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Abstract. Recently, other researchers have found
that closely related primate species had a lower male-
to-female mutation rate ratio (o) than distantly
related species. To determine if this is a general
phenomenon affecting other mammalian orders, ele-
ven species or subspecies of the rodent genus Mus and
two outgroup species were compared. Intron se-
quences from a gene in the nonrecombining region of
the Y chromosome Jaridld (Smcy) and its X chro-
mosomal gametolog, Jaridlc (Smcx), were analyzed
in a phylogenetic context. The male-to-female muta-
tion rate ratio for all thirteen taxa is approximately
2.5, which is similar to previous estimates in more
distantly related rodents. However, when branches
with lengths of more than 2.5% were removed from
the analysis, the male-to-female mutation rate ratio
dropped to 0.9. Thus, in closely related rodents, as in
closely related primates, the male-to-female mutation
rate ratio is lower than expected.
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Introduction

Several mechanisms cause mutations, including
damage to DNA due to mutagens and replication
errors (Griffiths et al. 1996). If mutations are caused
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by mistakes during DNA replication, genetic material
that has been replicated many times should have a
higher mutation rate than that replicated a few times.
In mammals, DNA replication occurs more often in
the male germ line than the female germ line, so the
male germ line may be a major source of mutations
relative to the female germ line, especially in species
with a long pre-reproductive time, such as humans
(Haldane 1947). ““Male-driven evolution” is the idea
that male-originating mutations drive the mutational
aspect of evolution. Human genetic diseases that of-
ten arise from paternal point mutations provide evi-
dence for male-driven evolution (Jung et al. 2003).
According to Miyata and colleagues (1987), the male-
to-female mutation rate (o) can be calculated by
comparing the mutation rates of genes on autosomes,
X chromosomes, and Y chromosomes, because the
chromosomes are passed through the male germline
with different frequencies.

In mice, DNA in the male germ line goes through
approximately two times as many replications as
DNA in the female germ line, assuming a male
reproductive age of 5 months (Chang et al. 1994). If
replication is the main source of new mutations, o
should be approximately 2. Indeed, some compari-
sons of X, Y, and autosomal sequences have led to a
calculation of o in rodents ranging from approxi-
mately 2 (Chang and Li 1995; Chang et al. 1994;
Makova et al. 2004) to 3.5 (Malcom et al. 2003). In
humans, o is expected to be approximately 6.2, if the
average male reproductive age is 20 (Chang et al.
1994). Human o has been estimated from compari-
sons of Y, X, and autosomal sequences to be
approximately 5 (Chang et al. 1996; Huang et al.
1997; Makova and Li 2002; Shimmin et al. 1993). The



similarity of « estimated using germ line replications
and substitution rate is appealing, but there is dis-
agreement about whether the similarity is meaning-
ful. The average human male reproductive age is
likely to be closer to 30 than 20 (Tremblay and
Vezina 2000), and there may be other effects con-
founding the estimation of o (Hurst and Ellegren
1998).

A recent study comparing a large, closely related
region of the human X and Y chromosomes con-
taining no genes (Bohossian et al. 2000) provoked
controversy by concluding that o in humans is only
approximately 1.7. Even after making some correc-
tions for ancestral nucleotide diversity, o was still
much smaller than in previous studies (Bohossian
et al. 2000). Bohossian and colleagues (2000) inter-
pret this to mean that, in humans, the high number of
germ cell divisions in males may not cause as many
mutations as previously thought. Possibly these long,
gene-free sequences allowed a more accurate estima-
tion of o than was possible in previous studies, or
humans have a lower o than other primates (Bohos-
sian et al. 2000). Alternatively comparisons of se-
quences that are closely related, in this case sequences
that have diverged after a recent translocation, have a
lower o as a result of factors unrelated to the male
mutation rate and, therefore, are not suitable for
studies of male-driven evolution (Li et al. 2002).

