
Digital Object Identifier (DOI) 10.1007/s10107-003-0497-0

Math. Program., Ser. A 101: 537–559 (2004)

James B. Orlin · Dushyant Sharma

Extended neighborhood: Definition and characterization

Received: October 11, 2002 / Accepted December 4, 2003
Published online: February 6, 2004 – © Springer-Verlag 2004

Abstract. We consider neighborhood search defined on combinatorial optimization problems. Suppose that
N is a Neighborhood for combinatorial optimization problem X. We say that N′ is LO-equivalent (locally
optimal) to N if for any instance of X, the set of locally optimal solutions with respect to N and N′ are the
same. The union of two LO-equivalent neighborhoods is itself LO-equivalent to the neighborhoods. The larg-
est neighborhood that is LO-equivalent to N is called the extended neighborhood of N, and denoted as N∗.
We analyze some basic properties of the extended neighborhood. We provide a geometric characterization
of the extended neighborhood N∗ when the instances have linear costs defined over a cone. For the TSP, we
consider 2-opt∗, the extended neighborhood for the 2-opt (i.e., 2-exchange) neighborhood structure. We show
that number of neighbors of each tour T in 2-opt∗ is at least (n /2 -2)!. We show that finding the best tour in
the 2-opt∗ neighborhood is NP-hard. We also show that the extended neighborhood for the graph partition
problem is the same as the original neighborhood, regardless of the neighborhood defined. This result extends
to the quadratic assignment problem as well. This result on extended neighborhoods relies on a proof that the
convex hull of solutions for the graph partition problem has a diameter of 1, that is, every two corner points
of this polytope are adjacent.

1. Introduction

Let X denote a combinatorial optimization problem, which is specified as a set of in-
stances. An instance of X is a pair I = (S, f), where S denotes a finite set of feasible
solutions and f : S → R is an objective function selected from some class F of objective
functions. If f (x) = cx for all x ∈ S, we alternatively express the instance as (S, c). A
neighborhood structure for X is a mapping N = (NS), where for each feasible set S of
solutions NS : S → 2S is a mapping from the set S to a subset of feasible solutions. For
an instance (S, f), we usually refer to NS (x) as the neighborhood of x with respect to N,
with the understanding that the neighborhood not only depends on x and on N but also
on the instance. We note that the mapping NS does not vary with the objective function
f. We always assume that x ∈ NS (x).

We use the shorthand S ∈ X to mean that there is an instance (S, f) of X for some
objective function f.

We say that a feasible solution x for (S, f) is locally optimal with respect to N if
f (x) ≤ f (x′) for all x′ ∈ NS (x).

A neighborhood search algorithm is an iterative procedure that starts with an initial
solution x. At each iteration the algorithm searches for a better solution in the neighbor-
hood NS (x). If a better solution y is found, the current solution x is replaced by y and

J.B. Orlin: Massachusetts Institute of Technology, Sloan School of Management, E40-147, Cambridge,
MA 02139, USA, e-mail: jorlin@mit.edu

D. Sharma: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor,
MI 48105, USA, e-mail: dushyant@umich.edu

538 J.B. Orlin, D. Sharma

the algorithm continues. If there is no better solution in the neighborhood of the current
solution x, then the algorithm returns the current solution, which is a locally optimal
solution.

Neighborhood search is a popular method to solve difficult optimization problems
(Aarts and Lenstra [1997], Voss et al. [1999]), largely because of its intuitive appeal and
empirical success in solving difficult optimization problems. A number of neighborhood
structures have been proposed in the literature for various combinatorial optimization
problems. We refer the reader to the recent survey papers of Ahuja et al [2001] and
Deı̆neko and Woeginger [2000] for additional information.

We denote the set of locally optimal solutions with respect to a neighborhood struc-
ture N in the instance I by LON

I ⊆ S. We say that two neighborhood structures N1

and N2 are LO-equivalent on the combinatorial optimization problem X if and only if
LON1

I = LON2

I for all instances I of X, i.e., N1 and N2 have the same set of local
optima for all instances of X.

Suppose that N1 and N2 are two neighborhood structures defined on the same prob-
lem X. The union of N1 and N2 is the neighborhood function N such that NS(x) =
N1

S(x) ∪ N2
S(x) for all feasible sets S ∈ X and for all x ∈ S.

We state the following elementary property of LO-equivalence without proof.

Proposition 1. If two neighborhood structures N1 and N2 are LO-equivalent then the
neighborhood structure defined as N = N1 ∪ N2 is LO-equivalent to both N1 and N2

We define the extended neighborhood of N for X, denoted by N∗, as the neigh-
borhood structure that is LO-equivalent to N and has the following property: if N1 is
LO-equivalent to N over X and if S is any set of feasible solutions for an instance, then
N1

S(x) ⊆ N∗
S(x) for all x ∈ S. That is, N∗ is the largest neighborhood structure that is

LO-equivalent to N over X. Proposition 1 shows that the extended neighborhood is well
defined. A corollary of Proposition 1 is that if N∗ denotes the extended neighborhood of
N, then the extended neighborhood of N∗ is N∗.

Searching the original neighborhood N using neighborhood search will also search
the extended neighborhood, as we state more precisely in Section 2.

We say that a combinatorial optimization problem X has linear costs defined over a
cone if the following is true:

(1) Each instance (S, c) of X has a linear objective function.
(2) Associated with each set S ∈ X, with S ⊆ R

n is a polyhedral cone of objective func-
tions F(S) ⊆ R

n. This means that for each set S ∈ X, the pair (S, c) is an instance
of X if and only if c ∈ F(S).

The major contributions of this paper are as follows:

(1) We define the extended neighborhood, and relate the extended neighborhood to other
concepts in neighborhood search including very large scale neighborhood (VLSN)
search, and domination number, and exact neighborhoods.

(2) We provide a geometric characterization of the extended neighborhood when the
instances have linear costs defined over a cone.

(3) For the TSP, we consider 2-opt∗, the extended neighborhood for the 2-opt (i.e., 2-
exchange) neighborhood structure. We show that number of neighbors of each tour
T in 2-opt∗ is at least (n /2 -2)!.

Extended neighborhood: Definition and characterization 539

(4) We show that finding the best tour in the 2-opt∗ neighborhood is NP-hard.
(5) We show that there are instances of the TSP, where a locally optimal tour T′ is reach-

able from a tour T with respect to the 2-opt∗ neighborhood, but not with respect to
the 2-opt neighborhood.

(6) We show that the extended neighborhood for the graph partition problem is the same
as the original neighborhood, regardless of the neighborhood defined. This result
extends to the quadratic assignment problem as well. This result relies on a proof
that the convex hull of solutions for the graph partition problem has a diameter of
1, that is, every two corner points of this polytope are adjacent.

The rest of the paper is organized as follows. In Section 2, we give some additional
definitions, notation, and some basic results regarding extended neighborhoods. In Sec-
tion 3, we provide the characterization of the extended neighborhood in the case of
combinatorial optimization problems with linear costs defined over a cone, and present
some additional results for important special cases. In Section 4, we show that under
commonly occurring conditions, one can decide whether a solution is in the extended
neighborhood in polynomial time. In Section 5, we present results regarding properties
of 2-opt∗, the extended neighborhood for the 2-opt neighborhood structure for the TSP,
and establish the reachability result mentioned in point (5) above. In Section 6, we show
that for any n-city tour T, the number of neighbors in 2-opt∗ (T) is at least (n/2 − 2)! In
Section 7, we show that optimizing over 2-opt∗ is NP-hard. In Section 8, we show that if
N is any neighborhood the extended neighborhood for the graph partition problem, then
N∗ = N. We summarize contributions and provide future research directions in Section 9.

2. Neighborhood search, LO-equivalence and the extended neighborhood

In this section, we establish several elementary results about neighborhood search, LO-
equivalence, and the extended neighborhood. We point out how the extended neighbor-
hood relates to very large scale neighborhood (VLSN) search, and also draw a connection
to the dominance number developed by Glover and Punnen (1997) and to exact neigh-
borhoods (See for example Papadimitriou and Steiglitz [1982]).

Let X be a combinatorial optimization problem. For each S ∈ X, let XS be problem
X as restricted to instances (S, f) for functions f ∈ F(S). Let N = (NS) denote a neigh-
borhood function for problem X, and let N∗ = (N∗

S) denote the extended neighborhood.
The definitions of LO-equivalence and the extended neighborhood apply equally to the
problem XS.

The next observation formalizes the property that the extended neighborhood can be
determined independently for each feasible region S ∈ X.

Observation 1. Let N be a neighborhood of X and let N∗ be the extended neighborhood.
Then for each feasible set S ∈ X, N∗

S is the extended neighborhood of N for XS.

We note that the extended neighborhood is defined even if there is a single instance
(S, f) in XS. We describe the extended neighborhood in this situation in Proposition
2, which we state and prove next. We will give a polyhedral proof of Proposition 2 in
Section 3 in the case that the objective function is linear. This second proof illustrates
the main theorem in that section.

