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Abstract. A thorough assessment of human exposure to environmental
agents should incorporate mobility patterns and temporal changes in human
behaviors and concentrations of contaminants; yet the temporal dimension is
often under-emphasized in exposure assessment endeavors, due in part to
insufficient tools for visualizing and examining temporal datasets. Spatio-
temporal visualization tools are valuable for integrating a temporal
component, thus allowing for examination of continuous exposure histories
in environmental epidemiologic investigations. An application of these tools
to a bladder cancer case-control study in Michigan illustrates continuous
exposure life-lines and maps that display smooth, continuous changes over
time. Preliminary results suggest increased risk of bladder cancer from
combined exposure to arsenic in drinking water (>25 ug/day) and heavy
smoking (> 30 cigarettes/day) in the 1970s and 1980s, and a possible cancer
cluster around automotive, paint, and organic chemical industries in the
early 1970s. These tools have broad application for examining spatially- and
temporally-specific relationships between exposures to environmental risk
factors and disease.
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1 Introduction

A key component of environmental epidemiologic research is the assessment
of historic exposure to environmental contaminants. Exposure assessment
efforts are complicated by temporal variation in contaminant concentrations
and human behaviors, and by residential and occupational mobility patterns.
Despite temporal variation in exposure, existing assessment tools generate
exposure estimates that under-emphasize time by ignoring variation within
pre-defined time intervals (Steinmaus et al. 2003; Charles et al. 2003). For
example, tools such as cumulative exposure calculations, time-window
cumulative exposure estimates, and peak exposures over definitive time
intervals are unsatisfactory because a critical span of time could be
overlooked or attenuated. Other methods rely on recent estimates of
exposure (e.g., levels of contaminants in blood) and assume those estimates
to be temporally invariant (Gammon et al. 2002). These types of exposure
assessments can be misleading due to extended latency periods for chronic
diseases, such as cancers.

Collecting and constructing detailed temporal datasets is an arduous
undertaking in environmental epidemiologic research, and for this reason,
investigators often under-emphasize the temporal dimension. For instance,
in a New York cancer study, serum organochlorine (OC) levels measured
shortly after breast cancer diagnosis were used as a key measure in an
exposure assessment (Gammon et al. 2002), even though periods of historic
OC exposure are of more etiologic importance. In another study, cancer
cluster investigations relied on residential location at time of diagnosis or
time of death (Kulldorff et al. 1998), despite the likelihood that exposure to
potential etiologic environmental agents occurred years prior to diagnosis.
Quality historical data, such as exposures that occurred 20, 30, or 40 years
ago, are extremely difficult, if not impossible, to obtain. Other historical
datasets, however, can be gathered with some degree of assurance: residential
mobility patterns, shifting locations of polluting industries, changes in
behavior such as water or food consumption habits, and historical pollutant
concentrations. Existing exposure assessment efforts do not adequately
consider temporal variation because temporal datasets are seldom collected;
when they are collected, suitable visualization tools are not available.

Visualization tools are necessary to explore relationships between vari-
ables, and how those relationships change over time. Despite modern
computer technologies for storing and managing temporal and spatio-
temporal datasets, surprisingly few tools are available for visualizing the
“what, where, and when” of events (Andrienko et al. 2003; Chittaro et al.
2003). One visualization tool, geographic information system (GIS) software,
enables users to visualize what happened, and where; and has augmented
assessment of exposure to environmental contaminants. For example,
researchers have geocoded locations of industries, industrial waste sites,
pollution plumes, as well as homes, schools and jobs of study participants.
From these geocoded features, disease maps have been created and spatial
analyses performed (Brauer et al. 2003; Maantay et al. 2002; Meliker et al.
2001; Reif et al. 2003; Swartz et al. 2003). A frequent criticism of GIS,
however, is its inability to support temporal data structures (Beaubroef and
Breckenridge 2000; Dragicevic and Marceau 2000). This can be problematic
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if, for example, investigators wish to explore whether residences of cancer
cases cluster at any time in the past 50 years; or whether living in close
proximity to a chemical industry at any point in time is associated with
subsequent cancer development. With GIS, spatial patterns at different
isolated moments can be examined, using animation tools. However, each
map, or snapshot, must be created independently, requiring a substantial
amount of effort and introducing greater likelihood of data entry error.
Furthermore, information about change is not available in the interval
between two consecutive snapshots. Visualization of a map that displays
smooth, continuous changes over time can generate additional insights about
spatial disease patterns.

