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Abstract With the proliferation of related microarray
studies by independent groups, a natural step in the
analysis of these gene expression data is to combine the
results across these studies. However, this raises a variety
of issues in the analysis of such data. In this article, we
discuss the statistical issues of combining data from
multiple gene expression studies. This leads to more
complications than those in standard meta-analyses,
including different experimental platforms, duplicate
spots and complex data structures. We illustrate these
ideas using data from four prostate cancer profiling
studies. In addition, we develop a simple approach for
assessing differential expression using the LASSO meth-
od. A combination of the results and the pathway
databases are then used to generate candidate biological
pathways for cancer.

Keywords Bioinformatics · Differential expression ·
Gene expression · LASSO · Multiple comparisons

Introduction

Microarray technology has been used with great success
for molecular profiling studies in a variety of scientific
areas, such as in cancer experiments. Use of these global
high-throughput assays have allowed researchers to
discover novel biomarkers and differentially expressed
genes. Typically there have been two components in most
published microarray studies. At the first stage, the

samples are interrogated using microarray technology.
Based on the resulting gene expression profiles, candidate
genes are selected and validated using other techniques,
examples of which include quantitative RT-PCR and
western blots. The goal of the second stage is to determine
which genes are truly differentially expressed and to
exclude the possibility that the first stage of the exper-
iment yielded a false positive. Thus, we are reduced from
analyzing genes on a high-throughput basis to a one gene
at a time approach.

While finding new biomarkers represents one goal of
microarray profiling studies in cancer settings, a more
ambitious task would be to find oncogenic pathways.
Related work has begun in combining gene expression
and sequence data to find regulatory networks in organ-
isms such as Sacchromyces cerivisiae (Tavazoie et al.
1999; Bussemaker et al. 2000), but such an approach
would be much harder in cancer because of problems such
as inaccurate exon prediction and the complex composi-
tion of tissue.

Because of the explosion in the use of microarray
technology, many research groups are conducting gene
expression profiling studies in similar scientific areas. If
one group were to find a gene differentially expressed
using microarrays, there is a chance that this is simply a
false positive. However, if two groups independently find
the same gene to be differentially expressed, then the
chance of this error is reduced. It becomes smaller as the
number of studies in which the gene is reported to be
differentially expressed increases. Thus, by combining the
results across several microarray experiments, we can
gain significant increases in power of detecting differen-
tially expressed genes. This is one of the guiding factors
behind the development of public microarray databases
such as the Stanford Microarray Database and Gene
Expression Omnibus; for more information, their URL
locations are http://genome-www5.stanford.edu/MicroAr-
ray/SMD/ and http://www.ncbi.nlm.nih.gov/geo/, respec-
tively. Because there is no widely accepted standard
format and ontology regarding the public databases, there
has also been a movement in the scientific community to
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develop a minimum set of information publicly reported
about each microarray experiment (Brazma et al. 2001).

This topic of combining data across studies is known
as meta-analysis and has been well-studied in the
statistical literature (Normand 1999). However, there is
a slew of issues that arises when attempting to perform
meta-analysis with microarray data. These include com-
bining gene expression data across diverse experimental
platforms (e.g., Affymetrix and cDNA microarray tech-
nologies), complicated data structures, multiple compar-
isons and the presence of duplicate spots. One goal of this
article is to describe the relevant statistical issues in
attempting to analyze data from multiple microarray
studies. Our motivating example involves determining
which genes are differentially expressed between locally
advanced prostate cancer and benign tissue. In this article,
we also develop some new statistical methods for
analyzing such data and combine them with existing
biological databases to incorporate external knowledge
into the analysis. In this paper we describe the data
collected, discuss the relevant statistical issues and
describe the statistical techniques for assessing differen-
tial expression across multiple studies. We propose
methods for generating candidate cancer pathways using
a combination of statistical and bioinformatic techniques
and finally make some concluding remarks.