540 J.B. Orlin, D. Sharma

Proposition 2. Suppose that X is a combinatorial optimization problem, and that (S, f)
is the unique instance in XS. Let N be a neighborhood defined on X, and let L be the set
of locally optimal solutions for instance (S, f). If x /∈ L, then N∗

S(x) = S. If x ∈ L, then
N∗

S(x)= {y ∈ S: f(y) ≥ f(x)}.

Proof. Let us first define {N}′ as follows. If x /∈ L, then N′
S(x) = S. If x ∈ L, then

N′
S(x) = {y ∈ S : f (y) ≥ f (x)}. We want to establish that N′ = N∗

S. Let L′ denote the
set of locally optimal solutions for S with respect to N′

S. Since NS(x) ⊆ N′
S(x) for all

x ∈ S, it follows that L′ ⊆ L. Conversely, any solution x ∈ L is a locally optimal solution
with respect to N′

S by its definition. Therefore L ⊆ L′. We conclude that L′ = L, and N′
S is

LO-equivalent to both N∗
S and NS. Finally, we claim that N′

S is the largest neighborhood
that is LO-equivalent to NS. To see this, note that if x /∈ L, then N′

S(x) = S, which is
as large a neighborhood as possible. If x ∈ L, then N′

S(x) = {y ∈ S : f (y) ≥ f (x)}.
Adding any solution to N′

S(x) will result in x not being locally optimal, in which case the
resulting neighborhood would not be LO-equivalent. So any neighborhood that strictly
contains N′

S would not be LO-equivalent to NS. This completes the proof. 	

Our definition of the extended neighborhood is in terms of LO-equivalence, which

relates to our motivation for studying the extended neighborhood. Below, we provide an
alternative characterization of the extended neighborhood that is sometimes simpler to
use in proofs.

Lemma 1. Suppose that X is a combinatorial optimization problem and that N is a
neighborhood function defined on X. Suppose that S ∈ X, and that x ∈ S and x′ ∈ S.
Then x′ ∈ N∗

S(x) if and only if there is no instance (S, f) of X with the following prop-
erties:

(1) x is locally optimal for (S, f),
(2) f (x′) < f (x).

Proof. Suppose first that there is an instance (S, f) of X with properties (1) – (2). Since
x is locally optimal for (S, f), and f (x ′) < f (x), it follows that x ′ /∈ N∗

S(x). Conversely,
suppose that there is no instance S satisfying (1) and (2). Let N∗ denote the extended
neighborhood, and let N′ be defined as follows: N′

S(x) = NS(x) ∪ x ′. N′
S(y) = NS(y)

for y �= x, and N′
S′ = NS′ for S′ �= S. We claim that N′ and N are LO-equivalent. To see

this, first consider a feasible solution y �= x. Since N′(y) = N(y), it follows that y is
locally optimal with respect to N, if and only if it is also locally optimal with respect to
N′. We now consider x. Since x does not have the properties (1) and (2), it follows that x
is locally optimal with respect to N if and only if it is also locally optimal with respect
to N′. This establishes that N and N′ are LO-equivalent. By Proposition 1, it follows
that N and N′ ∪ N∗ are also LO-equivalent. Since N∗ is the largest neighborhood that is
LO-equivalent to N, it follows that N′ ⊆ N∗, and thus x′ ∈ N∗(x), which completes the
proof. 	

We say that two problems X and Y are defined over the same set of feasible regions
if the following is true: S ∈ X if and only if S ∈ Y. For example, suppose that X is the
set of traveling salesman instances with nonnegative costs, and Y is the set of traveling
salesman instances with nonnegative costs satisfying the triangle inequality. Then X and

Extended neighborhood: Definition and characterization 541

Y are defined over the same set of feasible regions. Since every instance (S, f) of Y is
also an instance of X, we would write that Y ⊆ X. If X and Y are defined over the same
feasible regions, then any neighborhood function for X is also a neighborhood function
for Y.

Proposition 3. Suppose that X and Y are problems defined over the same set of feasible
regions, and X ⊆ Y. Suppose further that N is any neighborhood structure defined on
X (and on Y). Let N∗ be the extended neighborhood of N for problem X and let N′ be
the extended neighborhood of N for problem Y. Then for any feasible region S and for
any x ∈ S, N′

S(x) ⊆ N∗
S(x).

Proof. Suppose that x′ /∈ N∗
S(x). Then by Lemma 1, there is an instance (S, f) of X such

that x is locally optimal for the instance, and such that f (x′) < f (x). Since (S, f) is
also an instance of Y, it follows that x′ /∈ N′

S(x), which completes the proof. 	

Proposition 3 establishes that the extended neighborhood decreases in size as one

considers instances with a wider range of objective functions.
We now return our attention to properties of local search heuristics.
Let I = (S, f) be an instance of a combinatorial optimization problem X and

let N be a neighborhood structure defined on X. We say that a sequence of solutions
x1, x2, . . . , xk is a feasible search sequence if

(1) x1 ∈ S;
(2) xj ∈ NS(xj−1) for each j = 2 to k ;
(3) f (xj) < f (xj−1) for each j = 2 to k.

If x1, x2, . . . , xk is a feasible search sequence, and if xk is a locally optimal solution,
we refer to the sequence as terminating.

Proposition 4. Suppose that I is an instance of a combinatorial optimization problem
X. Suppose that N is a neighborhood structure defined on X and let N∗ denote its extended
neighborhood. Then any feasible search sequence x1, x2, . . . , xk for N on instance I
is also a feasible search sequence for N∗ on instance I. Moreover, if x1, x2, . . . , xk is
terminating for N, then it is also terminating for N∗.

Proof. The fact that NS(x) ⊆ N∗
S(x) for all x implies the first statement of the prop-

osition. The fact that N∗ has the same set of local optima as N implies the second.
	

Proposition 4 shows a close connection between searching a neighborhood and
searching its extended neighborhood. There are times in which N is small, but N∗ is
exponentially large. In these cases, N is in some sense equivalent to an exponentially
large neighborhood. Proposition 4 provides much of our motivation for studying prop-
erties of the extended neighborhood.

When N∗ is exponentially large, then searching N∗ is a special case of very large
scale neighborhood (VLSN) search, as surveyed by Deı̆neko and Woeginger [1997] in
the case of the TSP and by Ahuja, Ergun, Orlin and Punnen [2001] for the TSP and other
problems. Ahuja et al [2001] provided the following rule of thumb in their survey: the
larger the size of the neighborhood of each solution, the better is the quality of the locally

542 J.B. Orlin, D. Sharma

optimal solutions. This rule of thumb is de facto violated in the case of the extended
neighborhood since N and N∗ have exactly the same set of locally optimal solutions.

Glover and Punnen [1997] introduced a concept related to extended neighborhoods
called domination ratio. It is the minimum fraction of solutions that are guaranteed
to be worse than the solution obtained by the heuristic α. They defined the dom-
ination ratio of a heuristic algorithm α for a combinatorial problem as dom (α) =
inf(S,f) |{x ∈ S : f (x) ≥ f (xα)}|/|S| where xα is the solution obtained by the heuristic
α on instance (S, f). The concept is applicable to any heuristic including neighborhood
search heuristics. We note that for neighborhood search heuristics, min (|N∗(x)| : x ∈
S)/|S| is a lower bound on the domination number of the heuristic on instances in which
the feasible region is S. Other papers on domination analysis include Gutin and Yeo
[2002], Punnen et al. [2002], Glover et al. [2001], and Punnen and Kabadi [2002].

A neighborhood structure is called exact for a combinatorial optimization problem
if any locally optimal solution for an instance is also an optimal solution for the instance.
One of the consequences of the definition of extended neighborhoods is an alternative
characterization of exact neighborhood structures. The following proposition follows
directly from the definition of the extended neighborhood of a neighborhood structure,
and shows how exact neighborhoods are related to extended neighborhoods.

Proposition 5. A neighborhood structure N is exact for a combinatorial optimization
problem X if and only if for any instance (S, f) of X, the extended neighborhood N∗
satisfies the condition: N∗

S(x) = S for every x ∈ S.

3. Combinatorial optimization problems with linear cost objectives

In this section, we study some properties of the extended neighborhoods for combi-
natorial optimization problems with linear costs defined over a cone. In particular, we
consider the set S ∈ X with S ⊆ R

n. We say that the costs for S are defined over a
cone if the following is true: there is a polyhedral cone F = {c : cAS ≥ 0}, where AS
is an n × m matrix for some m, and such that (S, c) is an instance of XS if and only if
c ∈ F . As is suggested by our notation, AS may depend on the feasible set of solutions
S. Although AS varies with the set S of feasible solutions, in most examples AS will be
the same for all instances of the combinatorial optimization problem that have the same
dimension. We also assume here that m is finite, but the results will also carry through
even if m is infinite.