In another study, Makova and Li (2002) found
that o calculated from other closely related primate
species, in addition to humans, was lower than o from
more distantly related species. They attributed the
low ratio to error caused by ancestral nucleotide
polymorphism. Because observed branch lengths are
actually the combination of any polymorphisms re-
tained from the ancestral lineages and new mutations
occurring after two lineages split, the mutation rate
for a branch is really the observed rate minus the
ancestral polymorphism (Li 1977). Corrections for
ancestral polymorphism have been considered by
several authors (including Axelsson et al. 2004;
Bartosch-Harlid et al. 2003; Bohossian et al. 2000;
Makova and Li 2002), in studies of male-driven
evolution. When Makova and Li (2002) corrected for
ancestral nucleotide polymorphism by subtracting
ancestral polymorphism from the mutation rate of
autosomal sequences in closely related primates, the
corrected o values were comparable to o values cal-
culated from distantly related primates. Interestingly,
Bohossian et al. (2000) also corrected their data to
consider ancestral polymorphisms, but this correction
did not make a great difference in their results. In
addition, the standard error of Makova and Li’s re-
sults (2002) was high, as is the case with most studies
of male-driven evolution. From these two studies, it is
still not clear how closely related sequences are useful
in studies of male-driven evolution.
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If Makova and Li’s (2002) hypothesis that the low
values of o seen in their study and in Bohossian
et al.’s (2000) study are due to ancestral polymor-
phism in closely related sequences is correct, the low
values of o should also be reproducible in similar
studies of other mammalian lineages. Previous studies
in rodents have compared X and Y genes in relatively
distantly related species such as laboratory mouse
and rat (Chang and Li 1995; Chang et al. 1994; Smith
and Hurst 1999) (which diverged about 23 million
years ago; Adkins et al. 2001), or mouse, human, and
horse (Agulnik et al. 1997). To address the possible
confounding effects of closely related species on male-
driven evolution, we sequenced and analyzed Jaridld
(formerly Smicy; Agulnik et al. 1994a) from the Y
chromosome and Jaridic (formerly Smcx;. Agulnik
et al. 1994b) from the X chromosome, in species of
the rodent murine genus Mus (family Muridae, sub-
family Murinae).

Sequences such as Jaridld and Jaridlc that were
once homologous gene pairs, but now reside in re-
gions of the X and Y chromosomes that do not
recombine with each other, are useful for studying
male-driven evolution because their mutation rates
may be influenced mainly by the chromosomes they
are on. In this study, intron sequences of Jaridlc and
Jaridld were compared in a phylogenetic context to
determine the neutral rates of evolution in the two
sexes. In our analyses, we obtained results that are
similar to Makova and Li’s (2002).

Materials and Methods

Species

Some of the most commonly studied species of the genus Mus were
used (see Lundrigan et al. 2002, for collecting information). The
genera Mus, Mastomys, and Hylomyscus are members of the rodent
family Muridae and the subfamily Murinae, the Old-world Mice
and Rats. Members of the Praomys group (Hylomyscus alleni and
Mastomys hildebrandtii) were used as outgroups in this study. DNA
hybridization and nuclear DNA sequence suggest that the Praomys
group is sister to Mus (Catzeflis and Denys 1992; Chevret et al.
1994; Jansa and Weksler 2004) and diverged from Mus approxi-
mately 8 million years ago (mya) (Chevret et al. 1994).

Based on molecular clock estimates, the genus Mus diverged 10
to 8 mya (Chevret et al. 2005) and the subgenera Coelomys (rep-
resented by Mus pahari) and Mus (represented by M. caroli,
M. cookii, M. cervicolor, M. spretus, M. spicilegus, M. macedonicus,
and the subspecies of M. musculus) diverged 8 to 6.7 mya (Chevret
et al. 2005). The divergence of the lineage composed of
M. caroli, M. cookii, and M. cervicolor occurred approximately 1.9
to 1.6 mya (She et al. 1990) or 4 mya (Chevret et al. 2005). The
divergence of lineages giving rise to M. spretus, M. spicilegus, and
M. macedonicus occurred about 1.29 to 0.93 mya (She et al. 1990)
or 2 mya (Chevret et al. 2005). M. spicilegus and M. macedonicus
diverged from each other 0.29 to 0.17 mya (She et al. 1990). The
subspecies of M. musculus (M. musculus musculus, M. m. domesti-
cus, M. m. castaneus) diverged about 0.9 mya (Boursot et al. 1996)
or 0.35 mya (She et al. 1990).
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Amplification of the Target Sequences

PCR of genomic DNA and sequencing of the results was done as
described (Sandstedt and Tucker 2004). All sequences have been
deposited in GenBank (Accession numbers AY260478-AY260503).

Analysis

Jaridld and Jaridlc nucleotide sequences including introns and
exons were aligned using Clustal X (Thompson et al. 1997). Intron
alignments were checked by realigning groups of three taxa using
the MCALIGN program (Keightley and Johnson 2004), which is
particularly good at aligning intron sequences (Chamary and
Hurst 2004). The complete alignments were realigned by hand
using the Clustal X and MCALIGN results as a guide. These se-
quences were combined with a subset of the sequences from four
other nuclear genes from Lundrigan et al. (2002): Sry, B2m, Zp-3,
and Tcp-1, in a likelihood analysis published separately (Tucker et
al. 2005). The resulting tree was used as a constraint tree for the
intron analyses.