Spatio-temporal visualization tools support evaluation and query of
spatio-temporal datasets, and also can enrich analysis of temporal datasets
that are devoid of geographic coordinates. A backbone of these tools is their
temporal data structure, which enables non-geographic attributes, such as
temporally-variant exposure estimates, to be visually examined. An example
of a visualization tool, exposure life-lines, is introduced in this paper.
Exposure life-lines facilitate scrutiny of continuous exposure estimates,
permitting examination of whether exposure at any point in time is
associated with subsequent disease development. Such an analysis cannot
be undertaken using existing analytical software.

In this paper, space-time visualization methods are illustrated using
preliminary data from a bladder cancer case-control study in Michigan.
Established causes of bladder cancer include cigarette smoking and exposure to
aromatic amines in occupational settings; however, many cases of bladder
cancer remain unexplained. One possible cause of bladder cancer is exposure to
arsenic in drinking water. Concentrations of arsenic in drinking water
exceeding World Health Organization (WHO) and US Environmental
Protection Agency (EPA) guidelines (10 ug/L) have been identified in
ground-water supplies of 11 counties in southeastern Michigan: Genesee,
Huron, Ingham, Jackson, Lapeer, Livingston, Oakland, Sanilac, Shiawassee,
Tuscola, and Washtenaw (Kim et al. 2002; Kolker et al. 2003; Slotnick et al.
2003). Previous individual-level studies of arsenic in drinking water and
bladder cancer have been criticized for imprecise exposure assessments (Cantor
2001) which failed to account for (1) changes in arsenic concentration in water
over time, (2) individual residential mobility patterns, and (3) behavioral
changes in drinking water consumption. These shortcomings are familiar to
many investigations of environmental exposures and cancer; spatio-temporal
visualization tools are essential for alleviating some of these shortcomings.

2 Data and methods

A sample of 39 cases and 39 controls from a bladder cancer case-control
study in Michigan was selected to demonstrate applications of spatio-
temporal visualization tools for exposure assessment. This size dataset allows
for straightforward manipulation and visualization of complex exposure
scenarios, enhancing communication of the intricacies of these visualization
tools. Cases were recruited from the Michigan State Cancer Registry and
diagnosed in the year 2000. Controls were frequency matched to cases by age
(£5 years), race, and gender, and recruited using a random digit dialing
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procedure from an age-weighted list. To be eligible for inclusion in the study,
participants must have lived in the eleven county study area for at least the
past 5 years and had no prior history of cancer (with the exception of non-
melanoma skin cancer). Participants were offered a modest financial
incentive and research was approved by University of Michigan IRB-Health
Committee. Participants answered a telephone questionnaire concerning
drinking water habits, smoking, and medical history, and completed a
written questionnaire describing residential mobility history. Information
obtained from these questionnaire instruments was used to create spatio-
temporal datasets.

This report describes the key functionalities of a software being developed to
facilitate spatio-temporal visualization. An early version of the software,
STIS™ (TerraSeer, Ann Arbor, MI), supports spatio-temporal datasets but
does not yet generate all of the visualization capabilities that are described here.

2.1 Temporal and spatio-temporal datasets
2.1.1 Residential mobility

Participants provided written residential histories of each home lived-in for at
least one year (for a total of 519 homes). The duration of residence and exact
street address were obtained, otherwise the closest cross streets were provided.
Each residence in the eleven county study area was geocoded and assigned
geographic coordinates in ArcGIS; residences outside the study area were not
geocoded. Participants resided at 288 homes within the study area, with time
spent averaging 66% of their lifetimes. Street files were downloaded from
Michigan Center for Geographic Information website, and were part of the
Michigan Geographic Framework. Michigan Geographic Framework data-
sets use the Michigan GeoRef System, based on an Oblique Mercator
projection. Residences within the study area were successfully geocoded: 78%
automatically matched using ArcGIS settings of spelling sensitivity equal to 80,
minimum candidate score equal to 10, and a minimum match score equal to 60.
The unmatched addresses (22%) were manually matched using cross streets
with the assistance of internet mapping services. If cross streets were not
provided, best informed guess placed the address on the road (3%), and as a last
resort, residence was matched to town centroid (2%).

