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Abstract. Cylindrical Wiener processes in real separable Banach spaces are 
defined, and an approximation theorem involving scalar Wiener processes is 
given for such processes. A weak stochastic integral for Banach spaces 
involving a cylindrical Wiener process as integrator and an operator-valued 
stochastic process as integrand is defined. Basic properties of this integral are 
stated and proved. 

A class of linear, time-invariant, stochastic differential equations in real, 
separable, reflexive Banach spaces is formulated in such fashion that a 
solution of the equation is a cylindrical process. An existence and uniqueness 
theorem is proved. A stochastic version of the problem of heat conduction in 
a ring provides an example. 

I. Introduction 

Stochastic integrals and stochastic differential equations in abstract spaces have 
been of interest for some time, see, e.g., [3, 6, 7, 11, 12, 15, 16, 17, 18]. Most, but 
not all, of the work in this area has had to do with "proper"  stochastic processes 
taking values in a Hilbert or Banach space, i.e., processes (Xt, t ~ T c R )  such 
that Xt is a (say, strongly) measurable function on a probability space. We are 
concerned here, however, with "weak" stochastic processes which are associated 
with (finitely-additive) cylinder set probability measures. Cylindrical stochastic 
processes (c.s.p.) as defined in Section 2 below are such processes, but to avoid 
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involvement with various technically different definitions we continue to use the 
term, weak process, in a somewhat vague sense in these introductory remarks. 

In Chapters 3 and 4 of [3], Bensoussan introduced weak processes and used 
them to model white noise forcing functions in an investigation of a general type 
of linear stochastic equation of evolution in Hilbert space. The method of solution 
employed by Bensoussan is to determine an affine "input-state" map using theory 
for deterministic differential equations, and then apply the map to the input white 
noise. No stochastic integration theory as such is necessary for this development, 
although "strong" stochastic integrals in Hilbert space are defined and used 
elsewhere in [3]. Balakrishnan, [1], has also used white noise based on cylinder set 
measures in a treatment of linear stochastic equations of evolution in Hilbert 
space. In both of these references the theory is applied to the filtering problem for 
linear dynamical systems. 

Stochastic integrals in Hilbert space have been widely discussed and used, but 
there is an inherent difficulty in extending stochastic integration in the ordinary 
sense to Banach space. This fact is noted in the book [16] of Metivier and 
Pellaumail (see Sect. 16), and they define a weak-sense stochastic integral in 
Banach space to circumvent the difficulty. Their integral is defined for a class of 
integrator processes ("2-cylindrical martingales with finite quadratic variation"). 

Since ordinary stochastic integration theory does not work properly in 
Banach space (and in particular, in the case where the integrator is a Wiener 
process) there is considerable motivation to study weak integrals and their 
application to differential equations. Even in the Hilbert-space case there are 
good reasons for using weak processes (and hence, it would appear, weak 
integrals) in certain applications, as is adequately pointed out in [1] and [3]. 

In this paper we first define a cylindrical Wiener process (c.W.p.) in a real 
separable Banach space B and get a representation (Theorem 2.2) that shows such 
a process can always be obtained by a simple linear transformation from a 
canonical c.W.p, in a separable Hilbert space. This representation is in terms of a 
series of independent real-valued Wiener processes and so has an interpretation as 
an approximation theorem. The weak stochastic integral is defined for the case 
the integrator is a c.W.p, in B and the integrand is a stochastic linear operator 
from B to a real separable Banach space B 1. The construction of the integral 
(Lemma 3.2), using the series representation of the c.W.p., is very easy and 
transparent; it results in a representation of the integral as a sum of scalar Ito 
integrals. However, the uniqueness of the construction is not evident and requi.res 
a somewhat tedious verification.* The cylindrical stochastic process determined 
by the weak integral with variable upper limit is readily seen to have weak sense 
analogs of the sample-path continuity and martingale properties of the Ito 
integral (Thm. 3.2). 

The differential equation considered is formally 

X, = AX~ + ~, 

*We note the weak stochastic integral is also given an equivalent, coordinate-free definition in 
[4]. Furthermore, it is shown there that if the c.W.p, is in fact a B-valued Wiener process and if B1 is a 
Hilbert space the integral agrees with that defined in [6] and determines a Brvalued random variable. 
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where A does not depend on t and ~t is a stochastic forcing term. This is 
interpreted in integrated form (Eq. (4.1)) as an equation in a reflexive separable 
Banach space B 1 for a c.s.p. X r The operator A is the infinitesimal generator of a 
class C O semigroup, and the integral of ~t is a weak stochastic integral. The 
existence of an essentially unique c.s.p. X t that satisfies the equation and certain 
admissibility conditions is shown in Thm. 4.2. The proof of existence in Thin. 4.2 
is a verification of the stochastic version of the variation-of-parameters formula 
using standard semigroup theory. An apparently nontrivial technical result that is 
needed and that may be of some interest is Thm. 4.1, which establishes the 
validity of an interchange of order of integration when one of the integrals is a 
weak stochastic integral. 