Materials and methods

Microarray data were collected from four publicly available
prostate cancer gene expression datasets that were generated by
four independent laboratories (Dhanasekaran et al. 2001; Luo et al.
2001; Magee et al. 2001; Welsh et al. 2001). In all four studies,
comparisons were made between the gene expression profiles for
clinically localized prostate cancer and benign prostate tissue
specimens. One of the goals in these studies was the identification
of differentially expressed genes between the two tissue types.
Summaries of the experiments are provided in Table 1. There are
several points to note about the studies. Affymetrix technology
(Lipshutz et al. 1999) was utilized in two studies, while in the
Dhanasekaran and Luo studies, spotted cDNA microarrays (Schena
2000) were used. In addition, the number of samples varied widely
between the studies. To increase the power, the metastatic and
locally advanced prostate cancer cases from the Dhanasekaran,
Magee and Welsh studies were combined. The smallest study of
prostate cancer was that of Magee et al. (2001), while the largest
was that of Dhanasekaran et al. (2001). We now describe some of
the relevant issues involved in consideration of these data.

Results

Effect of experimental platform

As previously mentioned, two of the studies involved
Affymetrix technology, while the other two utilized
cDNA technology. While both of these microarray
platforms measure relative mRNA measurements, the
actual technologies for doing so are quite different. We
now provide a brief description of each type of technol-
ogy.

The Affymetrix GeneChip technology consists of sets
of 25-mer long oligonucleotides, which are called probes.
The probesets usually consist of 20 perfect match (PM)
oligonucleotides and 20 mismatch (MM) oligonucleo-
tides. Each set of PM oligos ostensibly encodes for a
unique region of a gene. The MM oligos are the same as
the PM oligos, except for a one-base change in the center
of the oligonucleotide. The role of the MM oligos is to
serve as a control measurement for the PM oligos by
accounting for non-specific hybridization. The mRNA
sample is converted to cDNA by a reverse transcription
reaction and then prepared for hybridization to the
GeneChip. After the hybridization reaction occurs, the
material is stained twice and scanned. What is used for
analysis is the average difference between the PM and
MM measurements.

The spotted cDNA microarray is a glass slide where
spots correspond to genetic material that encodes a gene.
Two types of mRNA samples are then hybridized to the
microarray: the test sample (sample of interest) and the
reference sample. Both samples are fluorescently la-
belled; typically the test sample is labelled with red dye,
while a green dye is attached to the reference sample. The
point of the reference sample is to serve as an internal
control on the chip. After the hybridization occurs on the
microarray, the slide is scanned at two intensities which
are referred to as the red and green intensities. If a gene is
overexpressed in the test sample relative to the reference,
its spot will have a large value in the green channel. If the
converse holds, then the red channel intensity of the spot
will be large. The typical unit of analysis with cDNA
microarrays is the ratio of the gene expression measure-
ment in the red channel to that of the green channel.

One major issue is whether or not we can directly
combine the raw measurements from the two different
technologies. In a recent study performed by Kuo et al.

Table 1 Description of prostate
cancer profiling studies

Author Arraya Reported
clones

Number of samples

Benign
prostate

Localized
PCA

Metastatic
PCA

Dhanasekaran et al. cDNA 9,984 19 14 20
Luo et al. cDNA 6,500 9 16 0
Magee et al. Oligo 7,068 4 8 3
Welsh et al. Oligo 8,900 9 23 1

a cDNA means that spotted microarray technology was utilized; Oligo means that Affymetrix GeneChip
technology was utilized
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(2002), they compared Affymetrix and spotted cDNA
gene expression measurements from a large-scale study
involving 60 cell lines from the National Cancer Institute.
They found that the correlation between the actual gene
measurements from the two technologies was fairly low.
They concluded that “data from spotted cDNA microar-
rays could not be directly combined with data from
synthesized oligonucleotide arrays.’’ Furthermore, they
concluded that it was unlikely that the two types of data
could be transformed or normalized into a common
standardized index. Thus, we avoid directly combining
the original gene expression data from the two types of
technologies. Our approach is to instead use as our “data”
the t-statistic comparing prostate cancer to benign tissue
for each gene in each of the studies. We did this because
we felt that this statistic might be more robust to the
choice of technology than the actual raw data.

We explored the relationship between the t-statistics
between the different studies based on genes that were
common to each pair of studies. This is summarized in
Table 2. Here, we find that the correlation between the
studies is between 0.25 and 0.46. What is interesting is
that the agreement between the experiments using the
same technology does not appear to be better than the
correlation between experiments of differing technolo-
gies. While the Magee study, utilizing Affymetrix arrays,
has maximum correlation with the Welsh study, also an
Affymetrix study, the Dhanasekaran study, in which
spotted cDNA microarrays were used, has maximum
correlation with the Welsh study. This seems to confirm
the assumption that the t-statistic is less dependent on the
technology used. We also reran the same analysis with the
raw data; these data are presented in Table 3. We find that
the data exhibit poorer correlation at the raw measure-
ment level, with the exception of the Welsh and Magee
studies.

