  the  r eac t ion  e+e - ---+ e+e-( -7) ,  exc lud ing  the  er ror  on  
the  l uminos i ty  m e a s u r e m e n t � 9  

T h e  n u m b e r  o f  se lec ted  even t s  and  the  cross  sec t ions  for  
the  d i f fe ren t  c e n t e r - o f - m a s s  ene rgy  po in t s  are l is ted in Ta- 
ble  12 o f  Sect.  5. The  m e a s u r e d  cross  sec t ions  are c o m p a r e d  
to the  resu l t  o f  a fit to the  c o m p l e t e  da ta  set in Fig. 16 o f  
Sect.  6. 

Forward-backward  asymmetry.  T h e  a s y m m e t r y  m e a s u r e m e n t  
uses  the  even ts  pass ing  the  s y m m e t r i c  f iducia l  v o l u m e  cut. 
The  charges  o f  the ou tgo ing  par t ic les  are d e t e r m i n e d  by  the  
t racks  in the  cent ra l  t r ack ing  c h a m b e r .  We  requ i re  two  t r acks  
c o r r e s p o n d i n g  to the  two  leptons .  In the  p l a n e  t r ansve r se  to 
the  b e a m  direct ion,  one  o f  the  two  has  to m a t c h  to the  h igh-  
est  energy  c lus ter  wi th in  25 m r a d  and  the  s econd  t rack  to 
the  second  c lus te r  wi th in  50  mrad.  W e  def ine  two  separa-  
tors  wh ich  shou ld  have  pos i t ive  va lues  i f  the  first t rack  is a 
pos i t ron  and  nega t ive  va lues  i f  it is an e lec t ron:  

1. A p  = P] - P2, whe re  p = /3 sin 0. Th i s  separa to r  is 
the  d i f fe rence  of  the  s igned  curva tures ,  t3 oc q / p •  cor rec ted  
for  the i r  0 dependence ,  of  the  two  t racks  as m e a s u r e d  by  
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Fig. 11, The differential cross section, dcre/d cos 0, as a function of the 
polar scattering angle, cos 0, of the final-state fermion for e+e- ---* e+e - (7) 
events on the Z peak (1992 data) 

the central tracking chamber. For single tracks of 45 GeV 
momentum, the lever arm of 31 cm in the central chamber 
leads to a resolution on the curvature of 75% after including 
the average interaction point as a constraint in the track fit. 

2. sin A~b = sin(~l - ~2)(sin 01 + sin 02)/2, where q~ is 
the azimuthal angle of a straight line fitted to the hits form- 
ing a track. The factor (sin 01 + sin 02)/2 corrects for the 
0 dependence of the difference in these azimuthal angles. 
This separator, exploiting the good angular resolution of the 
central tracking chamber, is useful for events without hard 
photon radiation. 

As shown in Fig. 10a, the events cluster in the (Ap, sin A0)  
plane around two centers, C§ and C_,  with coordinates C+ = 
+(7.1 - 10-3m -1, 1.9 �9 10-3). The Gaussian widths of  the 
clusters in the coordinates, Ap and sin AqS, are OAp = 3.4 - 
10-3m -1 and crzx~ = 0.56- 10 -3, respectively. These widths 
are used to calculate the distances, d+ and d_,  of each event 
in the ( A p / a A ; ,  sin Aq~/crA~) plane to the two centers. The 
quantity ~,~ = d_/(d§ + d_), whose distribution is shown in 
Fig. 10b, determines the charge flow in the event. If  ~ > 
0.5, meaning the event is closer to C+ than to C_, the first 
track is recognized as a positron. If  ~ < 0.5, meaning the 
event is closer to C_,  the first track is recognized as an 
electron. 

This procedure has been studied with the #+/z-(7) sam- 
ple where the charge is determined independently with much 
higher precision by the muon spectrometer. We have re- 
versed charge assignment for (3.1 4- 0.2)% of the events in 
the 1992 data sample and for (4.0 4- 0.3)% of the events 
in the 1991 data sample. As this charge confusion is the 
main source of  systematic error in the asymmetry measure- 
ment we have studied a subset of the events with much 
lower charge confusion by selecting events with tracks out- 
side the lower precision regions close to the cathode and 
anode planes of the central tracking chamber. After correc- 
tion for the reversed charge assignment the asymmetries of 
the two samples agree to within 0.0020. 

Table 8. Systematic uncertainties on the e+e - ---* e+e-(,7) forward- 
backward asymmetry, A~o 

Source of systematic uncertainty Contribution to r 
Charge confusion 0.0020 
Width of interaction region in z 0.0010 
Tau-pair background 0.0005 
Total systematic uncertainty 0.0023 

The polar angles of  the scattered leptons are determined 
from the reconstructed center of  the cluster in the electro- 
magnetic calorimeter and the average position of the e§ - 
interaction point. The polar angle, 0, is measured with a res- 
olution of 1 ~ which is dominated by the longitudinal width 
of the interaction region, crz ---- 8 mm. 

The forward-backward asymmetry, A~b, is measured by 
counting the events in the forward and backward hemi- 
spheres. The data are corrected bin-by-bin for the cos 0 de- 
pendent acceptance and charge confusion. The efficiency of  
the track selection is estimated using the data itself by com- 
paring the events selected for the asymmetry measurement 
and for the cross-section measurement, where only calori- 
metric information is used. To reduce the sensitivity to beam 
spot offsets, the asymmetry is measured twice using the scat- 
tered e -  or the e § The average of  the two measurements 
determines the asymmetry, A~, of the event sample. 

The contributions to the systematic error on the asymme- 
try measurement are summarized in Table 8. We assign an 
absolute error of  0.002 on the forward-backward asymmetry 
of the reaction e+e - --~ e+e-(7).  

The differential cross section, &re/d cos 0, of the reaction 
e+e - ~ e+e-(7)  for events collected at 91.29 GeV (1992 
data) is shown in Fig. 11. The forward-backward asymme- 
tries for the different center-of-mass energy points are listed 
in Table 13 of Sect. 5. The measured asymmetries are com- 
pared to the result of a fit to the complete data set in Fig. 19 
of  Sect. 6. 