In this section, we provide a polyhedral description of the extended neighborhood
in terms of the neighborhood structure N, the solution set S, and the constraint matrices
AS for cost vectors. We also consider the special cases in which all cost vectors are
permitted, and when all non-negative cost vectors are permitted.

Suppose that S ∈ X and that NS(x) = {x1, . . . , xK} for some K. Then for each
i = 1 to K, we let vi = xi − x. We refer to vi as a neighborhood vector. We let VS(x) be
a matrix whose j-th column is vj . We will refer to VS(x) as the matrix of neighborhood
vectors at the solution x. Thus, there is one column in VS(x) for every neighbor in NS(x).

We now characterize the extended neighborhood.

Theorem 1. Suppose that XS = {(S, c) : cAS ≥ 0}. Let NS be any neighborhood for XS,
and let VS(x) be the matrix of neighborhood vectors. Then the extended neighborhood
of NS is N∗

S, and

Extended neighborhood: Definition and characterization 543

N∗
S(x) = {x′ ∈ S : x′ = x + VS(x)λ + ASγ ; λ ≥ 0, γ ≥ 0}.

Proof. Let N′
S(x) = {x′ ∈ S : x′ = x + VS(x)λ + ASγ ; λ ≥ 0, γ ≥ 0}. We want to

establish that N′
S(x) = N∗

S(x). We first prove that N′
S is LO-equivalent to NS.

Since NS(x) ⊆ N′
S(x) for all S ∈ X and for all x ∈ S, any locally optimal solution

with respect to N′
S is also locally optimal with respect to NS. So, we now consider the

case that x is locally optimal with respect to N, and we will show that x is also locally
optimal with respect to N′. Let c denote the cost function. By the definition of local
optimality, we know that c(x′ − x) ≥ 0 for each neighbor x′ of x, and so cVS(x) ≥ 0.
Also, by assumption cAS ≥ 0. Hence for all λ ≥ 0 and for γ ≥ 0, it follows that

c[x′ + VS(x)λ + ASγ] ≥ cx,

and so for all x′ ∈ N′
S(x), cx′ ≥ cx. Thus a locally optimal solution with respect to N is

also a locally optimal solution with respect to N′.
To complete the proof that N′ = N∗, we will prove that N′(x) is the largest neigh-

borhood structure that is LO-equivalent to N. To this end, we let x∗ be any solution in
S that is not in N′(x). Since x∗ ∈ S\N′(x), there is no feasible solution to the following
linear inequality system:

x∗ = x + VS(x)λ + ASγ, λ ≥ 0, γ ≥ 0.

It follows from Farkas’s Lemma that there exists a vector w ∈ R
n such that:

w(x∗ − x′) < 0, wVSx) ≥ 0 and wAS ≥ 0.

This implies that in the instance (S, w), x is a locally optimal with respect to N but
that x∗ is a solution with lower cost. Since (S, w) is a feasible instance, it follows that x∗
is not in the extended neighborhood of x. Since x∗ was an arbitrary element of S\N′

S(x)

and since N′
S(x) ⊆ N∗

S(x), it follows that N′ = N∗, completing the proof. 	

We state the following two special cases as corollaries, and subsequently give an
alternative proof of Proposition 2 in the case that costs are linear. The first special case
is one in which all linear objective functions are permitted, and thus AS = 0. When all
cost functions are permitted for a combinatorial optimization problem X, we say that X
has general linear costs. The second special case is the one in which all non-negative
linear objective functions are permitted, in which case AS is the identity matrix. In this
case, we say that X has general nonnegative linear costs.

Corollary 1. Suppose that X is a combinatorial optimization problem with general lin-
ear costs, and that N is a neighborhood structure defined for X. For each feasible region
S ∈ X, let VS(x) be the matrix of neighborhood vectors. Then the extended neighborhood
of N is N∗, where

N∗
S(x) = {x′ ∈ S : x′ = x + VS(x)λ; λ ≥ 0}.

544 J.B. Orlin, D. Sharma

Corollary 2. Suppose that X is a combinatorial optimization problem with general non-
negatiave linear costs, and that N is a neighborhood structure defined for X. For each
feasible region S ∈ X, let VS (x) be the matrix of neighborhood vectors. Then the extended
neighborhood of N is N∗, where

N∗
S(x) = {x′ ∈ S : x′ ≥ x + VS(x)λ; λ ≥ 0}.

The previous results follow directly from Theorem 1, and provide a geometric char-
acterization of the extended neighborhood for the combinatorial optimization problem
with linear costs defined over a cone. We next prove Proposition 2 in the case that the
costs are linear.

Proposition 2′. Suppose that X is a combinatorial optimization problem with linear
costs, and that (S, c) is the unique instance in XS for which

∑n
i=1 ci = 1. Let NS be a

neighborhood defined on X, and let L be the set of locally optimal solutions for instance
(S, c). If x /∈ L, then N∗

S(x) = S. If x ∈ L, then N∗
S(x) = {y ∈ S : cy ≥ cx}.

Proof. We prove the result directly from Theorem 1. Let AS be a matrix such that
wAS ≥ 0 implies that w is a non-negative multiple of c. We define N′

S as follows. If
x /∈ L, then N′

S(x)= S. If x ∈ L, then N′
S(x) = {y ∈ S : cy ≥ cx}. By Theorem 1,

N∗
S(x) = {x′ ∈ S : x′ = x + VS(x)λ + ASγ ; λ ≥ 0, γ ≥ 0}.

Assume first that y ∈ N∗
S(x) and x ∈ L. Then c(y − x) = cVSx)λ+ cASγ for some

λ ≥ 0 and γ ≥ 0. By assumption, x ∈ L, and so cv ≥ 0 for each column v of VS(x).
Also by assumption, cAS ≥ 0. We conclude that c(y − x) ≥ 0, and so y ∈ N′(x).

Assume next that y /∈ N∗
S(x) and x ∈ L. By Farkas’s Lemma there is a vector

w such that (1) w(y − x) < 0, (2) wVS(x) ≥ 0, and (3) wAS ≥ 0. The inequality
(3) implies that w is a nonnegative multiple of c, and it is a strictly positive multiple
because w(y−x) < 0. Inequality (2) is a restatement that x ∈ L. Inequality (1) becomes
“c(y − x) < 0”, and so y /∈ N′

S(x). We have thus shown that N′
S(x) = N∗

S(x) for x ∈ L.
We now consider the case that x /∈ L. In this case, N∗

S(x) ⊆ N′
S(x) = S. We thus

need to establish that N∗
S(x) = S. So, we suppose that y /∈ N∗

S(x), and we will derive
a contradiction. By Farkas’s Lemma, there is a vector w satisfying (1) to (3) above.
As before w is a positive multiple of c. But then condition (2) is equivalent to writing
c(x′ −x) ≥ 0 for all x′ ∈ NS(x), which contradicts that x /∈ L. This contradiction shows
that y ∈ N∗

S(x), and thus N′
S(x) = N∗

S(x) = S for x /∈ L completing the proof. 	

We now illustrate Theorem 1 result using two examples of neighborhood structures

in the literature.

Example 1. A linear program: min{cx : x ∈ P ⊆ R
n} over a polytope P can be viewed

as a combinatorial optimization problem where the set of feasible solutions S is the set
of extreme points of the polytope. We assume that all linear objectives are allowed in
the linear program, and so we consider Corollary 1. The simplex method for linear pro-
gramming can be viewed as a neighborhood search algorithm, where the neighbors of
an extreme point x are those extreme points that share an edge with x in the polytope P.
It can be shown that for this neighborhood structure, S ⊆ {x′ : x′ = x +VS(x)λ, λ ≥ 0}
for all x ∈ S. (This set is any solution that can be expressed as a non-negative linear

Extended neighborhood: Definition and characterization 545

combination of neighborhood vectors.) Corollary 1 implies that the N∗
S(x) = S for all

feasible regions S, and thus the neighborhood is exact, a well known result in linear
programming.

Example 2. The traveling salesman problem is to find a minimum cost tour (or Hamil-
tonian cycle) in a graph G = (V , E). It is often formulated as a combinatorial optimi-
zation problem with linear costs as follows. Each tour T is represented as a 0/1 vector
x ∈ {0, 1}|E| where xe = 1 means that the edge e ∈ T . The set of feasible solutions of
an instance is given by

S = {x ∈ {0, 1}|E| : x represents a tour in G}.
A 2-opt move on a tour T removes two edges from T and adds two edges to T in

order to get a new tour. The 2-opt neighborhood of a tour T consists of all tours that
can be obtained from T by a 2-opt move. If a tour is represented as a 0-1 vector x, then
a 2-opt move can be represented as a vector v ∈ {0, 1, −1}|E| where ve = 1 means
that the edge e is added to the cycle, ve = −1 means that the edge is removed from
the cycle, and ve = 0 otherwise. From Theorem 1, the extended neighborhood of the
2-opt neighborhood structure contains all tours that can be obtained by non-negative
combinations of 2-opt moves.

4. Recognizing solutions that are in the extended neighborhood

In this brief section, we give sufficient conditions under which a solution in the extended
neighborhood can be identified in polynomial time.

