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Pure adaptive search constructs a sequence of points uniformly distributed within a corresponding 
sequence of nested regions of the feasible space. At any stage, the next point in the sequence is 
chosen uniformly distributed over the region of feasible space containing all points that are equal 
or superior in value to the previous points in the sequence. We show that for convex programs 
the number of iterations required to achieve a given accuracy of solution increases at most linearly 
in the dimension of the problem. This compares to exponential growth in iterations required for 
pure random search. 
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Introduction 

Monte  Carlo opt imizat ion is concerned with using randomly  generated points to 

approximate  optimal solutions of  mathematical  programs.  The simplest of  Monte 

Carlo opt imizat ion algorithms is pure r andom search (Dixon and Szego, 1978; 

Rinnooy  Kan and Timmer,  1984). This algori thm generates a sequence of  indepen-  

dent, uniformly distributed points in the feasible region and returns the best point  
as an approximat ion  to the optimal solution. While the approach  in itself is inefficient, 

it is frequently used to generate starting points for deterministic search algorithms 

(e.g., Boender,  R innooy  Kan,  Stougie and Timmer,  1982). A great merit of  pure 

r andom search is that  its simplicity lends itself to theoretical analysis. A number  o f  

analytic results on convergence and per formance  have been obtained for it (e.g., 

Archetti,  Betro and Steffe, 1975; Clough,  1965; Rubinstein,  1981; De Haan,  1981; 

Patel and Smith, 1983). 
In this paper  we provide a theoretical analysis of  what  may be considered to be 

the next simplest Monte  Carlo algori thm after pure r andom search. We call this 

algorithm pure adaptive search. The algori thm proceeds by generating a sequence 

o f  points uniformly distributed in a sequence of  nested regions of  the feasible space. 

At any stage, the next point  in the sequence is uni formly distributed over the region 

of  feasible space containing all points that  are equal or superior  in value to the 

previous points in the sequence. 
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The pure adaptive search algorithm gives a surprising improvement over pure 

random search. For convex programs, we show that the computational complexity 
of  pure adaptive search increases at most linearly in the dimension of the problem. 
We also show that the asymptotic distribution of improvement in objective function 
value using pure adaptive search is bounded from below by a lognormal distribution. 

Although at this time there is no known efficient implementation of pure adaptive 
search, any algorithm that generates solutions that can be shown to be stochastically 
superior to those of pure adaptive search will also share this property of  linear time 
complexity. 

1. Pure adaptive search 

Consider the standard convex program, 

min f ( x )  
(P) 

subject to x e S, 

where x is an n-dimensional vector, S is a convex subset of R n, a n d f i s  a real-valued 

convex function defined over S. We will assume that S is closed and bounded, f is 
continuous and there exists a unique solution denoted x , .  Let 

y ,  = f ( x , )  =minsf (x)  and y * = m a x f ( x ) .  

The algorithm for solving P begins by generating a point X1 uniformly distributed 

within the feasible region of P. The associated objective function value is labeled 
Y1 = f ( X O .  The next point is generated from a uniform distribution over the convex 
region formed by the intersection of the feasible region with the level set of points 
with objective function values equal to or less than Y1. The procedure proceeds 
iteratively in this fashion until a preset stopping criterion is satisfied. 

More formally, 
Puree Adaptive Search 
Step O. Set k = 0 ,  So=S, and Yo >~ y * 
Step 1. Generate Xk+l uniformly distributed in 

Sk+l = {x: x c Sk and f ( x )  <~ Yk} 
Step 2. Set Yk+l =f(Xk+~). I f  stopping criterion is met, stop. Otherwise set k = 

k + 1 and return to Step 1. 
By construction, Yk is a decreasing sequence of points that almost surely converges 

to the global minimum y , .  Although obvious here, a general approach to formally 
demonstrating such convergence is given in Solis and Wets (1981). However, the 
more interesting question is the performance of the algorithm as it converges to y , .  
This issue will be addressed in the next section. 