In the special case that B l and B are Hilbert spaces and the operator-valued 
function • is deterministic, Eq. 4.1 is the evolution equation treated in [1] in 
terms of weak processes, and is a special case of the equation studied in [3] 
referred to above. The approach we have taken is, however, rather closer to that 
of Curtain and Falb [6], which provided a background for this work despite the 
fact weak processes are not considered in [6]. 

2. Preliminaries 

The following notations are used throughout the paper. The symbols B and H, 
with or without subscripts refer to real separable Banach and Hilbert spaces, 
respectively. The adjoint space to B is denoted B* as usual; H and H* are 
identified. If x ~ B, y ~ B*, the real number y ( x )  is written (x, Y)B, or (y, x)B. 
where x is identified with an element of B**. In case the space is a Hilbert space 
H, (x, Y)n is then the inner product. The domain and range of a linear 
transformation A are denoted by ®(A) and ~ ( A ) ,  respectively. The notation for 
the Banach space of bounded linear transformations from B to B l is L(B,  B1). 
Norms are often written with subscripts; the norm in B is I1"11~, and in L(B ,  Bl) is 
I1" II BB,- The triple (f~, (~, m) is a probability space, with o-algebra d~ of subsets of f~ 
and probability measure m on d~. With ~ given, (~t),>_0 is a family of sub 
o-algebras of d~ with ~, c ~t whenever s < t. It is assumed always that d~ is 
complete and that all null sets of d~ are contained in each (~c If ~ is a random 
variable on (fl, d~, m), the expectation of ~, fa~dm,  is often written E~. 

Definition 2.1. A weak random variable (w.r.v,) X in B on (~, ~,  m) is a linear 
map from B* into the linear space of real random variables (r.v.'s) on (~2, ~,  m). 
Thus Xy, y ~ B* is a r.v. A cylindrical stochastic process (c.s.p.) in B on (f~, ~,  m) 
is a family (Xt)t~ r of weak random variables on (~2, 6~, m), with T c R. 

Definition 2.2. A w.r.v. X is uniformly square-integrable if there is M > 0 such 
that 

E[ Xy] z = LlXyl2  dm ~ MllYlI~. 

for all y ~ B*. 
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If X is uniformly square-integrable it determines an element of L(B*,  L2), 
where L 2 is the Lebesgue space L2(f~, g ,  m). This element of L(B*, L2) is usually 
also denoted X. 

The covariance operator is fundamental in what follows. We note first the 
following fact. 

Lemma 2.1. Let X be a uniformly square-integrable w.r.v, in B. Then there exists a 
unique bounded linear transformation C in L(  B*, B**) such that 

(y , ,  Cy2)B. = f (Xy~)(Xy2)  din, Yl, Y2 ~ B*. 

Moreover C is symmetric, 

(y,,Cy2)B, = (y2,Cyl)B. f o ra l l y l , y  2 ~ B*, 

and C & positive, 

(y ,  Cy)B* > 0 foral ly  ~ B*. 

Proof. The integral fu(Xyl)(Xy2)dm defines a continuous bilinear functional. 
The existence of C and the verification of its properties then follow in the usual 
way. [] 

We are interested only in the case that C is actually a map into B. Thus the 
definition of covariance operator to be used is restricted to this case. 

Definition 2.3. Let X be a uniformly square integrable w.r.v. If the operator C 
given by Lemma 2.1 belongs to L(B*, B), it is said to be the covariance operator 
of X. 

Thus, if B is reflexive every uniformly square-integrable w.r.v, in B has a 
covariance operator. Even if B is not reflexive, there exist nontrivial w.r.v.'s which 
have covariance operators. In fact, every positive, symmetric C ~ L(B*, B) is a 
covariance for some Gaussian w.r.v. X on B (see [2], Corollary 1.2); X is then 
uniformly square-integrable. 

A real Wiener process (~t,~t)t>_o is to be understood to be a real-valued 
Gaussian process with independent increments satisfying: (i) ~0 = 0 with prob- 
ability one; (ii) E~t  - -  0 ;  (iii) E ( ~  t - ~ s )  2 = clt - sl, c > 0; (iv) ~t is measurable 
with respect to d~t; (v) ( ~ t -  ~s) is independent of ~s. We also refer simply to 
(~t)t _> 0 as a Wiener process if all but conditions (iv) and (v) above are satisfied; of 
course d~ t can then be taken to be the o-algebra generated by (~)0 _< • _<_ r All real 
Wiener processes that are introduced are assumed to be separable and hence 
continuous, i.e., to have continuous sample paths with probability one. 

Definition 2.4. A c.s.p. (Xt)t<T has weakly independent increments if for any 
finite set of points t o < t~ < • • • < t,  in T, and for any finite subset (y~ . . . .  ,y,) of 
B* the random variables ( X q -  Xto)Yl,(Xt2- X t ) y 2 , . . . , ( X t -  Xt._,)y ~ are inde- 
pendent. 
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Definition 2.5. A c.s.p. (Wt)t>_0 in B is a cylindrical Wiener process (c.W.p.) if (i) 
for any y ~ B* (WtY)t~o is a real Wiener process; (ii) (Wt)t_>0 has weakly 
independent increments, and (iii) W t is uniformly square-integrable with covari- 
ance operator tC where C is a symmetric, positive operator in L(B*, B). 