By the local improvement problem for N, we mean the following: given an instance
(S, c) of X and a feasible solution x, determine that x is locally optimal, or else determine
a neighbor x∗ of x with cx∗ < cx.

Theorem 2. Let X be a combinatorial optimization problem with linear costs defined
over a cone. Let N be a neighborhood structure for X. Suppose that the local improve-
ment problem for N can be solved in polynomial time and that the separation problem
for the cone can be solved in polynomial time. Then there is a polynomial time algorithm
to determine the membership in the extended neighborhood N∗.

Proof. Let S denote a set of feasible solutions, and suppose that the costs are in the cone:
{c : cAS ≥ 0}. Suppose further that x, x′ ∈ S. By Theorem 1, x′ ∈ N∗

S(x) if and only if
there is a feasible solution to the following system of inequalities and equalities:

x′ = x + VS(x)λ + ASγ ; λ ≥ 0, γ ≥ 0. (1)

By Farkas’s Lemma, we know that the linear system (1) has no feasible solution if and
only if the following linear system has a feasible solution:

w(x′ − x) < 0; (2a)

wVS(x) ≥ 0; (2b)

wAS ≥ 0. (2c)

546 J.B. Orlin, D. Sharma

We now claim that feasibility of (2) may be determined in polynomial time using
the ellipsoid algorithm. It suffices to show that the separation problem for this linear
program is solvable in polynomial time. Let w′ be any solution, not necessarily feasible
for (2). If (2a) is not satisfied, then w(x′ − x) ≥ 0 is a separating constraint.

If (2b) is not satisfied, then there exists a column vector v of VS(x) such that w′v < 0.
Equivalently, there is a vector x′ ∈ NS(x) x′ = x + v such that w′x′ < w′x. The sep-
arating constraint is wv ≥ 0. Since we can solve the local improvement problem in
polynomial time, we can determine this vector x′ in polynomial time, and thus deter-
mine v in polynomial time.

If (2c) is not satisfied, then there is a column Aj of AS so that wAj < 0. By assump-
tion, we can solve the separation problem for this cone in polynomial time. We conclude
that we can separate w′ in polynomial time, and so we can recognize vectors in N∗(x)

in polynomial time. 	

While recognizing vectors in N∗(x) is solvable in polynomial time, optimizing over

N∗(x) is often NP-hard. We prove an NP-hardness result for optimizing over N∗(x) in
the next section.

5. Some properties of the extended neighborhood for TSP 2-opt

In this section and in the following two sections, we analyze some properties of the
extended neighborhood 2-opt∗ of the 2-opt neighborhood structure for the TSP. We
show that 2-opt∗ is exponentially large, and that optimizing over 2-opt∗ is NP-hard.

If T is a feasible tour with n cities, we let 2-opt(T) be the set of tours that can be
obtained from T by a single 2-opt move; that is, each neighbor T ′ is obtained from T
by adding two edges and deleting two edges. In previous sections, we used the index
S when describing the neighborhood function. For the 2-opt neighborhood, the set S is
obvious from context since it is the set of all tours on n cities. So, we will omit the index
S when discussing the neighborhood 2-opt as well as its extended neighborhood 2-opt∗.

Let G = (V , E) be a complete undirected graph with node set V = {1, . . . , n} and
costs cij associated with each edge (i, j) ∈ E. The traveling salesman problem (TSP) is
to find the minimum cost tour in G. We represent a tour as a sequence i1, i2, . . . , in, i1
where edges (ik, ik+1) for k = 1, . . . , n − 1 and (in, i1), belong to the tour. We assume
without loss of generality that i1 = 1. Let T be a tour. The incidence vector for T is
the vector x ∈ {0, 1}|E| where xij = 1 for edges (i, j) ∈ T and xij = 0 otherwise.
The traveling salesman problem can be formulated as a combinatorial optimization
problem with linear objective as follows. We define the set of feasible solutions as
S = {x ∈ {0, 1}|E| : x is incidence vector of some tour in G} and the linear objective
function associated with each feasible solution x is f (x) = cx.

For some examples, we will assume that the starting tour is T = 1, 2, 3, . . . , n, 1.
In this notationally simpler case, we will represent a 2-opt move as an unordered pair
{k, l} with k, l ∈ {1, . . . , n} such that nodes k and l are not adjacent in the tour, i.e.,
k �= l − 1 and k �= l + 1. The move {k, l} represents the following changes to tour T:

1. Remove the edges (k, k + 1) and (l, l+1),
2. Add the edges (k, l) and (k + 1, l+1).

Extended neighborhood: Definition and characterization 547

In this definition, we assume that n + 1 = 1. We denote the set of 2-opt moves corre-
sponding to tour T by 2-optmove(T). The 2-opt neighborhood for the tour T (Solution
x) is defined as all the tours (incidence vectors of tours) that can be obtained from T
by performing a 2-opt move {k, l} for some {k, l} ∈ 2-optmove(T). We use vkl ∈
{−1, 0, 1}|E| to denote the neighborhood vector in 2-optV (x) corresponding to the 2-opt
neighbor obtained by performing the move {k, l}, i.e.,

vkl(e) =






−1 if e = (ik, ik+1) or e = (il, il+1)

1 if e = (ik, il) or e = (ik+1, il+1)

0 if otherwise

For example, x + vkl gives the incidence vector of the tour obtained from the initial
tour T by performing the move {k, l}.

We consider all possible cost vectors in TSP. We let 2-opt∗ (x) denote the extended
neighborhood of x. Rather than use the matrix notation of Theorem 1, we represent
solutions in the extended neighborhood as x plus linear combinations of neighborhood
vectors. In particular,

2 − opt∗(x) =
{
x′ ∈ S : x′ = x +

∑

{k,l}∈2−optmove(T)
λklv

kl, λkl ≥ 0 for all {k, l}
}
.

(3)

Often, the TSP is restricted to instances where the edge costs c satisfy the triangle
inequality, that is: for any i, j, k ∈ V, cij + cjk ≥ cik . We refer to this special case of
the TSP as TSPTI. Non-negative cost functions satisfying the triangle-inequality form a
cone, and so we may apply the results of Theorem 1, with an appropriately chosen matrix
A (S). However, the extended neighborhood is the same as the one given in Theorem 1.
The result follows from the observation that for any cost vector c, there exists a constant
M such that the vector c′ given by c′

ij = cij +M satisfies triangle inequality. Further, the
set of local optima under c′ is the same as that under c. We state the result as a theorem
next.

Theorem 3. Let 2-optTI∗ denote the extended neighborhood for 2-opt for the problem
TSPTI. Then 2-optTI∗ is the same as 2-opt∗, the extended neighborhood of 2-opt for TSP.

Our next result concerns reachability. We say that a tour T ′ is reachable from T with
respect to neighborhood N if there is a sequence T = T 1, T 2, . . . , T K = T ′ of tours
so that

(1) Tour T j ∈ N(T j−1) for j = 2 to K;
(2) The cost of T j is less than the cost of T j−1 for j = 2 to K.

We now address the following question: is reachability for 2-opt∗ the same or dif-
ferent from reachability for 2-opt. Clearly, any tour T ′ that is reachable from T with
respect to the 2-opt neighborhood is also reachable with respect to 2-opt∗. In Theorem
4, we prove that the converse is not true.

Theorem 4. Let T be any tour with at least 11 nodes. There is cost vector c and a tour T′
such that T′ is not reachable from T with respect to 2-opt, and such that T′ is reachable
from T with respect to 2-opt∗.

548 J.B. Orlin, D. Sharma

Proof. Without loss of generality, we may relabel the nodes so that T = (1, 2, . . . , n, 1).
Suppose that all edges of T have a cost of 0, that is, ci,i+1 = 0 for i = 1 to n, and cn1 = 0.
Suppose further that arcs (1, 5), (2, 6), (3, 8), and (4, 9) all have a cost of −2, arcs (6, 10)

and (7, 11) have a cost of 1, and all other arcs have a cost of 10. The optimal tour is
T ′ = 1, 5, 4, 9, 10, 6, 2, 3, 8, 7, 11, 12, 13, . . . , n, 1, which has a cost of −6. It can be
obtained from T by performing the 2-opt moves {1, 5}, {6, 10}, and {3, 8} in that order.
(Recall that move {i, j} adds arcs (i, j) and (i + 1, j + 1) and deletes arcs (i, i + 1)

and (j, j + 1).) The sum of these three 2-opt moves is in 2-opt∗ (T), and thus T ′ is
(trivially) reachable from T with respect to 2-opt∗. However, T ′ is not reachable from T
with respect to 2-opt. Indeed, if one performs either the move {1, 5} or {3, 8} on T, the
resulting tour is locally optimal. 	

The previous example permitted negative costs, and violated the triangle inequality.
By adding 12 to each arc cost, one obtains an example that has positive costs and does
satisfy the triangle inequality.