The principal computational effort of  the algorithm lies in generating a point 
uniformly distributed in the improving convex set, as described in Step 1. This is a 
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challenging problem that has as yet yielded no satisfactory solution. Conventional 
approaches include the rejection and transformation techniques (see Rubinstein, 
1981; Schmeiser, 1981). The procedure combining the two techniques is to first 
enclose the set in a simpler region, say a sphere. One then generates a series of 
points uniformly distributed in the enclosing region by efficient transformational 
procedures until a point falls in the enclosed region. The accepted point will then 
be uniformly distributed within the enclosed region. Although the problem of 
efficiently generating many points uniformly distributed within a single bounded 
region has recently met with some success (see Smith [1984]), the problem of 
efficiently generating one uniformly distributed point in each of many bounded 
regions is still unsolved. Still if an algorithm can generate random points (uniform 
or not) with associated objective function values stochastically less than those of 
uniformly distributed points, then the performance of the new algorithm would be 
bounded by the performance of the pure adaptive search algorithm. It is here in 
non-linear convex optimization where the proposed pure adaptive search algorithm 
and its analysis have potential value. 

2. A stochastically worst case problem 

The first step in the analysis of pure random search is to identify a stochastically 
worst case convex program. We first define a conical convex program and then 
show in Lemma 2.1 and Theorem 2.2 that is represents a stochastically worst case 
for the algorithm. 

Consider a standard convex program P. We formally define a conical convex 

program Q corresponding to the convex program P as follows: 

min g(x) 
(Q) 

subject to x ~ S, 

where S is the same feasible region as in P, and g ( x ) =  inf[y: (x, y ) 6  convex hull 
of (x , ,  y , )  and (S, y*)]. 

Note that the conical program Q has the same solution x ,  and the same range 
in objective function values [ y , ,  y*] as P. Also note that the objective function g ( x )  

has a conical shape, and hence the name. 
In order to compare the two programs P and Q, we define Yk e to be the random 

variable representing the kth objective function value generated by the algorithm 
on P, and similarly, let Y~ be the random variable representing the kth objective 
function value generated by the algorithm on Q. 

Lemma 2.1. Let P be a standard convex program, and let Q be the corresponding 

conical program. Then P has one-step dominance over Q, that is, 

Pr( Y~+I ~< z ] Y~ = w) ~< Pr( YL1 ~< z ] Yk e = w) 

for  all k = O, 1, 2 , . . .  and y .  <~ z, w <~ y*. 
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Proof. First consider the case when y ,  ~< w <~ z ~< y*. Let P~ and Q~ be the level sets 

at objective function value z for problems P and Q respectively where Py = {x: x ~ S 

and f ( x )  ~ y}. In this case Pw c p~ and Q~ ~ Qz due to convexity, and therefore 
Pr( YQ+I ~ 2' ] YQ = w) = 1 = Pr( Y~+I <~ z] Yk P = w). 

Now consider the more  interesting case when y ,  <~ z < w ~< y*. Then, clearly, 

Pr(Y~+, ~< z ] Y ~ =  w)<~Pr(Y~+~<~zl YF = w) 

if and only if 

v(P~), p(Qz) 
- - ~  for all y,<~ z < w<~ y *, 
v(Pw) u(Qw) 

where p(.  ) denotes the content  of  the set. 

In order  to prove this equivalent statement, we need to introduce a similarity 

t ransformat ion and some addit ional  notation.  Let hw,~ : R" -~ R" be an affine funct ion 
defined by 

A w , ~ ( x ) = x , + ( z - Y * ] ( x - x , )  f o r y , < ~ z < w < ~ y  *. 
\ w - y , /  

Let 

\ w - y , ~  

be the level set Pw shrunken by a factor  of  ( ( z - y , ) / ( w - y , ) )  and rerooted at x ,  

so that all /Sw, z is conta ined in Pz. (See Lemma A.1 in the Appendix  for a p roof  

that /Sw, z c Pz-) Similarly, let t~w,z = Mv, z(Qw). 