Let ¢t be the characteristic functional of W t, given by 

(at(y) = fji[W, yl din, y ~ B * .  

Then in the definition just stated, with conditions (i) and (ii) unchanged, (iii) can 
be replaced by (iiia): 

6?t(y ) = e-1/2t(Cy, y)B 

where C is a symmetric, positive operator in L(B*, B). 
The existence of a c.W.p, in any real separable Banach space B is shown by 

the construction to follow. Actually the kind of example obtained is no more than 
a trivial transformation of a canonical c.W.p, in Hilbert space, and may be 
presumed known (see Remark 2.1. after Thm. 2.2). However Thm. 2.1 is included 
for completeness and because it suggests the representation given in Thm. 2.2. Let 
(W/, t > 0)~= 1 be a sequence of continuous real Wiener processes defined on a 
common probability space (f~,~, m) and with the following properties: (1) 
E(Wti) 2 = t for all t > 0 and for all i = 1,2 . . . .  ; (2) (W/, t > 0)~= 1 has independent 
components, i.e., for each finite set (ik)]= 1 of distinct positive integers and for 
each finite set (tk)7~= 1 of nonnegative numbers the random variables (W~)7,= l are 
independent. Let H be a real separable Hilbert space and let A ~ L(H,  B); A is 
otherwise arbitrary. Let (ei)~= 1 be a complete orthonormal system (c.o.n.s.) in H. 
For each t > 0 define a family (Wtn)~= l of w.r.v.'s in B by 

(Wtny)(t°) = (i~=l Wti(t°)Aei, y)  8, y ~ B* (2.1) 

Theorem 2.1. The sequence (Wtny)n°°= 1 converges in mean-square and a.s. (m) for 
each y ~ B*. The limits define w.r.v.'s Wt, t > O, with characteristic functionals 

q~t(Y) = e - 1 / 2 t ( A A * y ' Y ) B ,  Y ~ B*, t > O. (2.2) 

The c.s.p. (Wt)t~o iS a c.W.p. 

Proof. The proof is only sketched. A standard calculation yields the mean-square 
convergence of the partial sums ~tY, and a.s. convergence follows since these are 
sums of independent r.v.'s. A standard characteristic function argument shows 
that (Wt) t ~ 0 has weakly independent Gaussian increments, and a similar calcula- 
tion yields Eq. (2.2). All of this is somewhat similar to what follows in the proof 
of Thm. 2.2. 

To show that the Wry are continuous one may argue as follows. The real 
processes (W~tY)t> o are Gaussian and have continuous sample paths a.s. (m). It 
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m 

may be shown that for eachy  ~ B*, l~ty converges uniformly a.s. (m) to Wry on 
any finite interval. The proof goes exactly as part of the proof of a well-known 
theorem of Ito and Nisio ([8], Thm. 5.2) after one has established the bound given 
below. Since 

' [ Y)s2 E[ Wt'y ~ny[2 E ~ ( < i _  I47, )(Aei,  
i = l  

It sl ~ . 2 = - (e , ,A  Y)H < I t -s l l lA*yl l  2 
i = 1  

it follows that 

E[ W t ' y -  ~'~', yl 4 = 3 (E  I Wt'y - ~ ' y l  2)2 

< 31 t - s l 2 constant 

for all n = 1,2 . . . . .  The proof given in the reference cited applied here yields the 
conclusion that for each y ~ B*, (W t y)(~0) is a continuous function of t except for 
~0's in a set of m-measure zero (the exceptional set depending on y). [] 

Any c.W.p, in B can be represented by a limit of sums something like the one 
in the preceding theorem. To establish this representation we need the following 
decomposition theorem (see [2]). 

Theorem (Baxendale). Let C be a symmetric, positive transformation in L(B*,  B). 
Then there is a separable Hilbert space H and an injection F in L(  H, B) such that 
C=FF*.  

With F and H as given by this theorem, we call (F, H )  a decomposition of C. 

Theorem 2.2. Suppose (Wt)t>_o is a c.W.p, and that tC is the covariance operator 
of W t, t > O. Let ( F, H)  be a decomposition of C, and let (ei)~= I be a c.o.n.s, for 
@( F*) with the property that (ei)i~ 1 c @( F*). Then there exists a sequence 
(Wt i, t > 0)~= 1 of independent real standard Wiener processes such that for each 

H 

y ~ B*, Y', W/(Fei, Y)s  --+ WtY in mean-square and a.s. (m). 
i = l  

Proof. Since @(F*)  is a separable pre-Hilbert space a sequence (ei)~= l with the 
required properties exists. Choose for Yi, i -- 1,2 . . . . .  any element of B* such that 
F*yi = e v For each t >_ 0, i = 1,2 . . . . .  define the r.v. W/ by Wt i =  Wtyv By the 
definition of a c.W.p, each (W/, t > 0) is a real Wiener process with 

E(Wti) 2 = t(Cyi, Yi) = tilE*YellS/= t. 
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For  each y ~ B*, 