Data structures

Ideally, the microarray platforms for each of the four
studies would contain the same set of genes, but
unfortunately, this is not the case. In Table 4, we have
tabulated the number of clones common to each pair of
studies. Some clarification needs to be mentioned
regarding the table. The reason the number on the
diagonals do not correspond exactly to the totals reported
in Table 1 is because Table 3 represents the clones that
were actually publicly available. Thus, there is an issue of
gene selection from the Welsh and Magee studies which
complicates the analysis. However, we will not pursue
this issue further here.

Based on Table 4, we find that approximately 80% of
the clones in the Luo study are also represented in the
Dhanasekaran study. The Magee study has the most
clones in common with the Welsh study. However, what
we find is a highly non-nested pattern of gene expression
data across studies. Each study has clones in common
with the other three studies, but there are genes that are

unique to each study. We are thus faced with a
complicated missing data mechanism.

We will make the assumption that the data are missing
at random (MAR; Little and Rubin 1987) based on the
nature of how the microarrays are generated. With cDNA
microarrays, the researchers usually obtain a set of
sequence-verified cDNAs from a company such as
Research Genetics (http://www.resgen.com/). Since the
scientists typically place all available cDNAs on the slide,
there is no a priori reason to believe that the spots that are
used depend on their underlying gene expression level.
The Affymetrix arrays are typically standard arrays (e.g.,
Hu6800 arrays has approximately 7,000 full-length
human mRNA transcripts available), so again assuming
MAR appears to be reasonable here as well.

A major issue involves matching the spots from the
cDNA microarray to those representing the probesets on
the oligonucleotide microarrays. The identifiers for the
spots on the cDNA microarray are GenBank accession
numbers, while on the oligonucleotide microarrays, the
probesets have their own unique numbering system. To
match the cDNA microarray spot to the corresponding
probeset involves matching the gene sequence for the
GenBank accession number for the spot to that of the
probeset. To accomplish such a task, we use BLAST
(http://www3.ncbi.nlm.nih.gov/BLAST). Thus, we find
that some bioinformatic manipulations are necessary in
order to match the identifiers from the two types of
technologies.

Table 2 Correlations between t-statistics for the four studies. The
Pearson correlation coefficient was utilized; correlation was
computed over genes common to each pair of studies

Author Dhanasekaran Luo Magee Welsh

Dhanasekaran 1 0.376 0.283 0.447
Luo 0.376 1 0.250 0.459
Magee 0.283 0.25 1 0.318
Welsh 0.447 0.459 0.318 1

Table 3 Correlations between raw data of the four studies. The
Pearson correlation coefficient was utilized; correlation was
computed over genes common to each pair of studies, averaged
across all samples

Author Dhanasekaran Luo Magee Welsh

Dhanasekaran 1 0.068 �0.078 0.003
Luo 0.068 1 0.068 0.047
Magee �0.078 0.068 1 0.79
Welsh 0.003 0.047 0.79 1

Table 4 Number of common clones in the four studies

Author Dhanasekaran Luo Magee Welsh

Dhanasekaran 9,984 5,106 1,919 2,906
Luo 5,106 6,500 1,560 2,132
Magee 1,919 1,560 3,350 2,221
Welsh 2,906 2,132 2,221 6,812
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Duplicate spots

Based on the BLAST search previously described, this
leads to the presence of duplicate spots in each of the
studies. We define a duplicate spot on a microarray to be
genetic material from at least two different locations on
the slide that correspond to the same UniGene cluster
identification number (e.g., Hs. 3196). In Table 5, we
summarize the number of duplicate spots per study.
Because these duplicate spots have the same UniGene
cluster identification number, and each UniGene cluster
supposedly corresponds to a unique gene, we would
expect the behavior of duplicates to be that of biological
replicates. However if we look at Fig. 1, we find that there
is substantial variability in the duplicate spots for the four
studies. For certain duplicate spots, the differential
expression ranges from negative to positive. There are
several potential reasons to explain the variation. It might
be due to experiment-specific artifacts. One biological
reason is that the duplicate spots represent alternatively
spliced forms of transcript mRNA. Another possible
reason is that the classification for the spot is incorrect
due to errors in the UniGene database. Some authors have
estimated that the misclassification rate of sequences in
this database might be on the order of 35–40% (Irizarry et
al. 2000). The implication of these facts is that we need to
take into account the variability present because of the
duplicate spot in our analyses. For the analyses that we

perform later, we treat the duplicate spots as biological
replicates.