5 Cross-section and forward-backward asymmetry 
results 

Tables 9 to 13 summarize our measurements of  the cross 
sections and forward-backward asymmetries from the 1990, 
1991 and 1992 data. These are used as input to the analy- 
sis described in Sect. 6. The quoted cross sections are total 
cross sections extrapolated to the full solid angle of  47r, ex- 
cept for the process e+e - ~ e+e-(7) ,  where the measured 
total cross sections, cr e, and the measured forward-backward 
asymmetries, A~,, are within a restricted fiducial volume of 
44 ~ < 0 < 136 ~ and with an acollinearity-angle cut of 

< 25 ~ 
For completeness, we also give the s-channel contribu- 

tion to the process e+e - ---+ e+e-(~,) extrapolated to the full 
solid angle. Using the analytical program ALIBABA [21], 
which calculates this process in the framework of the SM, 
we correct the measured total cross sections and forward- 
backward asymmetries for the t-channel and s/t-interference 
contributions expected in the SM. The calculations to derive 
the extrapolated s-channel cross section, cry, and its statistical 
error, &r s, are as follows: 
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'Ihble 9. Cross sections for e+e - ---, hadrons(3'), extrapolated to the full 
solid angle. The quoted systematic error excludes the uncertainty of 0.6% 
in the luminosity 

V ~ [GeV] Ne~n~ 
88.231 1525 
89.236 3600 
90.238 6147 
91.230 79157 
92.226 8182 
93.228 5922 
94.223 3752 
Tot~s 108285 

Sys~matic uncertainty 

1990 Dam 
[nb - l ]  

339.4 
422.9 
330.9 

2624.0 
374.4 
480.3 
465.7 

O-h~t [nb] 
4.464-0.12 
8.524-0.15 

18.684-0.26 
30.444-0.13 
22.01 4-0.27 
12.384-0.17 

8.064-0.14 
5037.6 

4-0.3% 

[GeV] Neve.~ 
91.254 155192 
88.480 4051 
89.470 8531 
90.228 14341 
91.222 90686 
91.967 16070 
92.966 10869 
93.716 7953 
Totals 307693 

Sys~matic uncertainty 

1991 Data 

[ n b - l ]  O-had [nb] 
5124.9 30.454-0.10 

781.9 5.224-0.09 
846.7 10.154-0.12 
793.3 18.214-0.18 

3010.8 30.33-t-0.13 
657.6 24.644-0.24 
758.2 14.444-0.16 
793.6 10.104-0.13 

12783.0 
4-0.15% 

1992 Data 
v ~  [GeV] Nevents [ ~ [nb - l ]  O'ha d [nb] 

91.294 677596 ] 22424.7 30.4514-0.047 
Systematic uncertainty 4-0.15% 

Table 10. Cross sections for e+e - ~ /~+~-(7), extrapolated to the full 
solid angle. The quoted systematic error excludes the uncertainty of 0.6% 
in the luminosity 

1990 Data 
x/s  [GeV] 

88.231 
89.236 
90.238 
91.230 
92.226 
93.228 
94.223 
Totais 

Sys~matic uncertainty 

Neven~ 
66 

104 
217 

2675 
282 
160 
123 

3627 

[ n b - l ]  O-u [nb] 
388.6 0.2684-0.033 
421.0 0.3884-0.038 
364.9 0.9314-0.063 

2822.4 1.4784-0.028 
394.8 1.1164-0.066 
496.6 0.5064-0.040 
480.4 0.4054-0.036 

5368.7 
4-0.8% 

1991 Data 
x/~ [GeV] Neven~ 

91.254 5182 
88.480 135 
89.470 280 
90.228 471 
91.222 2778 
91.967 567 
92.966 368 
93.716 267 
Totals 9547 

Sys~mafic uncertainty 

[nb- 1] O-~ [nb] 
5039.5 1.5104-0.021 

779.4 0.259+0.022 
849.9 0.486+0.029 
793.2 0.8714-0.040 

2925.6 1.3934-0.026 
699.9 1.1904-0.050 
758.2 0.7184-0.037 
829.8 0.4784-0.029 

12675.5 
4-0.5% 

1992 Data 
x/s  [GeV] ] Neven~ ~ [nb -1] 

91.294 I 20752 20748.5 
Systematic uncertainty 

o-~ [nb] 
1.4664-0.010 

4-0.5% 

Table U .  Cross sections for e+e - --~ r+ r - ( ' ~ ) ,  extrapolated to the full 
solid angle. The quoted systematic error excludes the uncertainty of 0.6% 
in the luminosity 

v ~ [GeV] Neven~ 
88.231 36 
89.236 86 
90.238 138 
91.230 1887 
92.226 190 
93.228 133 
94.223 94 
Totals 2564 

Sysmmafic unce~mnty 

1990 Data 
0o~ [nb - l ]  O-~ [rib] 

337.4 0.2194-0.036 
404.2 0.4454-0.048 
319.4 0.9124-0.078 

2717.7 1.472+0.034 
365.9 1.0974-0.080 
471.7 0.5924-0.051 
476.7 0.4114-0.042 

5093.0 
4-0.9% 

1991 Data 
yes [GeV] Neven~ 

91.254 3720 
88.480 95 
89.470 229 
90.228 359 
91.222 2102 
91.967 425 
92.966 248 
93.716 225 
Totals 7403 

Sys~mafic uncertainty 

$6' [nb -1]  O-~ [nb] 
4902.6 1.5074-0.025 

779.4 0.2364-0.024 
850.0 0.5324-0.035 
793.3 0.8864-0.047 

2882.3 1.449+0.032 
689.3 1.2264-0.059 
758.2 0.642+0.041 
829.9 0.5354-0.036 

12484.0 
4-0.7% 

1992 Data 
x/~ [GeV] Neven~ . ~  [nb -1] O-~ [nb] 

91.294 15300 20327.4 1.4724-0.012 
Systematic uncertainty 4-0.7% 

Table 12. Cross sections for e+e - --~ e+e - (7). O-e is the efficiency cor- 
rected cross section for both leptons inside the angular range 44 ~ < 0 < 
136 ~ with an acollinearity angle cut of ~ < 25 ~ . O-s is the s-channel contri- 
bution to the cross section extrapolated to the full solid angle (no acollinear- 
ity cut), see text. The quoted systematic error excludes the uncertainty of 
0.6% in the luminosity 

1990 Data 
x /s  [GeV] Neven~ ~ [nb - l ]  

88.231 120 380.1 
89.236 237 466.3 
90.238 310 359.3 
91.230 3020 2960.9 
92.226 276 397.4 
93.228 198 505.5 
94.223 104 485.7 
Totals 4265 