E i - W t y  2 w/(  eei, y)B 
i = 1  

)2 
= Wt i~=yi(Fei, Y ) s -  Y 

( ~=tYi(Fe Y) y )  2 = t A *  i~ B 
i H 

t k y 2  H = (el, F*y)e i -- -'> 0 as n ~ ~ .  
i = 1  

Thus the partial sums converge in mean-square. 
It  remains to show the processes W/ are independent. This will imply in 

particular that the r.v.'s W/, i = 1,2 . . . . .  are independent so that the partial sums 
converge a.s. (m). As a preliminary step we note the following. Let s < t, i ~ j ,  
then 

E[w,,~q = ~[~,(~i_ <i)]_ e[<,<,] 

= e[(<y,)(~-<)(yi)]- e[<y,<y,]. 

Since ( W t ) t >  - 0 has weakly independent increments the first of the terms above is 
zero. The second is also zero by the calculation, 

e(myj)(~yi) = 4 c y ~ , y i ) ~  

= ~(rr*yj ,  y,)~ 

= s(ej ,e i)  n 
= 0 .  

Now consider a finite set of random variables W, i" for convenience take ti~ 
i =  1,2 . . . . .  n. The points t i are not necessarily distinct. Let q)(u 1 . . . . .  u , )  be the 
characteristic function of the random vector (W. 1 W.'~ Then 

\ t l ~ ' ' ° ~  ln]" 

q~(Ul, . . . ,u ,)  = E exp i Y'~ uj 
[ \ j = l  

= exp - 7 WtJ 
j = l  

n [ 1 2 ]  
= I - I  exp - ~ t j u )  . 

j = l  
[] 
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Remark 2.1. One consequence of Thm. 2.2 is that every c.W.p, in a separable 
Banach space B can be expressed as a transformation of the canonical c.W.p, in a 
separable Hilbert space H (a c.W.p, in H with (tI)t >_ o as the family of covariance 
operators) as follows. Let (Wt)t_> o, (ei)~= 1, C, (F, H)  be as in Thm. 2.2. Define W t 
to be the canonical c.W.p, in H given by 

O0 

ITVth = E Wti(ei, h),  h ~ H. (2.3) 

Let FITV t be defined by FlTVty = 17Vt(F*y). Then the W t of Theorem 2.2 satisfies 
Wty = FlTVty a.s. (m). Thus the Definition 2.5 can be replaced by the simpler 
definition: a c.W.p. (Wt)t>_0 in B is a process Wt= F t ~  t a.s. (m), where F 
L ( H ,  B) and 1}" t is a canonical c.W,p, in H as given by Eq. (2.3). We note that 
formally 1~ t is the integral of a "white noise" ~(t) in H, with c o v e ( t ) =  I, as 
introduced by Bensoussan (see [3], p. 127). 

We also note that in case the seminorm I" I on H defined by Ihl = IIFhlIB is a 
measurable seminorm in the sense of Gross [9], the c.W.p. W t reduces to a 
B-valued Wiener process that coincides with the B-valued Wiener process con- 
structed by Gross via abstract Wiener space (see [4]). 

One further fact about cylindrical Wiener processes is needed. 

Lemma 2.2. Let (Wt)t~ o be a c.W.p, on (f~, if,, m). There exists a family (ff't)t>_o 
of sub o-algebras of ~ such that (Wty,(~t)t>_o is a real Wiener process for each 
y ~ B * .  

Proof. Let the covariance operator of W t be tC and fix a decomposition (F, H)  
of C. With (Wt i, t > 0)~= I defined as in the preceding theorem, for each t let 

_ W i 6g~ = o(Wj, s < t) (i.e., 6g~ is the o-algebra generated by ( s, s < t)). For 0 < s < t 
l e t  ( ~ t  = ° ( W t t  i -  W s i )  • Since the (W/)~ >_ 0 are independent processes it follows that 
the family of o-algebras i oo , ((d~/}i= l,((~;)i= l) is an independent family. Define ~s to 
be o(d~, i=1 ,2 , . . . }  and ~ t  to be o(ff,;t, i = 1 , 2  . . . .  }. From a theorem on 
independence of compound o-algebras (see [10], p. 237) it follows that ~ t  and ~s 
are independent o-algebras. 

Let N be the collection of m-null sets of ~, and let (~ = o ( ~ ,  N)  and 
~ t  = °(~st, N).  Since ~s a n d  ~st are i___ndepe__ndent, so are ~ and (~st. For each 
y ~ B *  and for each n =1,2  . . . . .  (W 7 - 1 ~ ) ( y )  as defined in the preceding 
theorem is ~/-measurable and hence independent of d~. We show that (W t - 
W~)(y) is d~,t-measurable and hence independent of ~ .  I__n fact__, since ( ~ t t -  
14~ )(y) ~ ( W  t - W~)(y) a.s. (m) as n ~ oo, it follows that (l~t - W~ )(y) ~ (W t - 
Ws)(y ) a.s. (mst), where mst is the restriction of m to d~t. Thus the limit 
(W t - W,)(y) is ~,t-measurable. 