Multiple comparisons

This issue also exists for most microarray experiments
because of the large number of genes that are tested for
differential expression. Because of the complicated data
structure used here, the number of comparisons for
multiple studies is much larger than that for any one
study. As a result, control of the traditional familywise
type I error level does not seem appropriate here. A
popular quantity to control in the recent literature has
been the false discovery rate (FDR; Benjamini and
Hochberg 1995). In the next section, we define these
quantities in the context of multiple testing. We then
present some methods for assessing differential expres-
sion in genes, primarily focusing on the false discovery
rate.

Table 5 Number of duplicate spots for the four studies

Dhanasekaran Luo Magee Welsh

1,119 293 121 757

Fig. 1 Plots of t-statistics for
duplicate spots for each of four
prostate cancer profiling studies
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Definitions of FWER, FDR, pFDR and q-value

Suppose we are interested in assessing differential
expression between two conditions for a set of m genes.
Of these m genes, suppose that m0 truly show no
differential expression. Because we are testing several
thousand hypotheses, controlling the type I error rate for
each gene fails to control the type I error rate for the
entire experiment. To guard against making too many
type I errors, the familywise error rate (FWER) has
typically been controlled. A review of methods for
controlling this quantity can be found in Shaffer (1995).
To better understand the quantities being considered in
this paper, we consider a 2�2 contingency table (Table 6).
Based on Table 6, the FWER is defined as P(V �1),
which is the probability that the number of false positives
is greater than 1. The definition of FDR as put forward by
Benjamini and Hochberg (1995) is

FDR � E
V

Q
jQ > 0

� �
P Q > 0ð Þ:

The conditioning on the event [Q >0] is needed because
the fraction V/Q is not well-defined when Q =0. Storey
(2002) points out the problems with controlling this
quantity and suggests use of the positive false discovery
rate (pFDR), defined as

pFDR � E
V

Q
jQ > 0

� �
:

Conditional on rejecting at least one hypothesis, the
pFDR is defined to be the fraction of rejected hypotheses
that are in truth null hypotheses. This quantity is
analogous to type I error rates in single hypothesis testing
problems.

In classical hypothesis testing problems, a strength of
evidence measure is provided by the p-value. In the
“Significance Analysis of Microarrays’’ (SAM) software
(Tusher et al. 2001), an analogous measure, known as the
q-value, has been developed. We define it later in the
paper.

Statistical methods for differential expression

Based on the considerations made in the previous section,
we now propose some procedures for assessing differen-
tial expression across studies.

Let Ygjk denote the t-statistic comparing gene expres-
sion between prostate cancer and healthy tissue for the jth
duplicate spot for the gth gene in the kth study, g =1,…,
G, j =1,…,mk, k =1,…,ng. In the prostate cancer example
presented here, the maximum value for ng is 4.

In our first algorithm, we will use the least absolute
shrinkage and selection operator (LASSO; Tibshirani
1996) for assessing differential expression of genes. If mg
denotes the mean normalized difference in gene expres-
sion between prostate cancer and healthy tissue for the gth

gene, then the relevant optimization problem is to
minimize

Xng

k¼1

Xmk

j¼1

Ygjk � mg

� �2

subject to the constraint that
PG

g¼1 jmgj � l. One of the
advantages of the LASSO is that some of the estimated
values of mg will be exactly zero. Biologically, the genes
with non-zero values of mg will constitute a list of
candidate genes. The parameter l plays the role of a
shrinkage parameter here. The estimates of mg will have
the form bmg ¼ sign tg

� �
jtgj � c
� �

I tg � c
� �

where tg is the
average of the t-statistics for the gth gene across
duplicates and studies, and c is a constant involving l
and the sorted values of tg.

To study the effect of l on the number of genes with
non-zero coefficients, we fit the procedure using several
values of l. We did not pursue cross-validation because
the dependence structure of the genes is unknown, and
estimation of the cross-validation under dependency is not
straightforward. The numbers are summarized in Table 7.