Systematic uncertainty 

O-e [nb] 
0.3344-0.030 
0.5334-0.034 
0.896+0.050 
1.0534-0.019 
0.7164-0.043 
0.406+0.029 
0.2234-0.022 

s [nb] O-e 

4-0.4% [ 

0.1864-0.052 
0.4724-0.057 
1.0374-0.082 
1.469+0.031 
1.1374-0.070 
0.6594-0.048 
0.3444-0.037 

5555.2 
4-0.5% 

x/~ [GeV] Neven~ 
91.254 5626 
88.480 312 
89.470 487 
90.228 620 
91.222 3222 
91.967 580 
92.966 316 
93.716 248 
Totais 11351 

Systematic uncertainty 

1991 Data 

~%~ [nb -1]  O-e [nb] 
5548.4 1.0334-0.014 

781.9 0.405+0.023 
860.4 0.5744-0.026 
793.3 0.7944-0.032 

3076.2 1.0694-0.019 
735.7 0.800+0.033 
758.2 0.4234-0.024 
831.6 0.304-t-0.019 

13089.6 
4-0.3% 

s [nb] O-e 
1.444+0.023 
0.2974-0.040 
0.5284-0.043 
0.8694-0.052 
1.4924-0.031 
1.242+0.054 
0.687+0.040 
0.4864-0.032 

I 4-0.4% 

[GeV] Nevents 
91.294 22726 

Systematic uncertainty 

1992 Data 
[nb-  1] ere [nb] 

22189.4 1.0554-0.007 
O-s [nb] 

1.491 -I-0.011 
4-0.3% 4-0.4% 
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Table 13. Forward-backward asymmetries, A~o, for e+e - ~ g+g- (7), g = #, % e, including a cut on the acollinearity angle, r < 15 ~ for muons, ~ < 14.3 ~ 
for taus, and r < 25 ~ for electrons. A~o is the asymmetry determined from counting in the angular range of 440 < 0 < 136 ~ for both leptons. A ~  s is the 
s-channel contribution to the forward-backward asymmetry extrapolated to the full solid angle (r < 25~ see text 

v ~  [GeV] 
88.231 
89,236 
90.238 
91.230 
92.226 
93.228 
94.223 

Systematic uncertainty 

[GeV] 
91.254 
88.480 
89.470 
90,228 
91,222 
91.967 
92,966 
93.716 

A~ 
-0.3914-0.117 
-0 .044•  
-0.1844-0,074 

0.0064-0.021 
0.t 10• 
0,095• 
0.134• 

• 

1990 Data 
A~ 

-0.364-0.20 
0,004-0.15 

-0.134-0.11 
0.0774-0.028 

0.094-0.09 
0.074-0.11 
0.044-0.13 

4-0.005 

A~, 
0.5204-0.095 
0.2964-0.070 
0.1554-0.064 
0.1014-0,021 
0.0404-0,069 
0.0834-0,081 
0.1444-0.118 

4-0.004 

e~s 
Afh 

-0.1414-0,344 
--0.1934-0,136 
--0.1324-0.091 
--0,014-1-0.025 

0.0334-0.071 
0,0924-0.082 
0.1124-0.129 

4-0.005 

A~ 
0.028-t-0.014 

--0.197-t-0.097 
-0.19121_0,063 
--0,1014-0,050 
--0.0024-0.020 

0.058• 
0.1174-0.056 
0.089+0.065 

1991 Data 
A~ 

0,037-1-0.021 
-0.1064-0.128 
- 0.1524-0.083 
-0.1374-0,070 
-0,0324-0,029 

0.0424-0,063 
0,1614-0.080 
0,0584-0.082 

A~ 
0.1104-0.016 
0.3844-0.063 
0,3334-0.051 
0.2534-0,046 
0.125 :t:0.022 
0.1674-0.048 
0.0704-0.066 
0.1504-0.074 

e #  Afb 
-0.0024-0.019 
--0.2324-0.156 
--0.081 4-0.098 
--0.0374-0.071 

0.0144-0,026 
0,1474-0,051 
0.0804-0.067 
0.1474-0.077 

Systematic uncertainty +0.002 -t-0.005 4-0.004 4-0.005 

1992 Data 
v/~ [GeVI 

91,294 
A~b A~  

0.007• 0,015+0.010 
A~ 

0,104-t-0.007 

r  A~ 
0.001-t-0.008 

Systematic uncertainty 4-0.002 +0.003 +0.002 +0.003 

t+s/t o ] o"eS = o"e - o"e (44 < 0 < 136 ~ ~ < 25~ ( s ) 
o.e 

o"es(44 ~ < 0 <  136 ~ , ~ < 2 5  ~ ) SM 

( ) o"e 
*o"~ 6o"e I 

oreS(44~ < 0 < 136 ~ , ~ < 25 ~ ) SM" 

In the case of  the forward-backward asymmetry,  Am = 
(Of - -  o.b)/(o.f  + o.b), w e  perform the analogous c a l c u l a t i o n  
for o.f and o"b. The extrapolated s-channel cross sections, 
a~, without any cuts, and s-channel asymmetries, A~ s, with 
an acollinearity angle cut of  ( < 25 ~ are also given (Ta- 
bles 12 and 13). The additional systematic errors introduced 
by this procedure are estimated to be 0.2% in the case of  
cross sections and 0.002 in the case of  asymmetries. They 
are given by the uncertainties in the corrections due to the 
allowed range of  values for the SM parameters used for 
the ALIBABA calculations, r a z  = 91.195 + 0 .009GeV,  
as = 0 . I23  -4- 0 .006 [4], and taking r a t  = 150 + 5 0 G e v ,  
raH : 300+7% ~eV. 

All results are corrected for the 51 MeV spread in the 
center-of-mass energy, which is due to the finite spread of 
the particle energy in the LEP beams [22]. The correction is 
largest for cross sections on the peak, where it increases the 
observed cross section by 0.14%. The split of the 1991 data 
sample taken at the peak energy is introduced because the 
accuracy in the calibration of the LEP beam energy changed 
during the 1991 run [22]. 

6 Determination of  electroweak parameters 

Three different approaches are used to extract the elec- 
troweak parameters from the measured total cross sections 
and forward-backward asymmetries. 

The first two approaches determine the electroweak pa- 
rameters making a minimum of assumptions about any un- 
derlying theory, for example the Standard Model (SM). The 
first approach uses only the total cross-section data to de- 
termine the parameters of the Z boson, its mass, mz,  total 
decay width, 1-'z, and partial decay width to fermion pairs 
( f  f ) ,  l"f. The second approach also includes the asymme- 
try data, which allows the determination of the coupling 
constants of the neutral weak current. The third approach 
evaluates all the data within the framework of  the SM in 
order to determine the input parameters of  the SM, such as 
the mass of  the top quark. 