The same argument may be applied to yield the conclusion that Wry is 
~/-measurable for all t > 0. Thus (Wry, ~t)t _> 0 is a real-valued Wiener process for 
eachy ~ B*. [] 
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3. Weak Stochastic Integrals 

In this section the weak stochastic integral (w)ff)dp(s) dW~ is defined as a c.s.p, in 
B1 for 0 < t < t 1. The integrator is a c.W.p. (W~, Cs) in B and the integrand is a 
stochastic operator-valued function belonging to the class M(B,B~), to be 
defined. 

Definition 3.1. Let (~, C, m) be given, and (@~t)t>_O be a nondecreasing family of 
sub o-algebras of C. The class M(B, Bi) is the class of functions dp:[0, t l ]× f~ -+ 
L(B,  B1) that satisfy the following conditions: 

(1) For eachy ~ B~, ~*y is strongly measurable on ~[0, t l]× C, and for each 
t ~ [0, tl], dp*(t)y is Ct-strongly measurable. 

ft0 II~(s, o0112, d(l × m) < oo, where l is the Lebesgue measure on 
(2) ,t,]xn BI 

[O, td. 

Remark 3.1. Because of the assumed separability of B and B 1 the strong 
measurability of ¢P*y for each y ~ B~ implies first the strong measurability of ¢Pz 
with respect to ~[0, t l ]× C for each z ~ B and then the measurability of I10(', ")ll- 
Thus the integral in condition (2) is always defined. The first assertion follows 
from the observation that (dpz, Y)s~ = (dp*y, z)s .  is measurable, a fortiori for all 
z ~ B and all y ~ B~. The second requires a short conventional argument using 
the measurability of dpz and the separability of B. 

As already indicated, the weak stochastic integral is defined here by a 
construction involving a series of scalar Ito integrals. In particular, let (F, H)  be a 
decomposition of C (where tC: B* ~ B is the covariance operator for Wt); let 
(ei)~= 1 be an o.n. basis for ~ (F*), e i ~ ~ ( F * ) ;  letyi ~ B* be such that F*y i = el, 
and let Wt i --- W~y r All this is as described in the previous section. We consider the 
Ito integrals 

fot(dp(s)Fei, y ) s  dWs i, 0 <_ t < tl, i = 1,2, . . . ,  

where y ~ B~, • ~ M(B, BI). Clearly, the integrand satisfies the measurability 
conditions required for an Ito integral and is square-integrable l × m. Using the 
standard theory for Ito integrals one may readily verify the following lemma. 

I.~mma 3.1. For i ~= j, 0 < t <_ tl, 

t i t 
E fo (dg(s)Fei, y )s ,  dW~ fo (¢~(u)Fej, y ) s  dWJ = O. 

fot Lemma 3.2. With (¢P(s)Fei, Y)s~ dWj as specified for the previous lemma, the 
oo 

fo' series ~ (~(s)Fei, Y)B. dWj, 0 < t < t 1, converges in mean-square on (~, ~, m) 
i= l  

for each y ~ B~. 
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Proof 

 LJo,O,s, e  I t y ) sdWs  i 

n 

E fie = (Q(s )Fe i , y )2ds  
i = m  0 

n 

= ~  t E E  ( (e i ,F*Q*(s)y le i ,F*Q*(s)Yl .ds  
0 i = m  

where the first equality follows f rom Lemma 3.1 and a property of Ito integrals. 
Let Pm be the orthogonal projection in H on the span of (e 1 . . . . .  era}. Then the 
above integral can be written 

fotE((P, - Pm)F*Q*(s)y, F*Q*(s)y)ifds 

= fotEIl(P, - Pm)F*Q*(s)y[12ds 

<_ fotEIl(I - e , , ) F * Q * ( s ) y l l 2  ds, n >_ m.  

Since II(I - P,,)F*Q*(s)ylIn <- 11/7*11"llYll'llQ(s)ll, which is square-integrable l × m, 
and since I I ( I - P , , ) F * Q * ( s ) y I I - - '  0 as m ~ oo, the integrals approach zero as 
rn ~ oo, n > m, by dominated convergence. The assertion follows. [] 

For convenience we denote the mean-square limit given by this lemma by 
It(Q, y). The above construction makes it appear  that It(Q, y) depends on the 
particular decomposition (F, H )  used, and on the choice of (ei)°fl=l and (yi)~= 1" 
We show below that in fact it does not. The proof given depends on the use of 
operator-valued stochastic step functions, which have not yet been required. A 
function ~ ~ M(B, B1) with the property that for some set of points 0 = s 1 < s 2 < 
• . .  < S k + l = t l ,  

is called simply a stochastic step function. Clearly ~* is then a step function in s 

and - -  I t '  Ell~*( s )ll~r B.ds < oo. 
J0 

Theorem 3.1. Given any Q ~ M( B, B l), there exists a sequence (Q,},~=I of sto- 
chastic step functions such that for any y ~ B~ 

lim fot'EllQ*(s)y - Q*(s )y l l2 .ds  = 0. 
n - "*  0 0  

The proof  follows very closely a standard proof  of the scalar version of this 
theorem and is not given (see [4] for a similar theorem). 
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Lemma 3.3. Let • ~ M(B, Bl) and let (O,'),'°~= 1 be a sequence of stochastic step 
functions as given by Theorem 3.1. Let It(O, y), 0 < t < tl, be formed with any 
(F,  H) ,  (ei)~= 1 and (yi)7°= 1 satisfying the required conditions. Then for any y ~ B'~, 
It(O,,, y) -', It(O, y) in L2(~, (~, m) as n --', oo. 