The UniGene accession numbers for the top 25 genes
are listed in Table 8. Based on the table, we find that most
of the top scoring genes are expressed sequence tags
(ESTs) that code for genes of unknown functions. Many
of these ESTs only appeared in one study, so a more
conservative criteria would be to take the top ranked
genes based on mg that appeared in at least two studies
(i.e. ng >2). These are provided in Table 9. What we find
on this list are genes that are involved in basic cell
signaling and protein-protein interaction pathways. Pre-
sumably, the differential expression of these genes in
tumor relative to normal tissue suggests that these normal
cell functions have been altered, which has led to
tumorigenesis.

Table 7 Effect of l on number of estimated non-zero genes bk� �

l bk� �

1 435
400 350

1,000 242
2,000 96
2,300 62
2,400 51
2,800 13

Table 6 Outcomes of tests of hypotheses for m genes (DE
differential expression)

Conclude no DE Conclude DE Total

No DE U V m0
DE T S m1

W Q m
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We now present methods for assessing differential
expression based on direct estimation of the FDR. In our
first algorithm, we stratify the analysis of gene expression
data by the study. For each study, we fit the model

E Yijk

� �
¼ b0ik þ b1ikXj; ð1Þ

where Xj is a covariate for tissue type of the jth sample.
For example, if there are two tissue types to be compared
(normal tissue coded 0 and cancerous tissue coded 1),
then the interpretation of b1ik is as the difference in
average gene expression between cancer and normal
tissue for the ith gene in the kth study. Consequently,
fitting Eq. 1 is equivalent to computing t-statistics for
each gene within each study. Model 1 (Eq. 1) can be fit
using ordinary least squares (OLS), yielding a set of
statistics T1k,…, Tmk, where Tik is the least squares
estimator of b1ik divided by its standard error. We then
compute a global statistic of differential expression for
each gene

Ti: ¼ n�1
XK

k¼1

nkTik; ð2Þ

where n ¼
PK

k¼1 nk. Suppose we have defined the rejec-
tion regions R so that the test statistic has type I error a,
i.e. P(Ti 2R|H =0) = a. We also define another region A
that will be useful in estimation of p0. Intuitively, A is the
region where we expect to capture most of the genes for
which we have no true differential expression. The next
step involves permuting the tissue labels (the Xj’s) within
each study for B permutations and refitting model 1
(Eq. 1) to the permuted dataset. This yields a set of
simulated null statistics T0b

1k ; :::; T
0b
mk: Analogous to Eq. 2,

we can compute the global statistic T0b
i: for each permuted

dataset (b =1,…,B; i =1,,…,m). We can then estimate the
pFDR as

pdFDR Rð Þ ¼
bp0 mBð Þ�1PB

b¼1

Pm
i¼1 P T0b

i: 2 R
� �

m�1
Pm

i¼1 I Ti: 2 Rð Þ ;

where

bp0 ¼ m�1
Xm

i¼1
I Ti: 2 Að Þ

n o
=

mBð Þ�1
XB

b¼1

Xm

i¼1
I T0b

i: 2 A
� �n o

:

Note that pFDR depends heavily on the set R but we have
suppressed the dependence in the notation.

With this approach, we have implicitly assumed that
the effect of tissue type is the same across all the studies.
A more general model we could fit is

E Yijk

� �
¼ g0ik þ g1ikXj þ g2ikZk þ g3ikXjZk: ð3Þ

where Xj has the same definition as before and Zk is a
study indicator. Note that if we set g2ik = g3ik =0, then we
are reduced to model 1 (Eq. 1). Model 3 (Eq. 3) can be fit
for each gene using OLS as well. Now, we calculate a test
statistic using the likelihood ratio test for testing H0: gik =
g3ik =0 for each gene, and this yields a set of statistics

Table 9 Top 25 genes based on bmg with ng >2

Acccession
number

Gene name

Hs.3196 Surfeit 1
Hs.153880 Polymerase (RNA) mitochondrial (DNA directed)
Hs.86859 Growth factor receptor-bound protein 7
Hs.194329 Hypothetical protein FLJ21174
Hs.177543 EST, clone IMAGE:117491, 30 end
Hs.1211 Acid phosphatase 5, tartrate resistant
Hs.119206 Insulin-like growth-factor-binding protein 7
Hs.79380 Periodic tryptophan protein homolog (yeast)
Hs.75216 Protein tyrosine phosphatase, receptor type, F
Hs.76989 KIAA0097 gene product
Hs.169378 Multiple PDZ domain protein
Hs.18747 POP7 (processing of precursor,