In all three approaches, a Breit-Wigner ansatz is used to 
describe the Z boson. The mass, raz, and the total width, 
Fz ,  of  the Z boson are defined by the functional form of  
the Breit-Wigner denominator, which explicitly takes into 
account the energy dependence of  the total width. The total 
cross section to lowest order, o.o, for the process e+e - -4 f f ,  
f 5~ e, is given by the sum of three terms, the Z exchange, 

o and the 7 Z  interference, o . o.z,~ the photon exchange, o..~, O'in t- 

o o o (1) o.o = O'Z + O.'~ + o.int 

o ror  
s r u m  z (2) 

o 47rc~2 2 2 f 
o" 7 = --~s q e q f N ~  (3)  
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4710z 2 S - -  m 2 
o'i~ t (4) 

3 ~  _ m2z)2 + s21"}/m2z ' 

where qy is the electric charge of the final-state fermion, N c  y 
its color factor, and a the electromagnetic coupling constant. 
The pure photon exchange is determined by QED. 

The first two approaches treat the mass and the total and 
partial widths of the Z boson as free and independent param- 
eters. The interference of the Z exchange with the photon 
exchange adds another parameter, the "),Z-interference term, 
J.f, besides those corresponding to mass and widths of the 
Z. Since in the SM [o'i~t(8)l ,~(g~ for center-of-mass 
energies, v/s, close to mz, it is difficult to measure Jy ac- 
curately at current LEP energies [23]. The 7Z-interference 
term is usually taken from the SM [3-5, 24, 25], thus making 
assumptions about the form of the electroweak unification. 
If instead the ")'Z-interference term is determined from the 
data, the errors on correlated parameters, such as the mass 
of the Z boson, are increased [23]. 

The second approach determines the vector and axial- 
vector coupling constants of the neutral weak current to 
charged leptons, g e and 9 e ,  by using the forward-backward 
asymmetries in addition to the total cross sections. For 
center-of-mass energies close to mz, the forward-backward 
asymmetry to lowest order, A~, t, for the process e+e - 
g+g-, g -7' e, is given by: 

3 I ( 1  AeAe) A~e(s) = AeAt 1 + qeqe g~gf e e 
gAgA 

x GFm~ 

Ae = 2 ge ge A (6) 
( g ~ ) 2  + ( g ~ ) 2 "  

In (2) and (4), the leptonic partial width, T'g, and the leptonic 
7Z-interference term, Jg, are now expressed in terms of 9~v 
and g e: 

G Fm3z 
Fe-  6V/~Tr [(9~) 2 +(geA) 2] (7) 

G F m 2  e e 
J t -  ~ q e q e g v g v ,  (8) 

where GF is the Fermi coupling constant. This approach 
cannot be applied to the hadronic final state, which is 
summed over all colors and open quark flavors. Therefore, 
the parameterization of the first approach is used to express 
the hadronic cross section in terms of/'had and Jhad- 

The forward-backward asymmetry measures the vector 
and axial-vector coupling constants, 9e  and geA, in a different 
combination than Fe. Its energy dependence distinguishes ge y 
and g~, see (5). 

The QED radiative corrections on the total cross sections 
and forward-backward asymmetries are included by convo- 
lution and by the replacement a ~ c~(s) = a / (1  - Aa)  to 
account for the running of the electromagnetic coupling con- 
stant [26, 27]. Weak corrections cannot be calculated without 

assumptions about the underlying electroweak theory, such 
as the mass of the top quark, rot, and the mass of the Higgs 
boson, mH, in the SM. Therefore, we define the effective 
coupling constants, ~ and g~a, which absorb these weak 
corrections. 

Assuming lepton universality, the effective couplings are 
expressed in terms of the effective electroweak mixing angle, 
sin 2 0w,  and the effective ratio of the neutral to charged 
weak current couplings, ~ = 1/(1 - A~) [28]: 

ff~v = V/~" (/3 e - 2qe sin 2 0w)  (9) 

-ffeA= X/~" Ie3, (10) 

where I e is the third component of the weak isospin of the 
lepton, g. 

The third approach to determine electroweak parameters 
uses the framework of the SM. By comparing its predictions 
with the set of experimental measurements, it is possible to 
test the consistency of the SM. 

The input parameters of the SM are a,  the fermion 
masses, mH, mz, and the mass of the W boson, row. 
QCD adds one more parameter, the strong coupling constant, 
as. The electromagnetic coupling constant and the fermion 
masses, with the exception of the top-quark mass, are known 
with sufficient precision. The effect On the radiative correc- 
tions due to the mass of the Higgs boson is too small to be 
measurable. While the Z mass is measured with high pre- 
cision at LEP, the mass of the W boson is not known with 
similar precision. Therefore, mw is replaced by the Fermi 
coupling constant, GF, measured in muon decay, using the 
relation [29]: 

GF 7ra 1 1 
x/2 = 2 mZsin2Owcos20w 1 - Ar (11) 

where sin 20w is defined as: 

sin 20w = 1 m~v m~ ' (12) 

and Ar  takes into account the electroweak radiative correc- 
tions, Ar  = A a -  cot 20wA~ + Arremainder [29]. With this 
procedure the relevant unknown parameters of the SM are 
mz, as and mr. 

The results of the three approaches are given in the sub- 
sections below. 

In all three analysis procedures we use the analytical pro- 
gram ZFITTER 4.60 [19] for the calculation of the higher- 
order corrections and the predictions of the SM. ZFIT- 
TER includes electroweak radiative corrections to ~ ( a )  
and a common exponentiation of initial- and final-state 
bremsstrahlung. The corrections to ~ ( a  2) are taken into 
account in the leading-log approximation and include the 
production of photon and fermion pairs in the initial state. 
Furthermore, the & ( a )  and ~(c~ 2) corrections are supple- 
mented with the ~(aasm2t/m~v) and the G(ce2m4/m~v) 
corrections from top-quark insertions in the gauge-boson self 
energies and in the Zbb vertex. In the case of the b-quark 
asymmetries, the ~(aasm2/m~v) corrections of the Zbb 
vertex are not included as they are not yet available. QCD 
corrections in final states with quarks are considered up to 
c~(a3). 



The electroweak parameters are determined in a X 2 fit 
using the MINUIT program [30]. The X 2 is constructed from 
the measurements, their errors including the correlations, and 
the theoretical expectations. 