Proof. Put On(s)= O(s)-O,'(s).  Then O n ~ M(B, B1) and 

:o' lim EllO*(s)yll2,ds = 0 for al ly ~ B~. 
n --* oo 

For any positive integer N, 

(O(s)Fei,  y)B1 t dWs i -  E (On(s)Fei, Y)B, dI'Vs 
i =  i = 1  

N t(On(s)Fei, = E i~=l y)s,  dWj 

N fo B'dWsi2 = ~ '(On(s)Fe,,y) (by Lemma3.1)  
i =  

N 

= i~=lfotE(ei, F*O*(s)y)2ds.  

= fotE[i=~ (e,,F*O*(s)Y)%] ds 

<_ fotEH F*O*( s ) y[[2 ds _< ][F*l[fotE[[O* (s)y[]~ tds. 

Given e > 0, choose n o such that the value of the dominating expression in the 
above inequality is less that ( e /3 )  2 for n > n 0. Then 

Hit( O, Y) - It(O,, Y)IIL= 

[ Nfot(O(s)Fei '  dWs i < lt(O, Y ) -  ~, Y)sl 
i=l  L 2 

1 I E t 
+ -~ + It(O n, y ) -  (On(s)Fei, y)s ,  dWs i 

i= L2 

for n > n 0. With n temporarily fixed, one can take N sufficiently large that the 
first and third terms on the right side of the above inequality are less than e /3 .  
Thus 

lilt(O, Y) - / t ( O ,  , Y)IIL2 < e 

for all n > n 0. [] 
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L e m m a  3.4. lt( t~, y) does not depend on the decomposition ( F, H) of C, nor on the 
sequences (ei)~°= 1, ( Yi)~= l used in its definition. 

Proof. Consider two decompositions of C, (F, H)  and (F, H),  and correspond- 
ing sequences (ei)i~ l, (Yi}~=l and (~i}~= 1, (Y-i}i% 1. Let I,(@, y) denote the mean- 

N 

square limit of ~ (~(s)Fei, y)& dWj and ~(q~, y)  denote the mean-square 
i = 1  

N 

f O  ~ . . . .  
limit of ~ (~ (s) F ei, Y) B, dW,', where g~i = W~)~. By the previous lemma, it is 

sufficient to prove It(q~, y) -- ~ (~ ,  y) when • is a stochastic step function. 
We consider first the case that • consists of a single step, e.g., 

• ( u , o , )  = e | ( , ~ ) ,  0 ~ u < s 

" ~ - 0 ~  X _ ~ < U  

where ~l(oa)~ L(B, Bj), ~ y  is g0-measurable for each y ~ B~' and EIl~ll[ 2= 
E I [ ~ [ I  2 < oO. For this case I,(~, y) (~ (~ ,  y)) is the mean-square limit of 

i=1 j= l  

To start with we show that 

lira t im IIZ, -._Z,.IIL= = O. 
m ---) oo n ---) oo 

In fact, using Lemma 3.1 and the definition of W], 

I l g n -  ~1[22 "~- E i=l ~ (e"F*~Y)W*i-- j=, ~" (ei'Pt~Y)WJ t 2 

i = 1  j = l  

-2E ~ ~ (W~y,)(W~fia.)(e,,F*~y)(~,,F*~'Cy). 
i~ |  j'=l 

The third term on the right side of Eq. (3.1) is equal to 

(3.1) 

-2s ~ ~ (Cyi,Yj)E(ei,F*t~y)(~,ff*Y~y) 
i = l j = l  

= -2sE ~ ~ (F*y,,F*fij)(ei,F*t~y)(~,F*t~ry) 
i=l j = l  

= -2sE E ( ~ , P ~ Y )  (ei, F*5)(ei, F*~Y) • 
[ j= l  i=1 

(3.2) 
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For each m, the bracketed expression in Eq. (3.2) is dominated for all n by a 
function integrable on (f~, d~, m). In fact, by the Schwarz inequality, its square is 
less than or equal to [ ]2 

(~,ff*dP~y) 2" ~ ~ (ei,F*yj)(ei, F*d~{Y) 
j= l  j= l  i~l 

< [[ff-,~]~y,[Z. ~ 1 ~  (ei,F,~) 2 ~ (ei, F,d~,~y) e] 
j = l  i = l  i = l  

m 

< Ilff*~'yll 2. y" Ilf*)~ll 2. I lF*~y l l  2 
j= l  

= Ilff*~{yll2.llF*~yll 2. ~ (~,~.) 
j=l  

< mllF*ll 2. IIF*II 2. II~'yll 4. 