2.1.2 Water supply history

Participants provided written information about primary water supply and
any changes in water supply at each residence (e.g., public surface, public
well, private well, or bottled water). Managers of 135 public water supplies in
the study area answered questions about quality of drinking water, source of
water, changes in water supply, changes in extent of coverage of water
supply, and changes in treatment procedures. Each residence was classified
by its primary water supply for a span of time, based on accounts provided
by participants. At approximately 3% of the addresses, participants did not
assign a water supply; STIS™ was used in those cases to assign a water
supply (see Sect. 3.3).
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2.1.3 Arsenic data

The water sample that provided current arsenic exposure was collected from
the kitchen tap, or primary source of water for drinking and cooking at each
participant’s current home. All plasticware was acid-washed for trace metals
determination following modification of a previously described protocol
(Nriagu et al. 1993). Blanks and replicates were collected for at least 10% of
the samples. Water samples were stored on ice, acidified with 0.2% trace
metal grade nitric acid, and refrigerated until analysis. Water samples were
subsequently analyzed for arsenic using an inductively coupled plasma mass
spectrometer (ICP-MS, Argilent Technologies Model 7500c).

Historic databases were used to estimate arsenic concentrations at past
residences. Michigan Department of Environmental Quality (MDEQ)
maintains a database of arsenic measurements (1993-2002) in private
(N=11,615 arsenic measurements) and public well water supplies
(N=1675 arsenic measurements) in the study area, analyzed in a state
laboratory with graphite furnace atomic absorptions spectrometry (GF/
AAS) (1993-1995), hydride flame (quartz tube AAS) (1993-1995), and an
ICP-MS (1996-2002). Private well water measurements from MDEQ
database were utilized to generate city or township averages (means) of
arsenic concentrations for private well waters not yet monitored for arsenic.
This MDEQ database of public well water supplies was used to calculate a
mean value of arsenic for each community’s ground-water supply. Commu-
nity supplies relying on surface water were assigned an arsenic concentration
equal to 0.3 ug/L, the mean level detected in tap water samples that rely on
surface water in the area. Residences outside the study area were similarly
assigned an arsenic concentration of 0.3 pg/L. Arsenic concentrations in
private and public water supplies were assumed not to change over time,
since evidence suggests limited temporal variability (Ryan et al. 2000). The
bladder cancer case-control study is in progress and, therefore, arsenic
concentration estimates from an ongoing modeling effort are not yet
available; however, the arsenic database presented here is adequate for
highlighting some of the benefits of spatio-temporal visualization tools for
generating insights into exposure-disease relationships.

2.1.4 Water consumption patterns

Estimates of water consumption (liters/day) were calculated based on
answers to a series of questions from a telephone interview. Participants were
asked to self-report the number of glasses of water and beverages made with
water drank at home during the past year (the year prior to cancer diagnosis
for cases), the previous ten years, and changes in drinking water consump-
tion over the course of a lifetime.

2.1.5 Industrial locations

Industries believed to emit contaminants that have been associated
with xbladder cancer or believed to emit arsenic were identified using the
Toxics Release Inventory (USEPA 2000) and the Directory of Michigan
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Manufacturers (Manufacturer Publishing Co., 1946, 1953, 1960, 1969,
1977, 1982). Standard Industrial Classification (SIC) codes were adopted,
but prior to SIC coding, industrial classification titles were selected.
Characteristics of 245 industries, including, but not limited to, cigarette
manufacturing, fabric finishing, wood preserving, pulp mills, industrial
organic chemical manufacturing, and paint, rubber, leather, and battery
manufacturing, were compiled into a database. In total, 21 three-digit SIC
codes and 17 four-digit SIC codes were used to select industries. Industries
were geocoded following the same matching procedure as described for
residences: 89% matched to the address, 5% were placed on the road using
best informed guess, and as a last resort, 6% were matched to town
centroid. In addition, a MDEQ list and ranking of 549 contaminated sites
in the study area was successfully geocoded (100%).

2.2 Calculating exposure estimates

Exposure was calculated by multiplying arsenic concentration (ug/L) by
volume of water drank at home and used for making beverages at home (L/
day). Each change in water consumption was used to estimate exposure for a
particular time-window, assuming that the arsenic concentration was
constant. Results are presented as average exposure to arsenic in units of
ug/day. Exposure calculations were performed for 587 unique space-time
periods, with each space-time period defined by a unique combination of
residential location, water source, water treatment, and water consumption
behavior. These exposure estimates are preliminary and used to illustrate
potential of spatio-temporal visualization tools for exposure reconstruction.
Other components of a detailed exposure assessment, such as water
consumed at work, occupational exposures, and uncertainty associated with
estimates of arsenic concentration, are being assessed but are not reported in
this paper.