A consequence of Theorem 4 is that local search using the extended neighborhood
fundamentally offers more possibilities than does local search using the original neigh-
borhood. It is possible that there are locally optimal solutions that are reachable from the
initial tour T using the extended neighborhood, but that are not reachable from T using
the original neighborhood.

We next analyze the size of the extended neighborhood of a solution.

6. A lower bound on the size of 2-opt∗

Our original motivation for studying extended neighborhoods was in the context of very
large scale neighborhood search. We hypothesized that neighborhoods with very large
extended neighborhoods might reach better local optima. Whether this hypothesis is true
awaits careful empirical analysis. However, it does suggest that the size of the extended
neighborhood is an important parameter. In this section, we give a lower bound on the
size of 2-opt∗.

We note that the independent 2-opt neighborhood structure proposed by Potts and
van de Velde [1995] is LO-equivalent to the 2-opt neighborhood structure, and is thus
a subset of 2-opt∗. They established the size of the independent 2-opt neighborhood
structure for problems with n nodes to be �(1.75n), it follows that the size of 2-opt∗ is
�(1.75n). In this section, we show for problems with at least n nodes that the size of
the 2-opt∗ neighborhood of a solution is at least h(n) = (n − 3)(�n/2
 − 3)!, which for
n > 6 is at least �n/2-2
! We shall establish this result by constructing a tree with at
least h(n) nodes such that each node of the tree is a tour in 2-opt∗ (T). Our enumeration
tree satisfies the following properties:

1. The root of the tree is T.
2. Each node of the tree is in the 2-opt∗ neighborhood of T.
3. If T ′ is a node in the tree then the children of T ′ are obtained from T ′ by performing

a 2-opt move that is also valid for T.
4. There are at least h(n) nodes in the tree.

Extended neighborhood: Definition and characterization 549

We describe the construction of the tree later in the section after introducing some
preliminary results. Without loss of generality, we assume that T is given by the sequence
1, 2, 3, . . . , n, 1. We again represent 2-opt moves for tree T using an unordered pair {i, j}
of nodes such that j /∈ {i − 1, i + 1}.

Let T ′ be any tour represented as a sequence. If node k+1 immediately follows node
k in T ′, we say that edge (k, k+1) is a forward edge of T ′. If node k immediately follows
node k + 1 in T ′, we say that (k, k + 1) is a backward edge of T ′. (For convenience, we
let both 1 and n + 1 refer to node 1.)

In our construction below, T ′ will be tour obtained from T by a sequence of 2-opt
moves, each of the form {j, k} for somej and k. We will say that the move {j, k} is
feasible for tour T ′ if T ′ − {(j, j + 1), (k, k + 1)} ∪ {(j, k + 1), (j + 1, k)} is a tour.
The following lemma gives necessary and sufficient conditions for a move {j, k} to be
feasible with respect to a tour T′.
Lemma 2. Let T ′ be a tour. The move {j, k} is feasible for T ′ if and only if (j, j +1) and
(k, k + 1) are both forward edges of T ′ or (j, j + 1) and (k, k + 1) are both backward
edges of T ′.
Proof. Suppose first that (j, j+1) and (k, k+1) are both forward edges ofT ′. Let us write
T ′ as i1, i2, . . . , ir , ir+1, . . . , in where i1 = j, i2 = j + 1, and ir = k. In this case the
move {j, k} is feasible, and results in the tour i1ir , ir−1, ir−2, . . . , i2, ir+1, ir+2, . . . , in.
Similarly, the move {j, k} is feasible if (j, j +1) and (k, k+1) are both backward edges
of T ′. This establishes the “if part” of the lemma.

We now consider the only if part. If (j, j + 1) or (k, k + 1) is not an edge of T ′, then
clearly {j, k} is not feasible. So, the remaining cases are when (j, j + 1) is a forward
edge and (k, k + 1) is a backward edge or when (j, j + 1) is a backward edge and
(k, k + 1) is a forward edge. Let us consider the case when (j, j + 1) is a forward edge
and (k, k+1) is a backward edge. Again, let T ′ be written as i1, i2, . . . , ir , ir+1, . . . , in,
where i1 = j, i2 = j +1, and ir = k. In this case, deleting edges (j, j +1) and (k, k+1)

from ′ and adding edges (j, k) and (j +1, k+1) creates two subtours: i2, i3, . . . , ir−1, i2
and ir , ir+1, . . . , in, i1, ir , and is thus not a feasible move. Similarly, when (j, j + 1)

is a backward edge of T ′ and (k, k + 1) is a forward edge, then {j, k} is not a feasible
move, establishing the “only if part” of the lemma. 	

We now constructively prove that 2-opt∗ (T) has at least h(n) elements when T is
a tour on n cities. We do so by creating a tree with at least h(n) vertices, where the
root vertex of the tree corresponds to tour T, and where each non-root vertex of the tree
corresponds to a tour in 2-opt∗ (T). (We are referring vertices of the tree so as to distin-
guish the terminology from the nodes of the tour.) We assume without loss of generality
that T = 1, 2, . . . , n, 1. Moreover, in our construction, each child vertex in the tree is
obtained from its parent vertex by a move of the form {j, k} for suitable choices of {j, k}.

For any tour T ′, we let F(T ′) denote the set of edges (i, i+1) (where n+1 represents
1) in T ′ that are forward edges of the tour. We let B(T ′) denote the set of edges (i, i +1)

in T ′ that are backward edges of T ′. The initial tour is T = 1, 2, 3, . . . , n, 1, and F(T)

is the set of edges of T, and B(T) = Ø. At intermediate stages of the algorithm, we say
that a tour T ′ of the tree is eligible if T ′ is a tour such that |F(T ′)| ≥ 3 or |B(T ′)| ≥ 3,
and if T ′ has no children. We are now ready to state our algorithm to generate a tree of
tours. Figure 1 gives the statement of our algorithm.

550 J.B. Orlin, D. Sharma

The tree contains the tour T as the root vertex. The root vertex has (n -3) children that
are obtained using the (n -3) moves {1, j + 2} for j = 1, 2, . . . , n − 3, on T. For each
node T ′ �= T , the children are generated as follows. If |F(T ′)| ≥ |B(T ′)| then we find
any forward edge (i, i + 1) in the sequence of T ′ such that (i -1, i) is not an edge, and
generate the children of T ′ as tours obtained by performing those 2-opt moves {i, j} of
T on T ′ that are feasible for T ′. (We note that if (i, i + 1) is a forward edge of T′, then
(i -1, i) cannot be a backward edge. So, Step 7 is equivalent to determining an index i
such that (i -1, i) is not an edge in T ′ but (i, i + 1) is. Since |F(T ′)| < n, such an index
i always exists.) If |F(T ′)| < |B(T ′)| then we find a backward edge (i, i + 1) such that
(i − 1, i) is not a (backward) edge in T ′. In this case, we again obtain children of T ′ by
performing those 2-opt moves {i, j} of T on T ′ that are feasible for T ′.

Procedure Tree-of-Tours ;
begin

1. let T be the root vertex of the tree;
2. let the j -th child of T be the tour obtained from T by performing the move

{1, j +2} for j = 1,. . . , n -3;
3. while there is an eligible tour T ′ in the tree do
4. begin
5. if |F(T′)| ≥ |B(T′)| then do
6. begin
7. select a node i such that (i, i + 1) ∈ F(T′) and such that (i -1, i) /∈ T ′;
8. for each node j such that {i, j} is a feasible move for T ′, create a child of T ′ by

performing move {i, j};
9. –Note: the number of children of T ′ created in this way is at least |F(T′)| - 2

10. end
11. else begin
12. select a nodei such that (i, i + 1) ∈ B(T′) and such that (i − 1, i) /∈ T ′;
13. for each node j such that {i, j} is a feasible move for T ′, create a child of T ′ by

performing move {i, j};
14. – Note: the number of children of T ′ created in this way is at least |B(T′)| - 2
15. end
16. end;

end.

Fig. 1. Procedure to generate tree of some tours in 2-opt∗

Theorem 5. The tree generated by procedure Tree-of-Tours has at least h(n) = (n −
3)(�n/2
 − 3)! distinct vertices when applied to a TSP with n nodes. Moreover, each
non-root vertex of the tree corresponds to a tour in 2-opt∗ (T).

Proof. First of all, all of the non-root vertices of the tree correspond to feasible tours
because they are obtained from their parent by a feasible 2-opt move of the form {j, k},
which deletes edges (j, j + 1) and (k, k + 1) from a tour and adds edges (j, k) and
(j + 1, k + 1). Moreover, each tour is in 2-opt∗ (T) since it can be expressed as T plus

Extended neighborhood: Definition and characterization 551

the sum of 2-opt moves of the form {j, k} (This follows from Theorem 1). We also note
that for any tour T ′ in the tree, the descendents of T ′ in the tree are obtained from T ′ by
a sequence of feasible 2-opt moves.

Observation 1. If a tour T ′ of the tree does not have edge (j, j + 1) then neither does
any of its descendents in the tree. The observation is true because no move can add back
(j, j + 1).