Since Ell+~Yl[ 2 < oo, the limit on n may be interchanged with the expectation for 
the bracketed expression in Eq. (3.2) to yield 

nlim E[. . . ]  = E [ j = I  ~ (~ '  ff*~]~Y)" ,-~oolim i:li (ei, F*~')(ei,F*~Y) 

= E (6, ff*~'~y)(F*~,F*~'~y) 
1 

m 

= E ~., (~,ff*tb'~y)(ff*~,ff*Og'~y) 
j ~ l  

m 

= E ~., (~.,ff*d~'~y)(~,ff*d#'~y) 
j = l  

??l 

= e E 
j=l  

where the identity (if*z, if*w) = (Cz, w) = (F'z,  F 'w)  has been used. Thus, from 
Eq. (3.2) and the calculation above 

m 
tim IIZ. - Zml122 = - s E E  (~ ,  ff.+~,y)Z + sEiiF.+,~Yll2 . 

n~oo j= l  
(3.3) 

Now, 

III/(+, y )  - ~ ( + ,  y)1122 ~ 3( l l l t (+,  y) -Z . l122+l lZ .  - Zml122 

--]-[[Zm- ~((I), Y)1122} 
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for all n, m. Hence, taking the limit on n with m fixed and using Eq. (3.3), 

III,(+, Y) - [t(tb, Y)II2= < 3{llZm -- 1 , (+,  y)1122 

+ sEIIF*<~'{YlI~=- sE ~ (e i, F*qb~y) 2} 
j = l  

for all m. Taking the limit on m gives I t (~  , y ) =  [t(~, y) for the special 
considered. 

If now one considers arbitrary stochastic step functions the verification is an 
elaboration of that just given with the only new feature being the existence of 
"cross-terms" in the expansion of IIZ.- Zmll~2. By a standard and easy calcula- 
tion, depending ultimately on the fact E(Wty j -WsYjl~s)= O, s < t, it may be 
seen these terms are zero. [] 

The weak stochastic integral, denoted (w)£td~(s)-- dW+, 0 < t < q, can now be 
t J  

defined by 

((W) fot,~(s)dW~)(y) = 1,(~), y),  y ~ B~. (3.4) 

Theorem 3.2. Let d~ belong to the class M( B, Bt), defined with respect to the 
family ( ~t)o <_t <_ t, of sub-o-algebras of ~, and let (W t, <~t)o ~t < t I be a c.W.p. Then 
the weak stochastic integral defined by Eq. (3.4) is a weak random variable for each 
t and a c.s.p, for 0 < t < t I. Furthermore: 

(1) ( ( W ) fott~ ( s ) dWs)(y) has a modification with continuous sample paths for 

m-almost all w ~ fL 

(2) ( ( W ) fo't~ ( s ) dW+ )( y ) is a martingale for each y ~ B*. 

(3) E((w)  fotd~(u)dW u)(x) .  ((W)Jot~(u) dW u)(y)  

= fmin(a't)E(tb(u)Ct~*(u)x,y)~,du, x , y  ~ B~, 
~0 

fo t and hence the covariance D ~ Lt( B~, Bl) of(w) <~(s) dW+ exists and is given by 

Dy = fotE[t~(s)C~*(s)y] ds, y ~  B+{. 

Proof By Lemmas 3.2 and 3.4 the weak stochastic integral is well defined for 
each t as a mapping from B~ into the space of real-valued random variables on 
(~, C, m). It is clearly linear, so for fixed t it is a weak random variable. 



A W e a k  Stochast ic  In tegral  111 

f 0  t To prove the assertion (2) we note first that since (~(s)Fe i, y)BdWj is a 

martingale with respect to the family (~/)t >_ 0, so also is 

n t 

x: fo 

Further, X t ~ It(~ , y) is at-measurable. Then to show that X t is a martingale with 
respect to (~t)t~o, one needs only to show that for each s < t 

fA Xtydm = fAXsydm, A (3.5) 

But since 

IfAXtydm-fAXtYdm2 < (fAIXty-Xty] 2dm 

< EIXty -  XtYl 2 ---, 0 as n ~ oo 

by Lemma 3.2, and since fA(Xty-X~y)dm=O, Eq. (3.5) follows from the 

triangle inequality. 
The assertion (1) is proved by using the facts: (i) both X t and X t as just 

defined are martingales; (ii) X t converges in mean-square to Xt; (iii) each X t has 
a modification that has continuous sample paths for m-almost all co ~ t2. Then 
one need only follow the usual proof for the scalar case, using a standard 
martingale inequality and the Borel-Cantelli lemma (see [8], p. 446, for example). 
The proof referred to starts with approximation by stochastic step functions, 
which is different from what we have here, but the arguments are the same. 