Aligned intron sites containing gaps were removed from the
alignment before calculating branch lengths. Nucleotides within 20
base pairs from exon/intron boundaries were removed. Intron
distances along the constraint topology were determined using the
Tajima-Nei model (1984). These distances were mapped to bran-
ches with PAUP*4.0b10 (Swofford 2002) using the unweighted
least squares option. Using these distances, an Y/X ratio was cal-
culated for all branches, for internal branches only, for external
(terminal) branches only, and for external branches with longer
branches removed (Fig. 1). Variances were calculated with the
delta technique as by Makova and Li (2002), using a simplification
of the Tajima-Nei variance that reduces to the large sample vari-
ance for the Jukes-Cantor model (Kimura and Ohta 1972; Nei and
Kumar 2000 p. 39). This implementation assumes no covariance
between the X and Y sequences. The variance of Y is V(Y) = Y
(1 =Y)/[L (1 —4Y /3)* and variance of Xis V(X) = Y (1 - X)/
[L (1 — 4X / 3)%] with L equal to the length of the sequence. The
variance of Y/X is V(Y/X) = V(Y) / E(X)* + E(Y)? V(X) | E(X)*.
The male:female mutation rate ratio, o, was calculated using the
formula Y/X = 3o/ (a + 2) (Miyata et al. 1987). The 95% con-
fidence interval was estimated following Huang et al. (1997): the
lower bound for the confidence interval for Y/X is Y/X™ = Y/
X - 1.96s and the upper bound is Y/X = Y/X + 1.96s, where s
is the standard error of Y/X. The 95% confidence interval of o was
calculated by substituting Y/X~ and Y/X in the rate ratio for-
mula.

Ancestral polymorphism can be corrected for by subtracting
ancestral polymorphism from the mutation rate of an X chromo-
somal or autosomal gene. Because the Y chromosome has very low
polymorphism (reviewed by Charlesworth and Charlesworth 2000;
Hellborg and Ellegren 2004), this subtraction should not be done to
mutation rates of Y linked genes (Makova and Li 2002). If the
correction for ancestral polymorphism is not made, the X or
autosomal mutation rate will be too large, causing Y/X or Y/A to
be too small. When a is calculated from these uncorrected ratios, it
will also be too small.

We made several types of corrections to account for the effect
of ancestral nucleotide polymorphism on closely related species,
following Makova and Li (2002). One correction was to calculate
o using only internal branches, which diverged a longer time ago
than the external branches. In Makova and Li’s study (2002),
external branches represented closely related, recently diverged
species. The external mouse lineages we studied may have
undergone greater divergence, so we made an additional, similar
correction using evolutionary distances as the measurement of
“close* relationships.
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Fig. 1. A higher substitution rate was found in Jaridld than in
Jaridlc from Mus. Intron distances calculated using the Tajima—
Nei method were mapped to the constraint tree using unweighted
least squares in PAUP*4.0b10. Jaridld|Jaridl c distances (x100) are
given above branches. Nodes are labeled with bold-face numbers.
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Makova and Li (2002) also made a pairwise correction using
pairs of closely related species. We also calculated o using this
correction. Branch lengths along the shortest path between the two
species in each pair were added together for Jaridlc and Jaridld,
separately. An estimate of ancestral nucleotide polymorphism was
subtracted from the total branch length for each Jaridlc distance.
We used the average nucleotide polymorphism (r (0.078%)) from
four X chromosomal genes in Mus domesticus (Nachman 1997) as
an approximation of ancestral nucleotide polymorphism for
Jaridlc. The corrected Jaridlc branch lengths were used in the
equations above to calculate o.

Results

Synapomorphies for Jaridlc arid Jaridld in the same
species were rare, and only one base long, so gene
conversion is unlikely to affect this analysis (Slattery
and O’Brien 1998). Most Jaridld branch lengths were
longer than Jaridlc branch lengths (Fig. 1). Y/X
varied greatly among branches, ranging from 0 to
20.488 (Table 1). As noted by Chang et al. (1996),
widely varying Y/X ratios may occur because of
random fluctuations due to a small number of ob-
served differences. Following their lead, analyses were
based on groups of branches. Adding together all of
the branch lengths, Y/X = 1.669 =+ 0.302 and
o = 2.508 (95% CI: 1.210 to 6.114). As a correction
for ancestral nucleotide polymorphism, we calculated
o for external and internal branches separately. Y/X
for external branches = 1.642 £+ 0.340 and
o = 2.418 (95% CI. 0.963 to 6.678). For internal
branches, Y/X = 1.726 = 0.484 and o = 2.709
(95% CI: 0.699 to 16.436) (Table 2).