3 Features and architecture of spatio-temporal visualization tools
3.1 Data structure

Spatio-temporal visualization tools support datasets in which time is a
principal feature. For example, the data structure used by STIS™ requires
that: (1) each row in a dataset represents a space-time intersection and a
variable of interest and (2) when a geographic location or a variable of
interest changes value, a new row is created. Data tables can be linked to
spatial features, and the following information must be specified: whether the
data are time-dependent, unique ID, start date, and end date. In the example
of drinking water history and residential mobility of participants, each
home and water source occupy a unique row with a start year, end year,
geographic coordinate, and participant ID number. Any change in location
of residence or source of drinking water is characterized by a new row with a
defined duration, using the same participant ID number (Table 1). Other
variables, such as water consumption patterns, use of home water treatment
systems, and concentrations of drinking water contaminants, are stored
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Table 1. Spatio-Temporal Dataset Format for STIS Point Features: Residential Mobility
History and Water Consumption History for Two Participants

Residential mobility history

Sample ID Year Year Address® X-Coord® Y-Coord*
Moved In Moved Out
001366 04/08/1951 01/01/1963 Address #1 694980 264132
001366 01/01/1963 01/01/1971 Address #2 687299 268878
001366 01/01/1971 01/01/1972 Address #3 694161 272042
001366 01/01/1972 01/01/1975 Address #4 680421 278791
001366 01/01/1975 01/01/2004 Address #5 649645 275342
001397 01/01/1933  01/01/1937  Address #1 692980 168978
001397 01/01/1937 01/01/1950 Address #2 687699 174042
001397 01/01/1950 01/01/1953 Address #3 692161 176791
001397 01/01/1953 01/01/1957 Address #4 660421 177342
001397 01/01/1957 01/01/1964 Address #5 684656 274665
001397 01/01/1967 01/01/1969 Address #6 694766 278743
001397 01/01/1969 01/01/1993 Address #7 686910 274183
001397 01/01/1993 01/01/1998 Address #38 692830 280704
001397 01/01/1998 01/01/2004 Address #9 685618 270049

Water consumption history

Sample ID Start Period  End period Estimated Water Consumption

(Liters/day)
001366 04/08/1951 01/01/1995 1.5
001366 01/01/1995 01/01/2004 2.75
001397 04/08/1933 01/01/1949 0.25
001397 01/01/1949 01/01/1982 1.0
001397 01/01/1982 01/01/2004 0.6

#Address and geographic coordinates are altered to protect participant confidentiality.

in separate datasets, including rows with defined durations and ID numbers.
Despite different durations for variables, participant datasets can be joined
together, using participant ID numbers. Analogous to GIS, using spatio-
temporal visualization tools, a participant’s mobility history can be
visualized by displaying specified attributes of a participant. In effect,
changes in water consumption patterns, water supply, contaminant concen-
trations in water, or other variables can be illustrated as participants’ move
through time.

From a data input perspective, datasets of point, line, or polygon features
are structured similarly. As with point features, visualizing changes in
community attributes requires geographic coordinates, a duration, unique
community ID number, and characteristics of a community. These variables
are recorded in unique rows for each space-time intersection. The ID number
remains constant, even if the geographic area of the community
changes—analogous to a unique ID number for each participant, even
though residences change. In this manner, polygons can change shape and
attributes over time.
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Fig. 1. Public and private water supply status in Southeastern Michigan in 1932, 1964, and 1993

3.2 Space-time maps

Smooth, temporally continuous, space-time maps are created in STIS™
using the data structure described above. To illustrate the changes in the
source of drinking water, a series of snap-shots are presented, representing
the region’s water supply status in 1932, 1964, and 1993 (Fig. 1). The slider
bar is dragged to the left (distant past) or right (more recent past) to display
different years. With limitations of the printed page, only static images can be
presented here; however, STIS™ produces continuous space-time anima-
tions.