In the case of the process e+e - --+ e+e-(q'), the existence 
of the t-channel exchange of the q, and Z bosons and its 
interference with the s-channel exchange lead to additional 
complications. Analytical programs to calculate this process, 
such as the program ALIBABA [21], are not directly suited 
for fitting purposes, as computationally they are very time 
consuming. Thus, the following procedure is adopted. Dur- 
ing the initialization of a fit, ALIBABA is used once to cal- 
culate the predictions of the t-channel and s/t-interference 
contributions to the measured e+e - --~ e+e-(~/) cross sec- 
tions and forward-backward asymmetries. ZFITTER is used 
during the fits to calculate the corresponding s-channel con- 
tributions as a function of the varying electroweak param- 
eters. Since the t-channel and s/t-interference contributions 
also depend to some extent on the fitted parameters such as 
mz, the fits are iterated. This procedure converges after two 
iterations. The systematic error introduced by this treatment 
is included in the total error. 

In addition to the experimental errors, we take into ac- 
count the uncertainties in the determination of the LEP 
center-of-mass energy [22]. The dominant systematic error 
on mz arising from the LEP energy calibration is due to the 
error on the absolute energy scale, which for the 1990 data 
is 26 MeV, for the 1991 data before 14 August is 18 MeV 
and 5.3 MeV thereafter, and for the 1992 data is 18 MeV. 
This leads to a systematic error of 7 MeV on the Z mass. 
The systematic error on Pz due to the LEP energy calibra- 
tion is 5 MeV, which is dominated by the uncertainty in the 
relative energy scale. 

Further details about the fitting procedures can be found 
in [4]. 

6.1 Properties of the Z boson 

Using the first approach described above, we carry out fits to 
the total cross-section data of the reactions e+e - ---* hadrons, 
e+e - ,  p + p -  and ~-+7- to determine the mass and the total 
and partial widths of Z boson. The results are summarized 
Table 14. For the mass, mz, and the total width, / 'z ,  we 
find: 

Mz = 91195 + 6 + 7(LEP) MeV (13) 

Fz = 2494 + 9 + 5(LEP) MeV. (14) 

The first error is experimental, and the second error arises 
from the uncertainties in the LEP energy calibration. In this 
fit, the -),Z-interference term, Jy, is fixed to its SM value, 
which leads to an error of less than I MeV on mz due to 
the SM dependence of J I  on mt and mH. 

If we instead leave the leptonic and hadronic ")'Z-inter- 
ference terms as free parameters to be determined from the 
data, we obtain: 

Mz = 91190 4- 6 4- 7 4- 9(Jhad) MeV. (15) 

The correlation between the mass of the Z, mz, and the 
hadronic "),Z-interference term, Jhad, is shown in Fig. 12. In 
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Table 14. Results on the mass and total and partial widths of the Z boson 
derived from the cross-section data. SM expectations are listed using the 
fitted Z mass, r n z  = 91.195 4- 0.009 GeV, as = 0,123 -4- 0.06 and taking 
m t =  150 4- 50GeV, m n  = 300+_7~0 GeV 

Parameters Treatment of charged leptons 
[MeV] Non-universality I Universality 

m z  

r z  
/%ad 

91195 -t- 6 -t- 7 (LEP) 

2494 4- 9 4- 5 (LEP) 

1749 4- 11 
/% 
/% 

/ DOF 

83.43 4- 0.52 

83.20 4- 0.79 

84.04 4- 0.94 

Standard 
Model 

91195 -t- 6 4- 7 (LEP) - -  

2494 4- 9 4- 5 (LEP) 2491+_2~8 

1748 4- 10 1739+_164 

83.49 -t- 0.46 

X 2 52/58 53/60 

83,7~9d65 

such a fit, the uncertainty on the "),Z-interference term sub- 
stantially increases the total error on mz from 9 to 13 MeV. 
The errors on the total and partial widths of the Z boson 
increase only marginally. In order to reduce this additional 
uncertainty on mz, a better determination of Jy is neces- 
sary, which can be achieved by accurately measuring cross 
sections further away from the Z resonance peak [31, 32]. 

If we do not assume universality of charged leptons, we 
obtain the partial decay widths of the Z boson to the three 
types of charged leptons separately. The three partial widths 
are in good agreement with each other (Table 14). Assuming 
lepton universality, we fit for one leptonic partial width, _re, 
instead of three, where 1} is defined as the partial decay 
width of the Z into a pair of massless charged leptons. The 
partial decay widths for the inclusive hadronic and charged 
leptonic final states are given by: 

/"had = 1748 • 10 MeV (16) 

/}  = 83.49 -t- 0.46 MeV. (17) 

Our results on the total and partial widths of the Z boson 
are in good agreement with the predictions of the SM. 

From the total and partial widths and their correlations, 
we derive the decay width of the Z boson into invisible 
particles: 

~inv = / ` Z  - -  / ' h a d  - -  (3 + 6~-),/'e = 496.5 + 7.9 MeV, (18) 

where 6~- = -0.0023 includes the effect of the tau mass [28]. 
Within the SM, the invisible width is exclusively given by 
the decay of the Z into neutrinos. Thus, ffinv determines the 
number, N~, of light neutrino species. In order to obtain 
a result independent of the unknown parameters of the SM, 
such as the top-quark and Higgs-boson masses, the following 
relation is used to evaluate N~,: 

/`inv ( / ` e )  (19) 
N v = - - ~  F'~ SM 

Most higher-order corrections involving mt  and m g  cancel 
in the ratio: 

( / `e  ) = 0.5015 -t- 0.0007, (20) 
SM 

where the error is due to residual mt and m n  dependence 
estimated by varying mt between 100 and 200 GeV, and m n  
between 60 and 1000 GeV. The value of Nv is determined 
to be: 
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o,~ Table 15. Results on the peak hadronic cross section, o'~ad, and peak leptonic asymmetries, An, , unfolded for QED corrections, and ratios of  hadronic 

to leptonic widths, P~ad, derived from the forward-backward asymmetry and cross-section data. SM expectations are listed u s i n g  t h e  fitted Z mass, 
m g =  91.195 4- 0.009 GeV, Ors = 0.123 4- 0.006 and taking m t =  150 4- 50GeV, m n =  300+._72~0 GeV 