Saccharomyces cerevisiae) homolog
Hs.153639 Hypothetical SBBI03 protein
Hs.7314 KIAA0614 protein
Hs.238126 CGI-49 protein
Hs.171814 Parathymosin
Hs.169900 Poly(A) binding protein, cytoplasmic 4

(inducible form)
Hs.26468 Amyloid beta (A4) precursor protein-binding,

family A, member 2
Hs.108660 ATP-binding cassette, sub-family C (CFTR/MRP),

member 5
Hs.194772 Oligodendrocyte myelin glycoprotein
Hs.29189 ATPase, Class VI, type 11A
Hs.105584 Ribosomal protein S6 kinase, 90 kDa, polypeptide 4
Hs.268530 G protein pathway suppressor 1
Hs.88474 Prostaglandin-endoperoxide synthase 1

(prostaglandin G/H synthase and cyclooxygenase)
Hs.77889 Friedreich ataxia region gene X123

Table 8 Top 25 genes based on bmg

Acccession
number

Gene name

Hs.75432 IMPDH2 IMP (inosine monophosphate)
dehydrogenase 2

Hs.189869 ESTs
Hs.192052 ESTs
Hs.171939 Homo sapiens mRNA; cDNA DKFZp761L1121
Hs.93485 Homo sapiens mRNA; cDNA DKFZp761D191
Hs.289104 Alu-binding protein with zinc finger domain
Hs.23578 ESTs
Hs.106671 Cleft lip and palate associated transmembrane

protein 1
Hs.268575 ESTs
Hs.57787 ESTs
Hs.6566 Thyroid hormone receptor interactor 13
Hs.45033 Proline-rich 4 (lacrimal)
Hs.8832& ESTs
Hs.267182 T-box 3 (ulnar mammary syndrome)
Hs.16359 ESTs
Hs.301206 ESTs
Hs.122843 CASP8-associated protein 2
Hs.189713 ESTs
Hs.314319 Homo sapiens hsr1 mRNA (partial)
Hs.22015 Homo sapiens, similar to RIKEN cDNA

1810054O13 gene
Hs.24176 Heart alpha-kinase
Hs.192966 KIAA0265 protein
Hs.326816 ESTs
Hs.221396 ESTs
Hs.334338 Hypothetical protein MGC12837
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eT1; :::; eTm for assessing differential expression for the m
genes. We repeat the permutation procedure as before,
shuffling the tissue labels within the study and repeating
the model fitting procedure. This yields simulated null
statistics eT0b

1 ; :::; eT0b
m . Using the definitions of R and R0’

from the previous paragraph, we estimate the pFDR as

pFeDR Rð Þ ¼
bp0 mBð Þ�1PB

b¼1

Pm
i¼1 P eT0b

i: 2 R
� �

m�1
Pm

i¼1 I eTi: 2 R
� � ;

where

bp0 ¼ m�1
Xm

i¼1
I eTi: 2 R
� �n o

=

mBð Þ�1
XB

b¼1

Xm

i¼1
I eT0b

i: 2 A
� �n o

:

These algorithms are summarized in Boxes 1 and 2.
Box 1. Proposed algorithm 1 for estimating false

discovery rate (FDR) and positive FDR (pFDR)

(a) For each study and for each gene, fit a t-statistic
comparing average gene expression in cancerous
tissue with that in healthy tissue; this yields
(T1k,…,Tmk).

(b) Calculate Ti ¼ n�1
PK

k¼1 nkTik; i ¼ 1; :::;m:
(c) Permute the tissue labels within the study, and

calculate permuted t-statistics T0b
1k ; :::; T

0b
mk:

(d) Calculate for bth permutation,

T0b
i: ¼ n�1

XK

k¼1
nkT0b

ik :

(e) Estimate p̂0 as

p̂0 ¼
m�1Pm

i¼1
I Ti: 2 Að Þ

mBð Þ�1PB
b¼1

Pm
i¼1

I T0b
i: 2 Að Þ

:

(f) Estimate pFDR as

pdFDR Rð Þ ¼
bp0 mBð Þ�1PB

b¼1

Pm
i¼1 P T0b

i: 2 R
� �

bP V > 0ð Þmax m�1
Pm

i¼1 I Ti: 2 Rð Þ
� � ;

where

bP Vgt; 0ð Þ ¼ B�1
XB

b¼1
I bRb > 0
� �

and bRb= number of genes called significant for b th
permutation.