In the public water supply example, in addition to assigning a water supply
source to a participant’s residence, valuable information can be gained by
visualizing water supply changes. Water supply is designated as: private
wells, public ground-water, public surface water, purchased surface water, or
mainly private wells (i.c., some small residential developments in the
community have public ground-water supplies). From 1932 through 1993,
most of the region was served by private wells (white color in Fig. 1). In
1932, only a few communities were served by surface water; by 1993, several
communities purchased surface water from the city of Detroit water system.
Visualization of changes shows that over time, small communities developed
public ground-water systems and some public ground-water systems changed
over to public surface water distribution systems.

In addition to attributes changing, variations in town boundaries are
displayed, as when new towns become incorporated, communities expand
their borders, and when communities merge (Fig. 2). Between 1950 and 1992,
several new communities were incorporated in Oakland County. In the
database, each community is assigned a unique ID number that remains the
same; any other variable, including geographic coordinates, is permitted to
change.

3.3 Space-time queries

Given space-time maps, a natural extension is for the software to process
space-time queries. This procedure would reduce data entry time and error
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Fig. 2. Feature of spatio-temporal visualization tools. Town boundaries change with time (1950,
1992)

associated with manually assigning an attribute to a space-time object. For
example, in the bladder cancer study, participants have been unable to recall
their drinking water source at approximately 3% of their lifetime residences.
The public water supply map (Fig. 1) from 1920-2003, was overlaid with the
residential history map, and each residence without an assigned drinking
water source was visually compared with the public water supply map and
assigned a drinking water source. A space-time query feature would make
this assignment automatic.

As a further example, space-time query tools could be used to assign an
arsenic concentration to drinking water at each residence. Distinct space-
time maps of arsenic concentration could be created for residences on public
water supplies and private wells. A space-time query procedure could
differentiate between residences on private well water and those on public
water supply, and assign arsenic to each residence, at any point in time. This
procedure highlights the broad application of spatio-temporal visualization
tools in facilitating exposure calculations and therefore improving exposure
assessment.

4 Visualization examples
4.1 Spatio-temporal patterns: Cancer clusters based on residential histories

Space-time maps allow for examination of cancer clusters using former
residences of cases and controls. The ability to scan a continuous space-time
map for potential cancer clusters at any point in time is a valuable
exploratory tool with considerable potential for research. A continuous
space-time map of public water supply history was overlaid by locations of
current and past residences for 39 cases and 39 controls in STIS™. The map
was scanned to investigate if cases or controls drank different water sources
at any point in time. In 1946, eight cases and four controls lived in Genesee
County and six of the cases and two of the controls drank well water; the
other cases and controls imbibed surface water (figure not shown to protect
participant confidentiality). Association between residential location and
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drinking water source among cases and controls will be explored in finer
detail when additional data are collected and geocoded.

In addition to data on public water supply history, other spatio-temporal
databases were added to the space-time map. Current and former locations
of selected industries and contaminated sites were overlaid to investigate if
the cancer cases cluster around these sites. In 1973, former residences of four
cases appeared to cluster together, near automotive, paint, and organic
chemical industries in Oakland County (figure not shown to protect
participant confidentiality). These results are suggestive of an association
between bladder cancer and industrial pollution in the community. As
additional data are collected, these findings will be investigated in greater
detail.

Spatial patterns based on participant’s age may generate fresh insights,
compared with those based on specific dates. For example, a cluster of
former residences of cancer cases at a specific year may indicate environ-
mental contamination during that year. A spatial cluster of former residences
of cancer cases when they were children, irrespective of year, may indicate
early-lifetime vulnerability to an environmental exposure in the area. Spatio-
temporal visualization tools could be used to display cancer clusters based on
the years a participant lived at a residence, or to display cancer clusters of
similarly aged participants. In this manner, clusters of children could be
visualized, even if the children are born in different generations.

The spatio-temporal visualization tools being developed will enable the user
to scan a smooth, continuous space-time map to look for patterns at any slice of
time. Using a space-time map, however, differentiating each participant’s
movement in time is difficult. One method for tracking an individual on a map
is by connecting lines between residences, creating geospatial life-lines which
can be used to trace individual movement in space and time (Hornsby and
Egenhofer 2002; Kwan 2000). With a large study sample, say of over 1000
participants, life-lines intersect and monitoring individual movement becomes
confusing. Visual comparison of individual life-lines on a map, therefore, is
challenging. Alternatives to geospatial life-lines that may be easier to visually
comprehend are tools highlighting the temporal component, without regard
for geographic information. Since a backbone of spatio-temporal visualization
tools is a temporal data structure, non-geographic attributes, such as
temporally-variant exposure estimates, can be visually examined.