Observation 2. If a tour T ′ of the tree has edge (j, k) for k �= j − 1 or j +1, then each
descendent of the tour T ′ also has the edge (j, k). The observation is true because no
move can delete edge (j, k).

To complete the proof, we need to establish that the tours in the tree are all distinct,
and that there are at least h(n) tours in the tree. We next show that any two distinct
vertices in the tree correspond to distinct tours. Let T 1 and T 2 be tours corresponding
to two distinct vertices in the tree generated by Tree-of-Tours. Let T 3 be the tour corre-
sponding to the vertex that is the least common ancestor of the vertices for T 1 and T 2

in the tree. Let T 4 be the child of T 3 whose descendent is T 1 (Possibly T 4 = T 1). Let
T 5 be the child of T 3 whose descendent is T 2 (Possibly T 5 = T 2). Figure 2 illustrates
the situation.

Fig. 2. T 3 is the common ancestor of T 1 and T 2

In creating children for T 3 in the procedure “Tree of Tours” a node i is selected either
in Step 7 or Step 11 and all children of T 3 are obtained by performing a move {i, j} for
some j. In either case (i − 1, i) is not an edge of T 3 Let (i, r) and (i, i + 1) denote the
two edges of T 3 That are incident to node i.

Suppose that the tour T 4 is obtained from the tour T 3 by performing the move {i, j},
and that the tour T 5 is obtained from the tour T3 by performing the move {i, k}.Then
T 4 and all of its descendents (including T 1) contain the edges (i, j) and (i, r), whereas
T 5 and its descendents (including T 2) contain the edges (i, k) and (i, r). Since k �= j, it
follows that tours T 1 and T 2 are distinct.

We next establish that the tree has at least h(n) vertices. For a vertex T ′ of the
tree, each child of T ′ is obtained by performing a 2-opt move {j, k} for some j and
k, obtaining a child T ′′. This deletes edges (j, j + 1) and (k, k + 1) from T ′, and so

552 J.B. Orlin, D. Sharma

|T ′′ ∩ T | = |T ′ ∩ T | − 2. It is easy to establish inductively that for a vertex T ′ at level l
in the tree (where T is at level 0), |F(T ′)| + |B(T ′)| = n − 2l. The number of children
generated for the node T ′ is at least max{|F(T ′)|, |B(T ′)|} − 2 ≥ �n/2
 − l − 2. The
number of children of the root node is (n − 3). Thus the number of leaf nodes in the tree
is at least h(n) = (n − 3)(�n/2
 − 3)!. Hence the total number of nodes in the tree is at
least h(n) as well. This completes the proof. 	

7. The complexity of optimizing over 2-opt∗

By definition of LO-equivalence and the extended neighborhood, the 2-opt neighbor-
hood of a tour contains a better solution if and only if the 2-opt∗ neighborhood of the tour
contains a better solution. Therefore, the complexity of recognizing whether the current
solution is a local optimum with respect to 2-opt∗ neighborhood is the same as that
for the 2-opt neighborhood, and this requires O(n2)Time. In this section, we consider
the problem of determining an optimal solution in 2-opt∗ and show that the problem
of optimizing over the extended neighborhood is strongly NP-hard. More precisely, we
formulate a decision version of the optimization problem, and show that the decision
version is NP-complete.

2-Opt∗ Search Problem

INPUT: An undirected complete graph G = (V , E), where V = {1, . . . , n},
an integer K, and integer edge costs cij for (i, j) ∈ E, and a tour T.

QUESTION: Is there a tour T ′ ∈ 2-opt∗ (T) such that
∑

(i,j)∈T′ cij ≤ K?

Our proof that the 2-opt∗ Problem is NP-complete will rely on a transformation from
the Hamiltonian Path Problem.

Hamiltonian Path Problem

INPUT: An undirected graph G = (V , E), where V = {1, . . . , n}.
QUESTION: Is there a Hamiltonian path from node 1 to node n ∈ G?

This problem is known to be NP-complete (Garey and Johnson [1979]).

Theorem 6. The 2-opt∗ Search Problem is NP-Complete.

Proof. The 2-opt∗ Search Problem is in the Class NP by Theorem 2. The rest of our proof
will rely on a transformation from the Hamiltonian Path Problem as well as Lemma 3.
Let G = (V , E) be an instance of the Hamiltonian Path Problem. For notational con-
venience, we will assume that the n nodes of V are labeled 3, 7, . . . , 4n − 1, and the
question is whether there is a Hamiltonian path in G from node 3 to node 4n -1. We now
create a complete graph G′ = (V ′, E′) with node set V ′ = {1, 2, . . . , 4n} and let T be
the tour 1 − 2 − 3 − . . . − 4n − 1. Using our notation, we may view V as a subset of
V ′. We construct the edge weights c for G′ as follows:

Extended neighborhood: Definition and characterization 553

1. If i ∈ V \{3, 4n − 1} and j ∈ V ′\V , then cij = 1.
2. If i ∈ V and j ∈ V and (i, j) /∈ E, then cij = 1.
3. For all other arcs cij = 0. (E′ is a complete graph).

We now claim that G has a Hamiltonian path from node 3 to node 4n -1 if and only if
there is a tour T ′ in 2-opt∗ (T) such that

∑
(i,j)∈{T}′ cij = 0.

Lemma 3. Suppose that there is a Hamiltonian path P from node 3 to node 4n-1 in G.
Then there is a tour T ′ ∈ 2-opt∗ (T) such that the first n + 2 nodes of T ′ are 1-2-P.

Proof of Lemma 3. See the Appendix. 	

Suppose first that there is a Hamiltonian Path P from node 3 to node 4n−1 in G and

let T ′ be a tour in 2-opt∗ (T) (as per Lemma 3) such that the first n +2 nodes of T ′ are
1-2-P. All nodes following P are in V ′\V . Regardless of how the remaining nodes in T ′
are ordered, the cost of T ′ is 0 by our construction of the edge weights, establishing the
“only if” part of the claim.

We now consider the case that there is a tour T ′ in 2-opt∗ (T) with cost 0. Since the
first and last nodes of T ′ are in V ′\V , there are at least two nodes of V are incident to
nodes of V ′\V in T ′. However, cij = 1 for i ∈ V {3, 4n− 1} and j ∈ V ′\V . Since none
of these arcs can be in T ′ (which has a cost of 0), we conclude that exactly two nodes
of V are incident to nodes of V ′\V and these nodes are 3 and 4n -1. This means that the
nodes in V are consecutive in T ′. Let P denote the subpath formed by nodes in set V in
tour T ′. We now claim that P is Hamiltonian Path in G. To see this, note that any arc of
P that is not in E must have a cost of 1 in G ′. This completes the proof. 	

Although it is NP-hard to optimally search the 2-opt∗ neighborhood, there are some
known large subsets of the 2-opt∗ neighborhood that are searchable in polynomial time.
These include the independent 2-opt neighborhood (Potts and van de Velde [1995]) and
the subsets of the twisted neighborhood structure (Deı̆neko and Woeginger [2000]).

8. The extended neighborhood for graph partition problem

In the two examples provided in Section 3, the extended neighborhoods are much larger
than the neighborhood structures themselves. However, for some combinatorial optimi-
zation problems, it can be shown that the extended neighborhood is always equal to the
neighborhood structure itself. In this section, we consider the Graph Partition Problem
given below.

Graph partition problem

INPUT: A complete undirected graph G = (V, E) containing 2n nodes and
weights wij associated with each edge (i, j) ∈ E.

OBJECTIVE: Partition the set of nodes V into two subsets V 1 and V 2 such that
|V 1| = |V 2| and the weight of edges crossing the partition,∑

{(i,j):i∈V 1andj∈V 2} wij , is minimum.

554 J.B. Orlin, D. Sharma

The Graph Partition Problem is a widely studied problem, including several papers
devoted to neighborhood search. It is known to be NP-hard (Garey and Johnson [1979]).
The most popular algorithms for the Graph Partition Problem are based on the search
heuristics of Kernighan and Lin [1970] and and Fiduccia and Mathias [1982]. These
search heuristics employ a variable depth search procedure to identify a new solution
starting from a solution to the Graph Partition problem. We note that there is no neigh-
borhood structure associated with each solution in these search heuristics. Johnson et al.
[1989] performed detailed computational experiments with the search heuristic of Ker-
nighan and Lin and a simulated annealing based neighborhood search algorithm. They
concluded that although the neighborhood search based algorithm worked better on
some instances, the heuristic of Kernighan and Lin performed better overall.

The main result of this section is that for any neighborhood function N of the Graph
Partition Problem, the extended neighborhood N∗ = N. Our result relies on an important
property of the convex hull of solutions for the graph partition problem (when repre-
sented as an integer program): all feasible partitions are adjacent corner points in the
convex hull.

The Graph Partition Problem is a special case of the well-known Quadratic Assign-
ment problem (Lawler [1963]). By Proposition 3, the result for Graph Partition applies
to the Quadratic Assignment problem as well.