Now, consider v(Qz)/v(Qw). Since Qz = Qw, z (see Lemma A.2 in the Appendix) ,  

we have v(Qz)/u(Qw)= v(Qw, z)/v(Q~). Since hw, z is an affine t ransformation,  

Idet Aw, zl. 
~(Qw) 

Hence v(Qz)/v(Qw)=]detAw, zl for all y , ~ z < w ~ y * .  Similarly, consider 

~(Pz)/~(Pw). Since Pw,~Pz ,  we have v(P~)/v(Pw)>~v(Pw,~)/v(Pw), and also 

v(fiw.z)/~,(Pw)=ldethw,~[. Hence u(P~)/v(Pw)>~ldetZw,~] for all y ,<~z<w<~y *. 
Consequent ly ,  v( P~ ) / v( Pw ) >~ v( Qz ) / v( Qw ) for all y , <~ z < w <~ y *. [] 

Lemma 2.1 states that, for any specified objective funct ion value, the condit ional  

probabil i ty that a point  chosen uniformly from Pw lies in the improved region Pz 
is greater than the condit ional  probabil i ty that a point  chosen uniformly from Qw 

lies in the improved region Qz. This establishes that, on any specific iteration, pure 

adaptive search performs stochastically better in one step on P than on Q. 

Theorem 2.2 states that  the entire sequence o f  points generated by the algori thm 

on P are stochastically better (less) in value than the sequence of  points generated 

by the algori thm on Q. 
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Theorem 2.2. { Yk o} 1> st{ Y~} for all k = 1, 2 , . . . .  

Proof. The proof  is by induction on k. We show that Pr( yO > z) i> Pr( Y~ > z) for 
all k = 1, 2 , . . .  and z ~ [ y , ,  y*]. Note that 

Pr( Y (  <~ z) = Pr( Y~ ~< z I Y0 P = Y*) and 

Pr( Y1 ° ~< z) = Pr( Y10 ~< z ] Y0 O = y*) 

by the definition of the algorithm. But then Pr( Y1 ° ~< z) ~< Pr( Y(~< z) for all y,  <~ z <<- 
y* follows immediately from Lemma 2.1. Hence YlO~>st Y( .  

We assume the induction hypothesis that Yk ° ~> st Y~ for some k ~> 1, and show 
that YkO+l~>st Y~'+1. By Lemma 2.1, we have 

P r ( Y ~ + l ~ Z [ Y O = w ) < ~ P r ( Y ~ + l < ~ Z l Y ~ = w )  for al lz ,  w e [ y , , y * ] .  

For ease of  notation, for any fixed k and z c [ y , ,  y*], let 

q(w)=Pr(YOk+l>zlYOk=w) and p(w)=Pr(Yk+l P > z [ Y ~ = w ) .  

Since q(w) is a non-decreasing function, we have E(q(Y~))  >~ E(q(Y~))  (see Ross, 
1983, p. 252). Also since q(w)>~p(w), we have E(q(Y~))  >t E(p(Y~)) .  Therefore 
E(q(yO)) >1 E(p(Y~)) .  But, E[q( Yk°)] = E[Pr(  yO+~ > z ] Yk°)] = Pr( Yk°+a > z), and 

similarly, E[p( Y~')] = Pr( Y~'+~ > z). Therefore 

Pr( Y~+~ > z) ~> Pr( Y~+I > z) for all y ,  ~< z <~ y*. [] 

Theorem 2.2 states that the objective function values generated on Q are stochasti- 
cally larger than those generated on P. We can conclude that a conical convex 
program is a stochastically worse case than its corresponding convex program. We 
now turn to the analysis of  performance of the pure adaptive search algorithm on 

the conical program. 