4.2 Visualizing temporal patterns

One of the most commonly used temporal visualization tools is the time
series graph. A time series of arsenic exposure for each case and control is
shown in Fig. 3. Each line represents a different participant’s arsenic
exposure trajectory. The thick line depicts average arsenic exposure for cases
and controls, in respective graphs. Individual participants’ trajectories are
difficult to follow, visually, because the lines intersect. The average arsenic
exposure trajectory for cases and controls may generate insights but
information is lost by simply averaging participants’ exposures.

Other traditional tools, such as histograms and scatter plots, display
variables at slices of time in STIS™. Similar to space-time maps, these tools
allow for scanning smooth, continuous, temporally-variant figures for
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Fig. 3. Time series graphs of arsenic exposure: Cases and controls. Each line represents a
participant’s average daily exposure to arsenic (ug/day) over his/her lifetime

relationships between variables at any moment in time. Histograms display one
variable, and scatter plots display two variables, at any time slice. For example,
histograms for cases and controls were compared for drinking water source. In
1965, 15 cases and 11 controls were drinking well water, while 24 cases and 28
controls were drinking surface water (Fig. 4). Scatter plots were used to
compare arsenic exposure and cigarette smoking for cases and controls
(Fig. 5). In 1972, controls with arsenic exposure exceeding 20 pg/L, smoked
fewer than 21 cigarettes/day. Cases with arsenic exposure exceeding 20 ug/L, in
comparison, smoked greater than 30 cigarettes/day. Limited evidence suggests
that cigarette smokers, exposed to elevated levels of arsenic 3040 years ago
(Bates et al. 1995) or 40 or more years ago (Steinmaus et al. 2003) are at an
increased risk for bladder cancer. But the temporal relationship between
cigarette smoking and arsenic exposure has not been well documented. For
example, when does smoking cigarettes interact with arsenic exposure: if
exposure is simultaneous; if heavy smoking precedes a period of elevated
arsenic exposure; or if heavy smoking occurs following a period of elevated
arsenic exposure? Is there a critical time when cigarette smoking and arsenic
intake interact to increase risk of bladder cancer? Scatter plots help researchers
address these types of questions, and early results using this preliminary dataset
suggest that a combination of heavy smoking and elevated arsenic about 30
years prior to cancer diagnosis may exacerbate risks for bladder cancer.
While scatter plots, histograms, time graphs, geospatial life-lines, and
space-time maps, can each be employed to generate insights about temporal
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Fig. 5. Scatter plot of arsenic exposure and cigarettes smoked in 1972: Cases and controls. Two
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and spatio-temporal datasets, these tools do not display the entire temporal
dataset in a straightforward manner. The tools rely either on time slices of
continuous maps or crisscrossing trajectories of participants, in which the
relationships between participants, their exposure, and how exposure
changes with time, are difficult to visually comprehend. One solution is
exposure life-lines, which display participants on the X axis, time on the Y
axis, and measures of exposure in the life-lines’ color or thickness.
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Exposure life-lines (Fig. 6) are presented to illustrate changes in cigarette
smoking exposure among cases and controls. The thickness of the life-line
reflects the average number of cigarettes smoked each day, with thicker lines
indicating heavier smoking. Using these life-lines, investigators can compare
cases and controls to evaluate whether cases began smoking at a younger
age, quit at an older age, or whether there was a particularly vulnerable
period in which heavy smoking appears to be strongly associated with
bladder cancer. Similar numbers of cases (16) and controls (15) never smoked
cigarettes, but seven cases smoked > 30 cigarettes/day, in comparison with
four controls. In addition, nine of the twelve cases who smoked >20
cigarettes/day, were smoking in their 40s and 50s, in comparison with just
three of the nine controls who smoked more than a pack a day. While
cigarette smoking is an established risk factor for bladder cancer, the timing
of when cigarette smoking might exacerbate bladder cancer risk is not well
understood. The apparent temporal cluster of heavy smokers among cases in
their 40s and 50s could shed light on the temporal relationship between
cigarette smoking and bladder cancer.