(g) Estimate FDR as

dFDR Rð Þ ¼
bp0 mBð Þ�1PB

b¼1

Pm
i¼1 P T0b

i: 2 R
� �

max m�1
Pm

i¼1 I Ti: 2 Rð Þ; 1
� � ;

Box 2. Proposed algorithm 2 for estimating false
discovery rate (FDR) and positive FDR (pFDR)

(a) For each study and for each gene, fit the following
model using least squares:

E Yijk

� �
¼ g0ik þ g1ikXj þ g2ikZk þ g3ikXjZk:

(b) Calculate a likelihood ratio test statistic of
H0:g1ik = g3ik = 0 for each gene, yielding statisticseTi; i ¼ 1; :::;m:

(c) Permute the tissue labels within the study, repeat
steps (a) and (b) to get eT0b

1 ; :::; T
0b
m .

(d) Estimate p̂0 as

p̂0 ¼
m�1

Pm
i¼1

I T̂i 2 A
� �

mBð Þ�1PB
b¼1

Pm
i¼1

I ~T0b
i 2 A

� � :

(e) Estimate pFDR as

pFeDR Rð Þ ¼
p̂0 mBð Þ�1PB

b¼1

Pm
i¼1

P ~T0b
i 2 R

� �

~T V > 0ð Þmax m�1
Pm
i¼1

I ~Ti: 2 R
� �

; 1

� � ;

where eP V > 0ð Þ ¼ B�1
PB

b¼1 I eRbg > 0
� �

and eRb=
number of genes called significant for bth permu-
tation.

(f) Estimate FDR as

FeDR Rð Þ ¼
bp0 mBð Þ�1PB

b¼1

Pm
i¼1 P eT0b

i: 2 R
� �

max m�1
Pm

i¼1 I eTi 2 R
� �

; 1
� � :

One assumption that has been implicitly used through-
out this paper is that the expression measurements are
independent across genes. However, this assumption is
not necessary to the validation calculation of the pFDR
using either of the two methods described. In particular,
the estimation of pFDR is valid under the dependence
conditions on the genes which are described in Storey and
Tibshirani (submitted for publication).

Calculation of q-values

Suppose that the sets R are of the form R ={t:|t|>c} for
some value c. Based on this set definition, we can define
the q-value of an observed statistic x to be

q� value xð Þ ¼ min
c:x2R

pFDR:

In other words, it is the minimum pFDR possible when
rejecting a statistic with value x. The q-value will take
values between 0 and 1, with smaller values indicative of
stronger evidence for differential expression. In the work
of Efron and Tibshirani (2002) and Storey (2002),
connections were drawn between the FDR estimation
approach described here with the original method of
Benjamini and Hochberg (1995). We briefly discuss this
technique to explain how one can estimate q-values for
each gene.

186



First, consider the approach described in Table 1.
Based on the null statistics T0b

1: ; :::; T
0b
m: , one can construct

p-values P1,…,Pm by

Pi ¼ B�1
XB

b¼1

I jT0b
i: j � jT0

i: j
� �

i=1,…,m. In the Benjamini-Hochberg procedure, we
order the p-values in increasing order from P(1) � P(2)
�…� P(m). If we wish to control the FDR (and hence the
pFDR) at a threshold level q*, we estimate

k ¼ max i : mP ið Þ=i � q�
	 


and conclude that the genes corresponding to P(1),…,P(k)
are differentially expressed. The way to estimate a q-
value for each gene would be to find the smallest
threshold level q* such that it is in the set of genes that are
differentially expressed. The smaller the q-value, the
stronger the evidence that the gene is differentially
expressed between the two conditions. A similar approach
works with the method in Table 2. We first apply the
methods for estimating FDR. We used the methods
summarized in Boxes 1 and 2. Since the results were
similar for the two, we only show the results using Box 1.
We took B =2,000 in our analyses. The estimates of FDR
for various choices of R and A are given in Table 10,
along with the number of genes declared significant at
this cutoff value for FDR.