o was also calculated for the external branches
without the outgroup species, Hylomyscus alleni and
Mastomys hildebrandtii. In this case Y/X = 1.642



Table 1. Branch lengths and Y/X calculated for external and
internal branches

Jaridld Jaridlc
YY) X) R = Y/X

External branches

Hylomyscus 0.0240 0.0089 2.6985

Mastomys 0.0316 0.0090 3.5133

M. m. musculus 0 0 0

M. m. castaneus 0 0 0

M. m. molossinus 0 0.0022 0

M. domesticus 0 0.0068 0

M. spicilegus 0.0059 0.0023 2.5522

M. macedonicus 0.0031 0 —

M. spretus 0.0086 0.0172 0.4988

M. cookii 0.0063 0.0076 0.8320

M. cervicolor 0.0264 0.0013 20.4884

M. caroli 0.0132 0.0188 0.7015

M. pahari 0.0353 0.0200 1.7673
Total 0.1544 0.0940 1.6418
Internal branches®

6.....7 0.0453 0.0212 2.1348

5.....6 0.0111 0 —

5..11 0.0061 0.0033 1.8318

10..11 0.0014 0.0014 0.9792

4.5 0.0082 0.0052 1.5919

3.4 0.0032 0.0014 2.2826

I...... 2 0 0 0

2.3 0 0 0

4...9 0.0003 0.0004 0.6410

8......9 0.0022 0.0121 0.1829
Total 0.0778 0.0451 1.7259

“See Figure 1 for node numbering. “Node...node” indicates branch
between two nodes

and o = 2.418 (95% CI: 0.963 to 6.678). In addition,
to examine closely related sequences by degree of
relationship, o was calculated from external bran-
ches, after sequentially removing both X and Y
branches when Jaridld lengths were longer than 1.0,
1.5, 2.0, 2.5, or 3.0% (Table 2).

Five pairs of species were chosen to sample dif-
ferent parts of the tree topology for pairwise correc-
tions. The species compared were as follows:
M. spicilegus/ M. macedonicus, M. cookii/M. cervi-
color, M. domesticus/M. m. musculus, M. spretus/ M.
domesticus, Hylomyscus alleni/ Mastomys  hilde-
brandtii. The Jaridlc branch length for each pair was
corrected by subtracting an estimate of ancestral
nucleotide polymorphism. Y/X for each species pair
was calculated by dividing the total Jaridld branch
length by the corrected Jaridlc branch length. The
corrected Y/X ratios ranged from 0 to 5.901, and o
ranged from 0 to infinity (data not shown).

Discussion

The male-to-female mutation rate in rodents was
previously estimated from Y/X comparisons to be
approximately 2 (Chang and Li 1995; Chang et al.
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1994). Our uncorrected results are in agreement with
those studies and with o predicted by the number of
cell divisions in rodent germ lines (Chang et al. 1994).
These results are also similar to a previous study
using Jaridld (Smcy) and Jaridlc (Smcx) in mouse,
human, and horse, which found an o of 3 (Agulnik
et al. 1997). That estimate may be higher than ours
because it includes human and horse, both of which
have longer generation times than mouse.

The results of this study support the conclusion of
Makova and Li (2002) and Li et al. (2002) that
analyses of closely related species produce low esti-
mates of o. In this study, o calculated from external
branch lengths was only slightly lower than o calcu-
lated from all branch lengths. o calculated from
internal branch lengths was higher than o calculated
from all branch lengths. We noted that some of the
branch lengths in our study were long, relative to
branch lengths in Makova and Li’s (2002) study of
primates, which were all less than 2.5%. We ad-
dressed this by (1) removing the outgroup taxa, which
had long branches, from the external branch length
calculation, and (2) removing other long external
branches (Table 2). When distantly related external
branches were removed from the analysis, the esti-
mate of o dropped; if outgroup taxa were removed, o
was 1.524 (95% CI: 0.614 to 3.404), and if both out-
groups and the most distantly related Mus species
were removed, o was 0.937 (95% CI: 0.361 to 1.885).
This suggests that examining only closely related
species causes estimates of the extent of male-driven
evolution to be too low relative to expected values.
However, the 95% CI of these estimates overlap. In
Makova and Li’s (2002) study, the 95% CI of a cal-
culated from external and internal branches also
overlaps.