Parameter Treatment of  charged leptons Standard 
Non-universality Universality Model 

m z  [MeV] 91195 4- 6 4- 7 (LEP) 91195 4- 6 4- 7 (LEP) - -  
F z  [MeV] 2495 4- 9 4- 5 (LEP) 2495 4- 9 4- 5 (LEP) 2491+__2~s 

a~a d [nb] 41.39 4- 0.26 41.42 4- 0.26 41.43_+~176 

/~ad 20.96 4- 0.15 - -  
P~ad 21.02 4- 0.16 - -  
/~ad 20.80 4- 0.20 - -  
P~ad - -  20.93 4- 0.10 20.77 4- 0.07 
A ~ 0.0104 4- 0.0092 - -  fb 
A~o 't~ 0.0179 4- 0.0061 - -  
mO,'r  "~o,e 0.0265 4- 0.0088 - -  
- -~ - -  0.0184 4- 0.0045 0.014_~6~3 

X 2 / DOF 84/103 87/107 - -  

Table 16. Correlation matrix of the parameters mz ,  F z ,  

Parameter 

Mz 
rz 

eCad 
~ad 
Pqad 

o,e 
Afb 
A ~  'u 
AO,q" 

fb 

~176 ' J~ad and A~b 't, for g = e, #, r ,  not assuming lepton universality 

M z  Fz a~ R~ad R~ad 1Waa ~ A~,e A~, u Ar oo,'r 
1.000 0.079 -0 .004  0.008 0.001 0.000 0.033 0.055 0.038 
0.079 1.000 -0 .106  -0.011 -0 .006  -0 .002  0.004 0.000 0.001 

-0 .004  --0.106 1.000 --0.045 0.069 0.055 0.088 -0 .009  -0 .006  
0.008 --0.011 -0 .045  1.000 0.067 0.052 --0.102 0.002 0.001 
0.001 --0.006 0.069 0.067 1.000 0.050 --0.001 0.012 0.000 
0.000 --0.002 0.055 0.052 0.050 1.000 -0.001 0.000 0.010 
0.033 0.004 0.088 -0 .102  --0.001 --0.001 1.000 0.016 0.011 
0.055 0.000 --0.009 0.002 0.012 0.000 0.016 1.000 0.018 
0.038 0.001 --0.006 0.001 0.000 0.010 0.011 0.018 1.000 

Table 17. Correlation matrix of the parameters mz ,  F z ,  a ~ had' e~ad and 
A~ 'e, assuming lepton universality 

0 0,s 
Parameter Mz  Fz O-ha d /~hgad Afb 

Mz 1.000 0.079 --0.003 0.006 0.074 
Fz 0.079 1.000 --0.108 --0.010 0.002 

tr ~ --0.003 -0 .108  1.000 0.043 0.028 had 
-Rheac 1.. 0.006 --0.010 0.043 1.000 --0.020 

A~ '~ 0.074 0.002 0.028 -0 .020  1.000 I o  

N~ = 2.981 • 0.050, (21) 

where the error is dominated by the error in the luminosity 
measurement. The above results are in agreement with the 
determination of Finv derived from the measurement of the 
e+e - --~ uP 7 cross section [33]. 

6.2 Coupling constants of the neutral weak current 

Fits to the hadronic cross-section and leptonic cross-section 
and forward-backward asymmetry data are performed using 
the second approach described above, with and without the 
assumption of lepton universality. Table 15 summarizes the 
results in terms of the hadronic cross section, trhad, the lep- 

tonic asymmetries, A~ e, at s = m2z and unfolded for QED 
corrections, and the ratio of the hadronic to the leptonic par- 
tial widths, Rhead: 

127r /-~e .Fhad 
ah~ = m2 F2 (22) 

Jhad 4 

-2 
91.15 91'.19 91.23 

m z [GeV] 

Fig. 12. The correlation between the mass of the Z boson, mz ,  and the. 
hadronic "),Z-interference term, ,/had- The 68% and 95% confidence-level 
contours for the two parameters are shown. The band shows the prediction 
for ,/had according to the SM, using as = 0.123 4- 0.006 and taking mt  = 
150 4- 50GeV, m H  = 300+_72~ GeV 

Fhad (23) 
Rhgad-  / .g 

A~ e = 3 AeAe. (24) 
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Fig. 13. The cross section, ahad(S), for the process e+e - ~ hadrons(7 ) 
as a function of x/~. Points with error bars are the measured values. The 
solid line is the result of the fit to the combined cross-section and forward- 
backward asymmetry data, assuming lepton universality. Also shown is 
the ratio of the measured cross section to the fitted cross section for all 
center-of-mass energy points 
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Fig. 14. The cross section, rru(s), for the process e+e - ---+ /z+/z-(7) as 
a function of v'~. Points with error bars are the measured values. The 
solid line is the result of the fit to the combined cross-section and forward- 
backward asymmetry data, assuming lepton universality. Also shown is 
the ratio of the measured cross section to the fitted cross section for all 
center-of-mass energy points 

Figures 13, 14, 15 and 16 show the measured cross sec- 
tions compared to the result of  the fit assuming lepton uni- 
versality, as well as the ratio between the measured and 
fitted cross sections. Figures 17, 18 and 19 show the mea- 
sured forward-backward asymmetries compared to the result 
of  this fit. The measurement of  the average tau polarization, 
~o,~, adds important additional information about ~ e  and g~t, 
because [23]: 

~ r ( S  2 2 if{/ ~ = m z ) = - A r  = (25) (~{/)2 + ( ~ ) 2  

which also determines the relative sign of ~ e  and ~e .  We 
determine the leptonic effective coupling constants using the 
total cross sections and leptonic forward-backward asymme- 
tries, including our measurement  of  ~ r  = - 0 . 1 3 2  4-0.033 
[3]. The results are shown in Table 18. The measurements for 
the three charged lepton species are in good agreement and 
confirm the hypothesis of  lepton universality. Assuming this 
hypothesis, we determine the effective coupling constants 
for charged leptons to be: 

~ e  = _0.0378+_06.004452 (26) 

~ = - 0 . 4 9 9 8  + 0.0014. (27) 

The allowed region of  values in the (~ev, ~ e )  plane is shown 
in Fig. 20. Good agreement with the predictions of the SM 
is observed. 