Before proving the result for the Graph Partition problem, we establish a more gen-
eral theorem concerning the extended neighborhood.

Let P = Conv(S) denote the convex hull of the feasible solution set of a combina-
torial optimization problem. We assume that every feasible solution in S is an extreme
point of P. This property is automatically satisfied if S ⊆ {0, 1}n.

We refer to adjacency in a polytope in the usual linear programming sense of adja-
cency. That is, two corner points x and y are adjacent if one can obtain y from x by a
single linear programming pivot.

Theorem 7. Let X be a combinatorial optimization problem with general linear costs.
Suppose for every feasible region S ∈ X, the following is true:

(1) The set of corner points of Conv(S) is the set S.
(2) Every two corner points of the polytope P = Conv(S) are adjacent;

Then for any neighborhood structure N defined on X, N∗ = N.

Proof. Let S ∈ X, and let us suppose that NS(x) �= N∗
S(x) for some x ∈ S. Let x′

be a solution in N∗(x)\NS(x). By hypothesis x and x′ share a common edge in the
polytope. It is well known (See for example Papadimitriou and Steiglitz [1982]) that in
this case there must exist a cost vector w satisfying: wx′ < wx and wx ≤ wx′′ for all
x ∈ S\{x, x′}. However, in the problem instance (S, w), the solution x is locally optimal
with respect to N but not with respect to N∗, which is a contradiction. Hence it must be
the case that N∗

S(x) = N(x) for all x ∈ S. 	

The Graph Partition Problem can be formulated as an integer programming problem

as follows: We represent each node partition (V 1, V 2) as a vector x ∈ {0, 1}|E| such
that xij = 1 if i ∈ V 1 and j ∈ V 2 and xij = 0 otherwise. Thus S = {x ∈ {0, 1}|E| :
x represents a node partition}. The Graph Partition Problem is Minimize (wx : x ∈ S).

Extended neighborhood: Definition and characterization 555

We next show that every two corner points in Conv(S) are adjacent. Therefore, the
extended neighborhood of any neighborhood structure for the Graph Partition problem
is the same as the neighborhood structure for all instances of the problem and for any
neighborhood structure.

Theorem 8. Let S = {x ∈ {0, 1}|E| : x represents a node partition of G = (V , E)}.
Then every two corner points in Conv(S) are adjacent in Conv(S).

Proof. Let S denote the set of feasible 0-1 solutions of the Graph Partition problem.
Let x be a solution representing the node partition (V 1, V 2). Let x′ ∈ S be any other
solution, and let (V̂ 1, V̂ 2) denote its partition. We shall construct a weight function w
satisfying: wx′ = wx and wx < wx′′ for all x′′ ∈ S\{x, x′}. The existence of such a
weight function implies that x and x′ share an edge in the polytope Conv(S), proving
the theorem.

Let A = V 1 ∩ V̂ 1, B = V 2 ∩ V̂ 2, C = V 1 ∩ V̂ 2, and D = V 2 ∩ V̂ 1. Therefore,
V 1 = A ∪ C, V 2 = B ∪ D, V̂ 1 = A ∪ D, and V̂ 2 = B ∪ C. The partition (V̂ 1, V̂ 2)

can be obtained from (V 1, V 2) by moving the nodes in C from V 1 To V 2 and nodes in
D from V 2 To V 1. We note that the following must hold: |A| = |B| and |C| = |D|. We
assign the weights in the graph as follows:

1. wij = M if i, j ∈ A or i, j ∈ B or i, j ∈ C or i, j ∈ D, where M > |V |2.
2. wij = 1 if i ∈ A ∪ B and j ∈ C ∪ D.
3. wij = 0 for all other edges.

By our construction, wx = |A||D| + |B||C|, and wx′ = |A||C| + |B||D|. Since
|A| = |B| and |C| = |D|, it follows that wx = wx′ = 2|A||C| < |V |2. We now claim
that any other partition x′′ = (W 1, W 2) has a higher cost. If there is an edge (i, j) with
i ∈ A∩W 1 and j ∈ A∩W 2, then wij = M > wx. We conclude that if wx′′ < M , then
A ⊆ W 1 or A ⊆ W 2 Similarly for S′ = B or C or D, S′ ⊆ W 1 or S′ ⊆ W 2 Without
loss of generality, we assume that A ⊆ W 1 This leads to only one other possibility other
than x and x′. It follows that W 1 = A ∪ B . (If W 1 = A, it would not be a partition, nor
would it be a partition if W 1 were larger thanA ∪ C.) Since W 1 = A ∪ B, it follows that
wx′′ = |A||C| + |A||D| + |B||C| + |B||D| = 4|A||C| > wx. This proves the theorem.

	

Putting together the results of Theorems 7 and 8 yields the following theorem.

Theorem 9. Suppose that all cost vectors are feasible for the Graph Partition Prob-
lem. Then for any neighborhood structure for the Graph Partition Problem, N∗(x) =
N(x) for all x ∈ S.

We observe that we could restrict attention to costs that are non-negative since adding
a constant M to every edge adds the constant value M|V |2/4 to every partition, keeping
the set of local optima unchanged. We have also assumed that every instance of the
Graph Partition problem is complete. We can relax this assumption to permit problems
in which the graph G = (V , E) is not complete. If E is not complete, then we can create
an equivalent problem in which G is complete by assigning a weight of 0 to arcs not in E.

Theorem 9 readily extends to the Quadratic Assignment Problem as well.

556 J.B. Orlin, D. Sharma

Quadratic assignment problem

INPUT: A cost matrix C with components cij for i = 1 to n and j = 1 to n.
OBJECTIVE: Determine a permutation π of 1 to n so as to minimize

∑n
i=1∑n

j=1 cπ(i),π(j).

Although the Quadratic Assignment Problem has a non-linear objective function,
each instance is expressed in terms of a cost matrix C in R

n×n. The Graph Partition
Problem is the special case of the Quadratic Assignment Problem in which C is a 2n×2n

matrix, and where cij = 1 if 1 ≤ i ≤ n and n+1 ≤ j ≤ 2n, and where cij = 0 otherwise.
Any neighborhood NQAP for the QuadraticAssignment Problem induces a neighborhood
NGP for the Graph Partition Problem, and for all graph partitions x, NQAP(x) = NGP(x).
Moreover, the set of instances for the QuadraticAssignment Problem strictly contains the
set of instances for the Graph Partitioning Problem, and so N∗

QAP(x) ⊆ N∗
GP(x), which

by Theorem 9 is equal to NGP(x). We have just established the following Corollary of
Theorem 9.

Corollary 3. Suppose that all cost matrices are feasible for the Quadratic Assignment
Problem. Then for any neighborhood structure N for the QAP, N∗(x) = N(x) for all
x ∈ S.

9. Conclusions

In this paper, we have introduced the concepts of LO-equivalence of neighborhoods
and of the extended neighborhood of a neighborhood structure for the combinatorial
optimization problems. These concepts are motivated in part by the study of the inde-
pendent 2-opt neighborhood for the TSP, which is exponentially large even though it is
LO-equivalent to the 2-opt neighborhood. It is also motivated in part by the concept of
dominance as per Glover and Punnen. It is also motivated in part as a generalization of
“exactness” of neighborhoods.

The size of the extended neighborhood provides an alternative metric for a neigh-
borhood structure. A small neighborhood structures can appear to be very large scale if
its extended neighborhood is of exponential size.

There is an interesting related property of VLSN search for the TSP and quadratic
assignment problem. Deı̆neko and Woeginger [1997] point out that there are many
known exponentially large neighborhoods of the traveling salesman problem that can be
searched in polynomial time, but that there is no known exponentially large neighbor-
hood of the quadratic assignment problem that can be solved in polynomial time. We
mention this related property because the quadratic assignment problem contains the
graph partition problem as a special case, and we wonder whether our results in Section
8 and their observations are connected.

We note that our definition of the extended neighborhood of a neighborhood struc-
ture is dependent implicitly on the class of objective functions that are allowed for a
problem. In the future, it may be worthwhile to analyze the extended neighborhoods for
specific neighborhood structures as well as restricted classes of objective functions.

Extended neighborhood: Definition and characterization 557

Acknowledgements. We thank Ravi Ahuja, Andreas Schulz, and Ozlem Ergun for useful discussions. This
research was supported through NSF contract DMI-9820998.