3. Analytic performance bounds for pure adaptive search 

The second part of  the analysis is to measure performance of the pure adaptive 
search algorithm on the conical convex program and in this manner  obtain bounds 
on performance for all convex programming. 

In this section we define a measure of  complexity that is appropriate for a stochastic 
algorithm, and then provide two computational complexity results. Analyzing the 
performance of the algorithm for this conical convex program then provides a worst 
case distribution for the number  of iterations necessary to achieve a desired accuracy 
of solution. The first result gives the probability distribution for the quantity of  
improvement per iteration, and shows that the asymptotic minimum (scaled) objec- 

Live function value obtained from pure adaptive search is stochastically bounded 
from above by a lognormal distribution. The second result is that the necessary 
aumber of iterations grows at most linearly in the dimensionality of the problem. 
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In order  to compare  per formance  of  the algori thm across convex programs,  we 

define a s tandardized measure of  improvement• Given any feasible objective funct ion 

value y o f  P where y ,  <~ y <~ y*, define the standardized objective function value of  

y, as 

(y-y,) 
g - -  

(y*-y,)" 

Let Z ~  be the s tandardized objective funct ion value corresponding to the kth point  
X ~  generated by the algori thm on P, Z~" = ( f ( X ~ )  - y , ) / ( y *  - y , ) .  A standardized 

value of  z =  1/m where m is a positive integer will be referred to as an m-fold 

improvement. We say that the algorithm achieves m-fold improvement  by the kth 

iteration if Z ~  ~< 1 / m ,  or  ( y *  - y , ) / (  Y~ - y , ) / >  m. Notice that while the objective 

function y ranges between [ y , ,  y*],  the s tandardized value o f  improvement  ranges 

between [0, 1]. 

We now define a measure of  per formance  that  will be evaluated for the pure 

K~,m be the number  of  iterations of  the pure adaptive adaptive search algorithm. Let e 

search algori thm applied to P necessary to ensure an m-fold improvement  with 

K ~ m = min{k: Pr(Z~" <~ 1 /m)  i> 1 - a}. Let K Q probabil i ty at least 1 - c~. Formally,  P . o ~ , m  

be the same quanti ty applied to the conical convex program Q. 

The following result states that the conical convex program provides a worst case 

distribution for s tandardized improvement  and thus provides an upper  bound  on 
the number  o f  iterations necessary to achieve a desired accuracy of  solution. It 

follows as an immediate  corollary to Theorem 2.2. 

Corollary 3.1. {zP}~st{Zk Q} for all k 1,2, and P Q = K~,n<~K for all m > l ,  • • • ~ , e G m  

0 < c ~ < l .  

We now turn to an analysis of  algorithm per formance  on conical convex programs 

to establish worst case per formance  criteria• 
Our first computa t ional  complexity result characterizes the probabil i ty distribution 

of  improvement  on the conical program, The result, stated below in Theorem 3.2, 

is that the asymptot ic  distribution of  Zk ° is lognormal.  

Theorem3.2. Let Z°k be the random variable corresponding to the standardized objective 

function value on the kth iteration for a conical convex program Q. Let Z ° = 1. Then 

= = and 

for all k, with Z ~  ~ lognormal ( ~k, 2 )  for large k. 

Proof. First we drop the superscript Q with the unders tanding that this p roof  is fol 

the conical program Q. Then Zk = YkYk-1 " " " Yl where Yk = Zk/Zk  1. 
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The Yk are independent identically distributed random variables with mean 
n/(n + 1) and variance n/(n +2)(n + 1) 2 (see Appendix, Lemma A.3). Thus 

k 

E(Zk) = n , 

and hence 

n k 

Var(Zk) : ( ~ n  ~k(1 _ { n ( n  + 2)'~ k). 
\ n + 2 ]  \ \ ( n + l )  2] 

It remains to show that Zk approaches a lognormal distribution. Since Zk is the 
product of independent identically distributed random variables, we can write 
In Zk k = Y~i=~ In %, and using the central limit theorem we get that In Zk approaches 
a normal distribution for large k, or Z ~ -  lognormal (/,k, o-~,) for large k. [] 

Our second result gives an upper bound on KQm and hence e Koe m. 

theorem 3.3. P K<m ~< 2(n + 1) ln(m(1 + 1/~/~-)) for all m > 1 and 0 < c~ < 1. 