�9 From the above values of  the effective coupling constants 
and their correlation, we derive the effective electroweak 
mixing angle, sin 2 8 w ,  and ~: 

s in28w = 0.2312 4- 0.0022 (28) 

= 0.9992 4- 0.0056. (29) 

As in the case of  leptons, the bb forward-backward asym- 
metry also gives information about sin 2 0 w  [36]. Including 
our measurement of  A ~  = 0.086 4- 0.017 [37], we obtain: 

sin 2 0 w  = 0.2319 4- 0.0018. (30) 

6.3 Results in the framework of  the standard model 

The measurements of  the hadronic cross sections, leptonic 
cross sections and forward-backward asymmetries,  average 
tau polarization, bb forward-backward asymmetry are used 
to estimate the mass of  the top quark in the f ramework of  the 
SM. We also include our measurement of  the Z ---+ bb partial 
width, ffb/ffhad = 0.222 4- 0.008 [38]. Using the third ap- 
proach described above, the free parameters in the fit based 
on the SM are mz,  mt  and the strong coupling constant, ces. 
The results are: 

M z  = 91.195 -4- 0.009 GeV (31) 

C~s = 0.142 4- 0.013 + 0.002(Higgs) (32) 

mt = 142+__379*_189(Higgs) GeV. (33) 

The second error expresses the shift in the central values 
of  C~s and mt for a variation in the mass of  the Higgs bo- 
son, roB, from 60 to 1000 GeV around the central value 
of 300 GeV. The correlation between as  and mt  is shown 
in Fig. 21. The measurement of  _Rhead alone also constrains 
the strong coupling constant [39]. Our measurement of/ghead 
yields as = 0.141 + 0.012. Both c~s values are in agreement 
with our measurement of the strong coupling constant from 
hadronic event topologies and tau decays, C~s = 0.123 4-0.006 
[4]. Constraining as to this independent result, the determi- 
nation of mt improves: 
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Table 18. Results oh the effective coupling constants, ~ ,  and g~t, derived from the tau-polarization, forward-backward asymmetry ~trld cross-section data. 
SM expectations are listed using the fitted Z mass, m 2  = 91.195 + 0.009 GeV, O~s = 0.123 4- 0.006 and taking m t =  150 4- 50 GeV, m H = 300+._72~ o GeV 

Parameter Treatment of charged leptons Standard 
Non-universality Universality Model 

mz [MeV] 
Fz  [MeV] 
/'had [MeV] 

91195 4- 6 4- 7 (LEP) 
2494 4- 9 4- 5 (LEP) 

1749 4- 11 
__/~ n~t ~ + o . 0 o 9 6  

. . . . . .  - -0 .0082  
__f~ / )Af lg+0 .0153  

. . . . . .  - -0 .0211 

--0.0384 + 0.0078 

91195 4- 6 4- 7 (LEP) 
2495 4- 9 4- 5 (LEP) 

1748 4- 10 
2491+_2~S 
1739+1164 

_0.0378_~6.0~2 +o o042 - -  -0.0342_~.0o57 
~ --0.4998-F 0.0016 �9 - -  �9 

--0.4987_b.0026 
~A --0.50144-0.0029 

- -  --0.4998 4- 0.0014 _n  ~f~7 +0.0012 
. . . . . .  - -0 .0014 

X 2 I DOF 86/104 87/108 - -  

..Q 
t- 

1.5. 

v 
F +,-, 

b . '  

1" L 
+ 

v 

D 

0.5 

~_ 1.2 
D 

,~ 1 
E 

D 
0.8 

' ' ' Iq19~2 Data 
A 1991 Data 
O 1990 Data 

8'8 9'0 

1 ' I I I 

} ,  r"" t I 
88 

9'2 94 96 

i , i �9 i , 

90 92 94 96 

VS [ G e V ]  

Fig. 15. The cross section, cr~-(s), for the process e+e - ~ r + r - ( 7 )  as 
a function of x/~. Points with error bars are the measured values. The 
solid line is the result of the fit to the combined cross-section and forward- 
backward asymmetry data, assuming lepton universality. Also shown is 
the ratio of the measured cross section to the fitted cross section for all 
center-of-mass energy points 

rat  = 158+-3420 + 19(Higgs )  G e V ,  (34) 

whi l e  the  resu l t  on  m z  is u n c h a n g e d .  T h e  resu l t  on  m t  is 
cons i s t en t  wi th  cu r r en t  l imi ts  on  the  top -qua rk  mass  de r ived  
f rom d i rec t  sea rches  [40]. 

F r o m  the  fi t ted va lues  o f  r a z  and  m r ,  and for  a s  = 
0 . 1 2 3 •  the  f o l l o w i n g  quan t i t i e s  are der ived:  

s i n 2 0 w  = 0 . 2 3 2 6  + 0 .0012  (35)  

sin 2 0 w  = 0 . 2 2 6 0  + 0 . 0 0 4 2  (36)  

A r  = 0 .045  • 0 .013  (37)  

r a w  = 80 .22  • 0 .22  G e V ,  (38)  

whe re  sin 2 0 w  is def ined  as (1 2 2 - r a w / m z ) .  T h e  error  on  
these  resul t s  due  to the  unce r t a in ty  in the  mass  of  the  Higgs  
b o s o n  is negl ig ib le .  T h e  va lue  o f  the  mass  o f  the  W bo-  

t~ r 

v 
I 

+ 

1" a 
+ 

o 
v 

D 

0.5 

0" 

I ' I ' I ' 

. .o  . . . .  o [] 19~t2 Data 
<u<]~t~ ~ A 1991 Data 

.t / . . \  O 1990 Data 

, - "  t channel "o - . "~ . .  
. . . . . . . . .  

i 

g8 do 

5 
D 0. 

a'a do 

92 94 96 

,r 

i 

92 94  96  

4 s  [ G e V ]  

Fig. 16. The cross section, ae(S), for the process e+e - ~ e+e-(7)  as 
a function of x/'~. Points with error bars are the measured values. The 
solid line is the result of the fit to the combined cross-section and forward- 
backward asymmetry data, assuming lepton universality. The lines showing 
the contributions of the s channel, t channel and s/t interference are com- 
puted with the ALIBABA program. Also shown is the ratio of the measured 
cross section to the fitted cross section for all center-of-mass energy points 

son  as ob ta ined  a b o v e  is in  good  a g r e e m e n t  w i th  the  d i rec t  
m e a s u r e m e n t s  o f  m w  [41]. 