References

Aarts, E.M.L., Lenstra, J.K.: Local Search in Combinatorial Optimization. John Wiley, 1997
Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen,A.P.:A survey of very large-scale neighborhood search techniques.
Disc. Appl. Math. 23, 75–102 (2001)
Deı̆neko, V.G., Woeginger, G.J.: A study of exponential neighborhoods for the traveling salesman problem
and the quadratic assignment problem. Math. Program. 87, 519–542 (2000)
Ergun, O.: New neighborhood search algorithms based on exponentially large neighborhoods. PhD Thesis,
Operations Research Center, MIT, Cambridge, Massachusetts, USA, 2001
Fiduccia, C.M., Mattheyes, R.M.: A linear time heuristic for improving network partitions. ACM IEEE Nine-
teenth Design Automation Conference Proceedings, IEEE Computer Society, 1982, pp. 175–181
Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman, 1979
Glover, F., Gutin, G., Yeo, A., Zverovich, A.: Construction heuristics for the asymmetric TSP. Eur. J. Oper.
Res. 129, 555–568 (2001)
Glover, F., Punnen, A.P.: The traveling salesman problem: new solvable cases and linkages with the develop-
ment of approximation algorithms. J. Oper. Res. Soc. 48, 502–510 (1997)
Gutin, G.,Yeo, A.: Polynomial approximation algorithms for the TSP and the QAP with a factorial domination
number. Disc. Appl. Math. 119, 107–116 (2002)
Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: An exper-
imental evaluation; Part 1, graph partitioning. Oper. Res. 37 (6), 865–892 (1989)
Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. Gutin and Punnen (eds.),
The Traveling Salesman Problem and its Variations, Kluwer Academic Publishers, 2002
Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell System Technical J.
49, 291–307 (1970)
Lawler, E.: The quadratic assignment Problem. Manage. Sci. 9, 586–599 (1963)
Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall,
1982
Potts, C.N., van de Velde, S.L.: Dynasearch – Iterative local improvement by dynamic programming: Part 1,
The traveling salesman problem. Technical Report, University of Twente, The Netherlands, 1995
Punnen, A.P., Kabadi, S.N.: Domination analysis of some heuristics for the asymmetric traveling salesman
problem. Disc. Appl. Math. 119, 117–128 (2002)
Punnen, A.P., Margot, F., Kabadi, S.N.: TSP heuristics: domination analysis and complexity. Algorithmica,
2002 (accepted)
Savage, S.L.: The solution of Disc. linear optimization problems by neighborhood search techniques. PhD
Thesis, Department of Computer Science, Yale University, 1973
Sharma, D.: Cyclic exchange and related neighborhood structures for combinatorial optimization problems.
Ph.D. Thesis. Operations Research Center, MIT, Cambridge, MA, 2002
Voss, S., Martello, S., Roucairol, C., Osman, I.H.: Meta-heuristics: Advances and Trends in Local Search
Paradigms for Optimization. Kluwer, 1999

Appendix

Proof of Lemma 3. We establish this lemma constructively using an approach similar
to that used in constructing the tree of tours. We first divide the set of edges in T into
n groups of four consecutive edges each, where the rth group is Er = (4r − 3, 4r −
2), (4r − 2, 4r − 1), (4r − 1, 4r), (4r, 4r + 1). Note that Er has 5 nodes, and the middle
node is 4r − 1. Let P = (4r1 − 1), (4r2 − 1), . . . , (4rn − 1) be an arbitrary ordering
of the middle nodes of these n groups. We will construct a tour T′ in 2-opt∗ such that
1 − 2 − P are the first n + 2 nodes of T ′.

More specifically, the procedure Construct-Tour given below in Figure 3 will create
a sequence T 0, T 1, T 2, T 3, . . . T n of tours with the following properties:

558 J.B. Orlin, D. Sharma

1. T 0 = T ,
2. For k = 1 to n, the first two nodes in T k are 1 and 2; the j-th node is (4rj−2 − 1) for

j = 3 to k + 2, and the node in position k + 3 is either 4rk or (4rk − 2); in the former
case (4rk − 1, 4rk) ∈ FT k); in the latter case (4rk − 1, 4rk − 2) ∈ BT k);

3. Er ⊆ T k for all 1 ≤ k < r ≤ n;
4. T k is in 2-opt∗ (T) for k = 1 to n.

Property 3 is needed within the proof itself. If we establish that properties 1, 2 and
4 are satisfied, then T ′ = T n satisfies the conditions of the lemma, and the lemma is
proved.

It remains to show that properties 1-4 are satisfied. They are satisfied for T 1 We
now assume that they are satisfied for T k and iteration k, and establish that they are also
satisfied at iteration k +1 and for T k+1 We consider the four cases in the “for loop” of
the procedure separately.

Procedure Construct-Tour ;
begin

if r1 = 1, then T 1 = T ;
else T 1 is obtained from T by performing the 2-opt move {2, 4r1 − 1};
for k = 1 to n -1 do

if (4rk − 1, 4rk) ∈ FT k) and if Ek+1 ⊆ FT k), then T k+1 is obtained from
T k by performing the 2-opt move {4rk − 1, 4rk+1 − 1};

else if (4rk − 1, 4rk) ∈ FT k) and if Ek+1 ⊆ BT k), then
T k+1 is obtained from T k by first performing the 2-opt move {4rk+1−3, 4rk+1},
and subsequently performing the 2-opt move {4rk − 1, 4rk+1 − 1};

else if (4rk − 1, 4rk − 2) ∈ B(T k) and if Ek+1 ⊆ B(T k), then T k+1 is obtained
from T k by performing the 2-opt move {4rk − 2, 4rk+1 − 2};

else if (4rk − 1, 4rk − 2) ∈ BT k) and if Ek+1 ⊆ FT k), then
T k+1 is obtained from T k by first performing the 2-opt move {4rk+1 −3, 4rk+1}
and subsequently performing the 2-opt move {4rk − 2, 4rk+1 − 2};

end.

Fig. 3. Procedure to generate trees T k, k = 1, . . . , n

Case 1. (4rk − 1, 4rk) ∈ F(T k) and Ek+1 ⊆ F(T k). In this case, the sequence for T k

starts with 1−2−(4r1 −1)−(4r2 −1)− . . .−(4rk −1)−4rk by Property 2. By assump-
tion, (4rk+1 −1, 4rk+1) ∈ F(T k), and so the 2-opt move {4rk −1, 4rk+1 −1} is feasible
for T k , and applying this move to T k yields a new tour T k+1 ∈ 2 − opt∗(T). The move
{4rk −1, 4rk+1 −1} on T k removes edges (4rk −1, 4rk), (4rk+1 −1, 4rk+1) and adds the
edges (4rk −1, 4rk+1 −1), (4rk, 4rk+1) To T k . Hence (4rk+1 −2, 4rk+1 −1) ∈ BT k+1)

Property 2 remains satisfied. Property 3 remains satisfied after the move because no edge
in Er, r > k + 1 is deleted by the move.

Case 2. (4rk − 1, 4rk) ∈ F(T k) and Ek+1 ⊆ B(T k). In this case, the sequence for
T k starts with 1 − 2 − (4r1 − 1) − (4r2 − 1) − . . . − (4rk − 1) − 4rk by Property

Extended neighborhood: Definition and characterization 559

2. The algorithm then performs the 2-opt move {4rk+1 − 3, 4rk+1} on T k , creating an
intermediate tour T ′′. It follows that T ′′ is in 2 − opt∗ (T) and also satisfied Properties 2
and 3. The edge (4rk+1 −1, 4rk+1) ∈ F(T ′′), and so the 2-opt move {4rk −1, 4rk+1 −1}
is feasible for T ′′. Applying this move to T ′′ yields a new tour T k+1 ∈ 2 − opt∗(T). Just
as shown in Case 2, Properties 2 and 3 remain satisfied after the move.

Case 3. (4rk − 1, 4rk − 2) ∈ B(T k) and Ek+1 ⊆ B(T k). In this case, the sequence for
T k starts with 1 − 2 − (4r1 − 1) − (4r2 − 1) − . . . − (4rk − 1) − 4rk − 2 by Property 2.
Since (4rk − 2, 4rk − 1) ∈ B(T k) and (4rk+1 − 2, 4rk+1 − 1) ∈ B(T k), we can apply
the 2-opt move {4rk − 2, 4rk+1 − 2} to T k , obtaining a tour T k+1 ∈ 2opt∗(T). Using
argument similar to Case 1, it is easy to see that T k+1 satisfied Property 2 and Property
3.

Case 4. (4rk − 1, 4rk − 2) ∈ B(T k) and Ek+1 ⊆ F (T k). In this case, the sequence for
T k starts with 1 − 2 − (4r1 − 1) − (4r2 − 1) − . . . − (4rk − 1) − 4rk − 2 by Property
2. The algorithm then performs the 2-opt move {4rk+1 − 3, 4rk+1} on T k , creating an
intermediate tour T ′′. It follows that T ′′ is in 2-opt∗ (T) and also satisfied Properties 2
and 3. Since (4rk − 2, 4r − 1) ∈ B(T ′′) and (4rk+1 − 2, 4rk+1 − 1) ∈ B(T ′′), we can
apply the 2-opt move {4rk − 2, 4rk+1 − 2} to T ′′, obtaining a tour T k+1 ∈ 2 − opt∗(T).
Using argument similar to Case 1, it is easy to see that T k+1 satisfied Property 2 and
Property 3.

Based on our construction, the tour T p satisfies the property claimed in the lemma.
	