Proof. From Chebyshev's inequality 

Pr(E(Zk) - (1/~/S)~r(Zk) <~ Zk <~ E(Zk) + (1/~/~-) ~r(Zk)) i> 1 - 

where Zk is the standardized objective function value on the kth iteration for the 
conical program Q. For m-fold improvement, we should have Pr(Zk <~ 1/m) >i 1 - ol. 
From Theorem 3.2, 

E ( Z k ) = ( n / n + l )  k and ° ( Z k ) = (  n ~k/2[l--{\n+2] k \n2+2n+l)_nZ+2n k]l/2. 

Combining all of these, we find that at most k iterations are required for an m-fold 
improvement where k is the smallest integer that satisfies 

(13(--e-" 3 J2[1 { n 2 + 2 n  '~kl'/2 1 
h ( k ) ~  +\,/~]\n+2/ L -\n2---+-~n+lJ J <~m" 

Let 

[ 1 \ [  n \k/2 
g ( k ) = ~ l + - ~  ) ~ -ff-~ ) . 

Note that (i) g (k)  is monotone decreasing in k for k > O ;  (ii) g ( k ) >  h(k) since 

( n '~k+ 1 / n ~k/2>_( n '~k+ 1 { n ~k/2 
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From (i) and (ii) it is clear that if k' is an integer satisfying g(k')<~ 1/m, then all 
integers k greater than or equal to k' satisfy h(k)<~ 1/m and thus k' provides an 

P upper  bound on K . . . .  Since 2 ln(m(1 + 1/,,/~-))/ln(1 + 1/n) is a root of g(x)  = 1/m, 
we may take k'  equal to the smallest integer greater than or equal to this root. 

Therefore, since ln(1 + 1/n) >1 1/(n + 1) for n ~> 1, 

K~,m~ l n ( l + l / n )  ~ < 2 ( n + l ) l n  m 1 + ~ -  . [] 

The importance of a bound for K ~,, lies not only in providing a stopping criterion 

for terminating the algorithm, but it also has implications on the computational 
effectiveness of  the algorithm. 

Theorem 3.3 states that the number  of iterations needed for a worst case situation 
will at most grow linearly in the number of  dimensions. In fact, since this is not a 
tight upper  bound, the performance is better than linear. Table 1 gives upper  bounds 
on performance versus dimension and for a millionfold improvement  with 99% 

certainty. 

Table 1 

An upper bound for e versus K ..... dimension for 
convex programs for millionfold improvement 
with 99% certainty 

Dimension Upper bound for Ks.e,,, with 
n ~ =0.01, m=106  

(number of iterations) 

1 65 
2 98 
5 195 

10 357 
50 1654 

100 3276 

500 16246 
1000 32460 

5000 162167 

10000 324301 

The linear bound on complexity for pure adaptive search is perhaps a surprising 

improvement over the exponential complexity of  pure random search. It suggests 
that steady improvement is an important feature for an algorithm (Adler, 1983), 
and that even a "bl ind" search using a uniform distribution yields good performance. 
I f  another algorithm could be shown to be stochastically better than the pure adaptive 
search algorithm, then the same analysis and results would apply. In fact, other 
random search optimization algorithms have experimentally witnessed linear results 
on convex programs such as in Solis and Wets (1981), Schumer and Steiglitz (1968), 
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and Schrack and Borowski (1972). These findings suggest possible extension of the 
pure adaptive search algorithms' linear behavior to more practical algorithms. 