In order  to d i s en t ang le  new  phys ics  b e y o n d  the  S M  f r o m  
the  poss ib ly  large,  u n k n o w n  top -qua rk  co r rec t ions  of  l ead ing  
order  G F m  2, four  new  pa ramete r s ,  el ,  e2, e3 and  eb, h a v e  
been  in t roduced  [42]. The i r  mer i t  l ies in sepa ra t ing  out  the  
rat  d e p e n d e n t  effects  in el and  eb, and  o the r  ( m H )  effects  
in e 2 and  e3. T h e  L E P  da ta  at  the  Z r e s o n a n c e  cons t r a in  El, 
e3 and  eb, the  la t ter  by  the  m e a s u r e m e n t s  o f  b quarks .  Our  
m e a s u r e m e n t s  of  the  had ron i c  cross  sec t ions  and  lep ton ic  
cross  sec t ions  and  a s y m m e t r i e s  cons t r a in  the  p a r a m e t e r s  el 
and  e3, w h i c h  are def ined as: 

el = A ~  (39)  

e3 = (1 -- s Z ) A ~  + (1 -- 2 s ~ ) ( s i n Z - O w / s  2 -- 1) (40)  
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Fig. 17. The forward-backward asymmetry, A~b(S), for the process e+e - ---* 
#+#-(-y) as a function of x/G. Points with error bars are the measured 
values. The solid curve is the result of the fit to the combined cross-section 
and forward-backward asymmetry data, assuming lepton universality 
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Fig. 18. The forward-backward asymmetry, A~b(S), for the process e+e - ---, 
T+T--(7) as a function of vG. Points with error bars are the measured 
values. The solid curve is the result of the fit to the combined cross-section 
and forward-backward asymmetry data, assuming lepton universality 

So2(1 - s~) = [Trc~(ma=)]/[v~GFm2z]. 

W e  f ind  t h e  f o l l o w i n g  v a l u e s  fo r  el a n d  ca: 

el = - 0 . 0 0 0 8  • 0 . 0 0 5 6  

e3 = - 0 . 0 0 1 2  • 0 . 0 0 7 3 .  

(41)  

(42)  

(43)  

T h e  r a n g e  o f  a l l o w e d  v a l u e s  in t he  (e l ,  e3) p l a n e  is s h o w n  in 
F ig .  22.  O u r  va lue s  o f  t he  p a r a m e t e r s  el and  e3 a re  c o n s i s t e n t  
w i t h  t h e  p r e d i c t i o n s  o f  t h e  S M .  
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Fig. 19. The forward-backward asymmetry, A~(s), for the process e+e - 
e+e-(7)  as a function of v'~. Points with error bars are the measured val- 
ues. The solid curve is the result of the fit to the combined cross-section and 
forward-backward asymmetry data, assuming lepton universality. The lines 
showing the contributions of the s channel, a~ -- a~, t channel, tr~ -- try, 

and s/t interference, a ~ / t -  ab/t, normalized to the total cross section, 
o "s + O "t + O "s/t, are computed with the ALIBABA program 
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Fig. 20. Correlation between the effective coupling constants of the neu- 
tral weak current, g v  and gA, for charged leptons. The 68% confidence 
level contours for the two parameters are shown, for each lepton species 
separately (solid contours), and under the assumption of lepton universality 
(dotted contour). The band shows the prediction according to the SM, using 
the fitted Z mass, m z = 91.195 :E 0.009GeV, as = 0.123 4- 0.006 and 
taking rnt = 150 -t- 50 GeV, m H  = 300+__7~40 GeV 

7 Summary and conclusion 

W e  d e t e r m i n e  t h e  e l e c t r o w e a k  p a r a m e t e r s  f r o m  t h e  m e a -  
s u r e m e n t s  o f  t he  r e a c t i o n s  e+e - ---* had rons ( ' 7 ) ,  e§  - ---* 
#+#-(" , / ) ,  e+e - ~ T+T-("~) a n d  e+e - ---* e + e - ( - y ) .  T h i s  in-  
c l u d e s  t h e  d a t a  c o l l e c t e d  by  the  L3  d e t e c t o r  in t h e  y e a r  1992,  
w h e n  L E P  w a s  r u n n i n g  e x c l u s i v e l y  at  t h e  c e n t e r - o f - m a s s  en -  
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Fig. 21. Correlation between the strong coupling constant, O~s, and the 
mass of the top quark, rot, with mH fixed to 300 GeV. The 68% and 95% 
confidence level contours for the two parameters are shown, together with 
our measurement of as from hadronic event topologies and tan decays 
(c~s = 0.123 4- 0.006), and the limit on mt from direct searches (rnt > 
113 GeV) 
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Fig. 22. Correlation between the parameters el and e3 (see text). The 68% 
and 95% confidence level contours for the two parameters are shown. The 
band shows the prediction according to the SM, using the fitted Z mass, 
m z  = 91.195 4- 0.009GeV, as = 0.123 4- 0.006 and taking m t =  150 4- 
50 GeV, m H = qtqfl +7(10 GeV 

~ - - 2 4 0  

ergy of ~ = 91.29 GeV. Together with the data collected 
in 1990 and 1991 in the energy range 88 < ~ < 95 GeV, 
the total data sample used for this analysis corresponds to 
1.09.106 hadronic and 0.98.105 leptonic Z decays selected. 

All our measurements support the hypothesis of lepton 
universality. From the hadronic and leptonic cross-section 
data, we determine the properties of the Z boson: 

Mz = 91195 4- 9 MeV (44) 

Fz = 2494 4- 10 MeV (45) 

-Phad = 1748 4- 10 MeV (46) 

l"e = 83.49 -t- 0.46 MeV. (47) 

The corresponding invisible width of 496.5 + 7.9 MeV con- 
strains, within the SM, the number of light neutrino species 
to be: 

N~ = 2.981 4- 0.050. (48) 

Including the leptonic forward-backward asymmetries and 
the average tau polarization, the effective neutral weak cur- 
rent coupling constants for charged leptons are given by: 

~ev = -0.0378_+~ (49) 

ff~ = -0.4998 4- 0.0014. (50) 

Within the SM, and including our measurement of the Z 
bb forward-backward asymmetry and partial decay width, 
we determine: 

c~s = 0.142 4- 0.013 4- 0.002(Higgs) (51) 

m t =  142+_~9+J89(Higgs) GeV. (52) 

This value of C~s is in agreement with our measurement of C~s 
from hadronic event topologies and tau decays, c~s = 0.123 + 
0.006. Constraining as to this independent measurement, we 
derive: 

m t =  158+_3420 + 19(Higgs) GeV. (53) 

Alternatively, we determine a value for the mass of the W 
boson: 

r a w  = 80.22 4- 0.22 GeV, (54) 

or, expressed in terms of the weak mixing angle: 

sin 20w = 1 - r n ~  = 0.2260 4- 0.0042, (55) 

which corresponds to the following value of the effective 
electroweak mixing angle: 

sin20w = 0.2326 4- 0.0012. (56) 

All our measurements are in good agreement with the pre- 
dictions of the SM. 
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