Next, we used the Benjamini-Hochberg sequential
procedure for determining which genes were differential-
ly expressed using various values of q*. Based on
Table 11, we see that there are about 100 genes that
express high statistical significance for differential ex-
pression. In fact, there are 123 genes with q-values less
than or equal to 0.005 and so on. The number of
significant genes using this FDR controlling procedure is
much larger than using an adjustment such as the
Bonferroni correction or Benjamini and Yekutieli
(2002), which gave zero genes as significant.

Bioinformatics investigations

Based on the differentially expressed genes found using
the LASSO, we can probe existing bioinformatic data-
bases to determine potential transcriptional pathways.
One ideal database for performing this search is the Kyoto
Encyclopedia of Genes and Genomes (KEGG), which is
located at http://www.genome.ad.jp/kegg/. KEGG is a

knowledge base that allows one to systematically analyze
gene functions at many levels. It consists of subdatabases
containing information regarding the genomes of organ-
isms, cellular processes and enzymatic reactions. By
inputting the identification numbers for groups of genes
that are differentially expressed, we are able to find
candidate pathways that may represent potential thera-
peutic targets in prostate cancer.

Based on the lists of genes generated using the method
proposed in the “Statistical methods for differential
expression” section, we interrogated the KEGG database.
KEGG outputs of these analyses can be found at http://
www.sph.umich.edu/~ghoshd/COMPBIO/Meta/Pathway
SearchResult1.htm and http://www.sph.umich.edu/~ghoshd/
COMPBIO/Meta/PathwaySearchResult2.htm. The lists of
pathways generated by these analyses can be then
validated experimentally by cancer biologists. Further
results using other methods for differential expression can
be found in Rhodes et al. (2002).

Discussion

In this paper, we have outlined the issues involved in
combining results from several microarray experiments.
These considerations led to the development of a simple
method for determining differential expression in prostate
cancer versus benign prostate tissue across multiple
studies. We can then interrogate existing databases for
potential therapeutic targets and candidate biological
pathways. This approach thus avoids having to utilize
traditional laboratory methods for validation of genes,
which are often expensive and time-consuming.

While differential expression has been used for single
microarray studies (Efron et al. 2001; Ibrahim et al. 2002;
Lonnestedt and Speed 2002), less work has been done in

Table 10 Estimated positive
false discovery rate (pFDR) and
false discover rate (FDR) for
various choices of A and R with
prostate cancer data

R A pFDR FDR No. genes
called significant

{t:|t| >1.5\} {t:|t| <0.15\} 0.06 0.06 976
{t:|t| >1.5\} {t:|t| <0.5\} 0.11 0.11 1,133
{t:|t| >2\} {t:|t| <0.15\} 0.04 0.04 829
{t:|t| >2\} {t:|t| <0.5\} 0.08 0.08 1,021
{t:|t| >3\} {t:|t| <0.15\} 0.03 0.03 777
{t:|t| >3\} {t:|t| <0.5\} 0.06 0.06 976

Table 11 Number of genes called significant bk� � for various

values of q* based on the Benjamini-Hochberg procedure

q* bk� �

0.2 1,584
0.1 1,204
0.05 949
0.02 732
0.01 449
0.005 123

187



the multiple study setting. We have also developed a q-
value-based method for assessing differential expression
(Rhodes et al. 2002).

There are certain limitations of our approach. First, we
are attempting to generate candidate biological pathways
using gene expression profiles taken from tissue samples
at one point. There is a fundamental confounding of
longitudinal and cross-sectional effects here because of
the cross-sectional study design. In particular, if two
genes are differentially expressed in prostate cancer tissue
relative to benign tissue, it does not necessarily mean that
one gene regulates the other or that they are co-regulated.
By utilizing the bioinformatics databases, we are attempt-
ing to bring in external biological knowledge into the
analysis as well. While we are able to generate candidate
pathways, it should be pointed out that they need to be
studied further experimentally to scientifically validate
them.

In the analysis plan we have proposed, we have
assumed that the t-statistics for genes are independent.
While these assumptions will not literally hold true, they
are used to derive a relatively simple measure of
differential expression. The other purpose of this ap-
proach is as a means of ranking genes that would be
useful for further follow-up study. One such analysis is
the KEGG search we mentioned in the Bioinformatics
investigation.

It should be emphasized that the methods presented
here involve both statistical modeling procedures as well
as bioinformatics-based methods. As new high-through-
put technologies are developed for proteomic and even-
tually metabolomic data, extracting maximum
information from them will require a combination of
these two approaches.
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