4. Conclusion 

We have shown that pure adaptive search greatly improves on pure random 
search. Iterations for pure adaptive search are linear in the dimension of convex 
programs. 

However, at the present time we do not have efficient procedures for generating 
uniformly distributed points in general convex regions. For this reason, despite its 
substantial improvement over pure random search, pure adaptive search cannot 
compete with existing algorithms for the general case. For special regions it can be 
more effective. More importantly, our analysis clearly indicates that simple linear- 
time Monte Carlo algorithms for convex optimization are possible if we can develop 
efficient procedures to generate points uniformly distributed over convex regions. 

Appendix 

Lemma A.I. For any convex program P, the shrunken set ~'w,z = Aw, z(Pw) is contained 
in its level set Pz; 

fiw,~c P~ f o r a l l y , < ~ z < w < ~ y  *. 

Proof. Let Y~/Swz. By the definition of/Sw.z = Aw, z(Pw), there exists x c Pw such that 

~ =  Aw, z ( x )=  x ,  + (  z - Y *  ) ( x -  x , ) .  
\ w - y , /  

Therefore, since f is a convex function, 

f (~ )  ~< ( 1 - ( z -  y ,  ] I f ( x , ) +  ( z -  y ,  ) f ( x ) .  
\ w - y , ~ ~  \ w - y , ~  

We have that f ( x , )  = y ,  and f ( x )  -<- w since x e Pw, hence 

w - z  ( z - y , ]  z ( w - y , )  

,, w - y , /  w - y ,  

Therefore f(Y) ~< z, and Y e S by convexity, giving the result, Y c Pz for all y ,  ~< z < 
w<~ y *. [] 

Lemma A.2. For any conical convex program Q, the shrunken set Qw.~ = Aw, z( Qw), is 
identical to its level set Qz; 

Qw, z=Q~ f o r a l l y , < ~ z < w < ~ y  *. 
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Proof.  (i) First ,  Qw, z c Qz for  all y ,<~z<w<~y * by L e m m a  A.1 because  Q is a 

convex program.  (ii) Now,  we show that  Q~ c Q . . . .  I f  z = y , ,  then Q~ = {x,} = Qw: 
by defini t ion.  Cons ide r  y ,  < z < w <~ y*, and  let Y c Qz with ~ = g(Y). Define 

- x ,  - -  for  a n y y , < z < w ~ < y * .  
\ z - y , ~  z - y ,  

Note  that  

Aw:(x ')  = x ,  + (  z - y ,  ~ ( x ' - x , ) ,  and  subst i tu t ing in x ' ,  
\ w  - y , /  

] 

(z_,. I ] 
• L \ .  - Y , )  - J \ w  - y , /  

: X .  

Since Y = Aw, z(X'), if  x '  ~ Qw we wou ld  have Y c Q . . . .  It  r emains  to show that  x '  ~ Qw. 

Since (Y, ~) ~ convex hull  of  ( x , ,  y , )  and  {(x, y*):  x c S}, we know that  there  

exists ~ c S such that  (Y,)~) is on the line segment  connec t ing  ( x , ,  y , )  and  (~, y*) ;  

Y = (1 - r ) x , +  r~2 where  r = ( f - y , ) / ( y * - y , )  ( 0 <  r <  1). By our  def ini t ion o f x ' ,  we 

have x ' =  ( 1 -  s ) x , +  sY where  s = ( w - y , ) / ( z - y , )  and s > 1. Subst i tu t ing for #;  

x '  = (1 - s )x ,  + s(1 - r)x ,  + sr~ 

= (1 - sr)x,  + srff. 