Correcting for ancestral nucleotide polymorphism
(m) by subtracting an estimate of n from the Jaridlc
branch lengths between pairs of species, resulted in
different estimates of o, depending on which species
pairs were used. Makova and Li (2002) used esti-
mated ancestral nucleotide diversity from polymor-
phism data. Polymorphism data were not available
for Jaridlc, so the average n for four X chromosomal
genes in a random sample of 10 Mus domesticus,
0.078% (Nachman 1997), was used. This estimate of
may not be accurate for this purpose since it is an
average calculated from four X chromosomal genes
(range: 0-0.160) (Nachman 1997). Additionally,
ancestral Mus populations may have had different
levels of polymorphism from extant species. Estima-
tions of a for species pairs varied widely depending
on which species were compared, probably due to
random factors related to small samples. The cor-
rected values also varied widely, and neither support
nor refute the utility of correcting for ancestral
nucleotide polymorphism in this way.
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Table 2. Alpha calculated for subsets of data including type of branch (external or internal) and branch length

Y/X o 95% CI
All 1.669 2.508 1.210 to 6.114
Internal only 1.726 2.709 0.699 to 16.436
External only, outgroup branches included 1.642 2418 0.963 to 6.678
External only, outgroup branches removed 1.297 1.524 0.614 to 3.404
External only, outgroup included, branches <3.0% used® 1.344 1.624 0.588 to 3.983
<2.5% 0.957 0.937 0.361 to 1.885
<2.0% 0.675 0.580 0.196 to 1.128
<1.5% Same as <2.0% Same as <2.0% Same as <2.0%
<1.0% 0.661 0.565 0.122 to 1.241

“Only external branches less than the specified length were used in the analysis.

Despite evidence from plants (Filatov and
Charlesworth 2002; Whittle and Johnston 2002),
birds (Carmichael et al. 2000; Ellegren and Fridolfs-
son 1997; Garcia-Moreno and Mindell 2000; Kahn
and Quinn 1999), and fish (Ellegren and Fridolfsson
2003; Zhang 2004) as well as from mammals, the
precise portion of mutations that is due to male
gametogenesis is not known. Different autosomes
evolve at different neutral rates, which would not be
expected if male-driven evolution were the only force
at work (Lercher et al. 2001). Li et al. (2002) point
out that autosome-specific mutation rates can be
caused by replication-dependent (Birdsell 2002; Bohr
et al. 1987; Wolfe et al. 1989) and replication-inde-
pendent (Birdsell 2002; Kumar and Subramanian
2002; Petes 2001) mechanisms. If recombination in
mammals is mutagenic (Filatov 2004; Filatov and
Gerrard 2003; Hellmann et al. 2003; Lercher and
Hurst 2002; Perry and Ashworth 1999; but see also Yi
et al. 2004), it will lower estimates of male-driven
evolution made using Y chromosomal sequences,
because the Y does not recombine (Li et al. 2002). It
is not clear which mutational mechanisms are
responsible for which portion of the observed muta-
tion rate. In addition, there is new evidence that some
mitotically active germ cells exist within the adult
female mouse ovary, so the female germ line may
continue to replicate after birth like the male germ
line does (Johnson et al. 2004). If this surprising result
is confirmed, more mutations may come from the
female germ line than previously supposed.

The meaning of neutral rate differences of Y and X
chromosomal genes is not completely clear. Possibly
a high rate of evolution of Y genes relative to X genes
means that the X chromosome evolves slowly, for
reasons unrelated to which sex it is in (McVean and
Hurst 1997). The conclusion that the X chromosome
has a low mutation rate seems to depend on the
amount of ancestral polymorphism assumed (Ebers-
berger et al. 2002). Since male-driven evolution is also
seen in birds, in which males are the homogametic sex
(Carmichael et al. 2000; Ellegren and Fridolfsson
1997; Garcia-Moreno and Mindell 2000; Kahn and

Quinn 1999), the difference in the mutation rates of
the X and Y is probably not due to a slow mutation
rate on the X as a consequence of homogamy.
However, this issue remains controversial (Malcom
et al. 2003; Smith and Hurst 1999). A low X chro-
mosomal mutation rate was not responsible for the
results of Makova and Li (2002), since they found
evidence for male-driven evolution by comparing
ancestrally homologous sequences from the Y and an
autosome, without using X chromosomal sequences.
A low mutation rate on the X chromosome may re-
main a factor in X/Y comparisons such as those re-
ported here.

This study adds to the several studies supporting a
male-to-female mutation rate in rodents of approxi-
mately 2 when calculated using X/Y comparisons
(Chang and Li 1995; Chang et al. 1994) and shows
that this result is dependent on the analysis of rela-
tively distantly related species, as predicted by Mak-
ova and Li (2002).
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