As Fig. 6 illustrates, exposure life-lines may be used to investigate
temporal clusters of high exposure at any point in time. They are particularly
useful for investigating the latency period of exposure-disease relationships.
These life-lines are a substantial improvement over such methods as
cumulative exposure estimates or pre-defined time windows of exposure,
which rely on temporally-aggregated exposure estimates. Exposure life-lines
are helpful to investigate whether any years of high exposure are more
prominent in cases compared with controls.

Bivariate exposure life-lines can be constructed to represent historic
exposure levels from two variables with shades of grey for the first
variable, and thickness for the second variable. Exposure life-lines
depicting arsenic exposure and cigarette smoking history for cases and
controls are shown in Fig. 7. A life-line’s thickness increases with
frequency of cigarettes smoked; increases in darkness correspond to
higher levels of arsenic exposure. It is seen that more controls, compared
with cases, were exposed to elevated levels of arsenic in drinking water
over the course of their lives. Only one control, however, experienced
simultaneous exposure to drinking water arsenic > 25 ug/day, and > 20
cigarettes/day, and that was only for three years, from 1953-1956. In
comparison, two cases were simultancously exposed to arsenic exposure >
25 ug/day, and > 30 cigarettes/day in the 1970s and 1980s, suggesting the
possibility of interaction between arsenic and cigarette smoking, twenty-
to-thirty years prior to cancer diagnosis.

Without exposure life-lines, an a priori hypothesis with a specified point in
time is required to investigate when multiple variables interact. For example,
researchers could not visualize and evaluate the relationships between arsenic
exposure at any point in time, cigarette packs smoked at any point in time,
and subsequent disease development. Exposure life-lines can be used to
evaluate these relationships and shed light on interactions between variables,
and when those interactions may be occurring.

In comparison to Fig. 6 where age was used to track time, Fig. 7 uses
years. Displaying different measures of time, such as years and age, is
beneficial in highlighting distinct trends in the data. In some situations, years
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of exposure may be important, since they indicate the amount of time
between exposure and subsequent disease development. In other situations,
age at exposure may be critical, because individuals may be more vulnerable
to toxic agents when they are at a specific age. Exposure life-lines can be
flexible to present data using either measure of time.

5 Future directions

Application of spatio-temporal visualization tools for exposure assessment
and environmental epidemiology is in its infancy. Processing and supporting
visualization of spatio-temporal datasets is essential for exploring patterns in
data. Beyond visualization, however, statistical analyses are necessary to
identify significant relationships between timing or location of exposure and
subsequent disease development. Statistics deemed important include: spatial
and spatio-temporal clustering techniques; focused cluster tests to examine if
a cluster is associated with a point source, such as an industry or landfill;
temporal analyses to investigate if exposure at a point in time is associated
with subsequent disease development; and epidemiologic odds ratio analyses.
Another area of future research is the propagation of uncertainty
associated with calculation of exposure profiles. Specific to the bladder
cancer example presented here, uncertainty in exposure assessment arises at
several levels in data collection and manipulation, including water consump-
tion estimates, measured arsenic concentrations, estimated arsenic concen-
trations, and geographic location. Efforts are underway to assess sensitivity
of arsenic exposure estimates to different sources of uncertainty, and to
incorporate uncertainty estimates in spatio-temporal visualization tools.

6 Conclusions

Despite the common perception that cancers are often caused by environ-
mental contaminants, limited evidence exists to support widespread associ-
ations. Reports of weak, non-significant associations between environmental
agents and cancer (Gammon et al. 2003; Bates et al. 1995; Steinmaus et al.
2003) may be attributed to exposure assessments that inadequately incor-
porate temporal variability. Exposure assessors often under-emphasize
temporal variation and construct cumulative exposure estimates over pre-
defined time intervals. Continuous exposure assessments are an improvement
and their construction is aided by spatio-temporal visualization tools.
Smooth, continuous space-time maps may be used: to assign exposure
estimates through a spatial query procedure; and to reveal cancer clusters at
any moment in time. Similarly, smooth, continuous, temporally-variant
histograms and scatter plots allow for examining relationships between
variables at any moment in time. Exposure life-lines, a type of temporally-
explicit exposure profile, may convey critical information regarding timing of
exposure and disease. Spatio-temporal visualization tools facilitate evalua-
tion of spatially- and temporally-explicit exposures and ensuing disease
development.
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