N o w  

and  y ,  ~< # ~ z, hence  

<_,. s r ~ \ z  , = 
- y , J \ y  - y d  y * - y ,  

Therefore  x ' c  S because  it is on a line segment  connec t ing  x ,  and  ~, and  S is 

convex. Now,  g(x') ~ (1 - sr)g(x , )  + sr g(~) ,  since g ( x )  is a convex funct ion.  Hence  

g (x ' )  ~< (1 - s r ) y ,  + sty* <~ w as is easi ly shown.  Since x '  ~ S, we have x '  ~ Qw- []  

Lemma A.3. Let Yk = Zk/Zk-1 be the ratio of  successive improvements on a conical 
program Q. Then {Yk, k=  1, 2 , . . . }  are independent identically distributed random 

variables. Also, for k = 1, 2 , . . ,  

n E [ T ~ ] =  n 
E[Tk]-- n + l '  n+2" 
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Proof.  N o w  P r ( y k ~ y ) E z k  , ( P r ( Z k ~ y Z k  l lZk 0)- Since Z k = ( y k - - y , ) / ( y * - - y , ) ,  
the condit ional  distribution o f  Zk given Zk-1 is 

Pr(Zk ~< z I Zk_l : w) : Pr(yk ~< z'J Yk-, : w') 

where z ' =  z ( y * - y , ) + y , ,  w ' =  w ( y * -  y , ) +  y , .  When 0<~ z <  w~< 1, 

Pr(yk ~ z' I Yk-, = W') -- u(Qz.) ]det Aw,,z,[ 
u(Qw,) 

=cz 
\ w ' - y . , l  

since Q is a conical convex program in n dimensions.  Therefore,  

p r ( Z k < ~ z l Z  k l = W )  = for z < w ,  O<~w,z<~l, 

for  z~> w, O<~w,z<~l. 

Let fzk , (x)  be the density funct ion for Zk_~. Then 

fo Pr(yk ~< y)  = Pr(Zk<~xylZk  ~ = x ) f z ~ _ , ( x ) d x  

1 X n 

L l =Y"  fzk ,(x)  dx  

= y "  for 0<~y~< 1. 

['hus, the r andom variables yk, for k = 1, 2 , . . .  are identically distributed. 

To establish the independence  of  the Yk, we need to show that 

P r ( y k + ~ < ~ y l y k , . . . , y l ) = P r ( y k + ~ < ~ y ) )  for a l l y a n d  k. 

7his immediately implies that y~, y=, . . .  are independent  r andom variables, i.e., for 

11 k, 

Pr( Tk+ 1 ~ Y, Y~ ~< Y k ,  . • • , ")/l ~ Y~ ) 

= Pr(yk+l ~< y)  Pr(yk <~ Yk) " " " Pr(yl  ~< Yl). 

~ow, for 0~<y<~ 1 and 0<~yi~< 1, i=  1 , 2 , . . . ,  k and for all k, 

Pr(yk+l ~< y[ Y~ = Yk, • • •, ~/1 = Yl) 

= Pr(Zk+~ <~yZk [Zk =YkYk-1 " " " Y ~ , . . . ,  Z1 =YO 

= Pr(Zk+~<~yykYk-a " " " Y~IZk =YkYk ~ " " " Y a , . . . ,  Za =y~) 

= Pr(Z~+l ~< Y Y k Y k - I ' "  " Yl [Zk = Y k Y k  1 ' ' "  Yl) 
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s ince  Zk+l  is c o n d i t i o n a l l y  i n d e p e n d e n t  o f  Z k - l ,  . . . ,  Z I  g i v e n  Zk 

= (YYkYk-I  " " " Y l / Y k Y k  1 " " " Y l )  n 

: y n  

= Pr(Yk+l ~<Y). 

F i n a l l y  t h e  r t h  m o m e n t  o f  Yk c a n  b e  eas i ly  d e t e r m i n e d :  

;o L fo  yr+~ , n E [ y r g ] =  y r n y "  ~ d y = n  d y =  . 
r q - n  

I n  p a r t i c u l a r ,  

n n 
E [ Y k ] = n + l '  E [ y 2 ] -  n + 2 "  D 
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