The assertion (3) is proved by the following calculation. Let s _< t: 

E((W) fot~(u) dWu )ix) • ((w) gd~(u) dWu )(Y) 

(n/0 £ = lim E ~= t(cb(u)Fei,x)sdWd. ~ (a)(v)Fej,y)dWJ 
n ---~ oo i 1 j = l  

by Lemma 3.2 and continuity of the inner products. By Lemma 3.1 and Ito 
integral theory, this last expression is readily shown to be equal to 

fo 'e  ( ( u ) u ) x, y ) , ,a , .  [] 
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4. Stoehastie Linear Differential Equations 

We consider stochastic differential equations (always written here in the in- 
tegrated form) of the following type 

X t y =  X y +  fotXs(A'y)ds+((W)fotd~(s ,w)dWs)(y) ,  (4.1) 

where X is an initial weak r.v. in a reflexive Banach space B~ and A is the 
infinitesimal generator of a class C O semigroup (T(t)) t ~ o on B 1. 

The proof of the existence theorem we obtain requires some further facts 
about integrals. In particular it is necessary to discuss iterated integrals involving 
both weak stochastic integration and Bochner or Lebesgue integration. These may 
be written 

x2 = w . ( t , s ) d  ds. 

(4.2) 

(4.3) 

These expressions are purely formal at this point and need to be properly defined. 
This is accomplished below in Lemmas 4.1 and 4.2. 

The following definition is an analogue of Def. 3.1. 

Definition 4.1. Let (f~, @, m) be given, and ((~t)t~O be a nondecreasing family of 
sub o-algebras of @. The class N(B, B1) is the class of functions qfft, s,~o), 
,t, :[0, tl]x[0, q ] x  f] ~ L(B, B~), that satisfy the following conditions: 

(1) For each y ~ B'{,ql*y is strongly measurable on ~[0, tl]X ~[0,  q ] x  @, 
and for each t ~ [0, tl], gl*(t)y is @[0, tl]X @t strongly measurable. 

(2) f II'I'(t, s, ~0)l12B d(1X l X m) < ~ .  
'/[0, tl]×[0, q lx  ~ l 

We note, as in Remark 3.1. following Def. 3.1, that ~t'z, z ~ B, is strongly 
measurable with respect to ~[0,  tl]X ~[0,  q ] x  @ and II,I, tl is measurable. 

Let ~' ~ N(B, Bl). Then ~t'(t,., o~) as an L(B,  BQ-valued function of s is not 
necessarily strongly measurable, so the integral Z '~I'(t,s,~o)ds may not be 

- i  d 

defined in the sense of Bochner. However ,Ip(t,., w)x, x ~ B, is Bochner integra- 
ble. Thus we can define --jt '9(t, s, ~o)ds to be the operator rb(t, o~)~ L(B, B1) 

given by 

~0 tl • = (4.4) 
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Lemma 4.1. If  't' ~ N( B, B~) then • as defined in Eq. (4.4) belongs to the class 
M( B, B~). The iterated integral X~ is well-defined as a weak stochastic integral by 

X~y = m.S. nlim ~ foq(fo q ) ~ ( t, s ) Fe  ~ ds , y dWt  i, 
i =  1 BI 

y ~ B~'. (4.5) 

Proof. Since ,t' satisfies the measurability conditions of Def. 4.1 it is clear 
that • satisfies the measurability conditions of Def. 3.1. Further, II~(s,o~)ll 

f0" _< IIq'(t, s,~0)ll ds, from which it follows from the Schwarz inequality and 

Fubini theorem that 

fro II~(s'~°)ll2d(lxm) ~ t~f~o,t,l×to, t,l×all'~(t's'°a)ll2d(lxlxm)" 
, q ] × ~  

fotl Since rb(t)Fe~ = 't'(t, s)Feids, the second assertion is immediate. [] 

Lemma 4.2. If  ~t '~N(B,B,) then for each y~B~ ,  { "~(w)L ql(t,s)dWt] 

determines a stochastic process with parameter s which has a measurable modifi- 
cation with sample functions integrable on [0, t l] , m --a.s. The iterated integral X 2 is 
a weak random variable defined by 

X2y = fo'*[(W) fot"~( t ,s) dWt](y) ds. (4.6) 

Proof. From the Fubini theorem it follows that for a.e. s, ~t'(., s , . )  E M(B, B 0. 

f0" Thus Y~ ~ (w) 't'(t, s) dg'~t is well defined for a.e.s. Using an idea taken from 

[9], we now construct a c.s.p, f', such that for eachy ~ B~, Y j  = f'sY a.e. (l x m). 
For convenience t, is set equal to 1 in what follows. 

Consider the probability space (~, ~, r~) with ~ = [0, l l x  ~, ~ = ~[0, 1]× (2, 
r~ = l × m. Let (2 ~ ~[0, 1]× ~t; obviously ((2t)t>_0 is a nondecreasing family of t_ 
sub o-algebras of (2. For each t ~ [0, 1] and o5 = (s, ~0) ~ ~ define the function ~: 
[0, l l x  f~ --) L(B, B1) by ~(t, o5) = ql(t, s, ~o). It follows that ~ ~ ~/(B, B0,~where 
M ( B ,  B 1 ) is a class as given in Def. 3.1, but with respect to (f~, (2, r~) and ((2t)t >_ o. 

A c.W.p. {Wt, ~t} can be constructed as follows. With (F, H), (ei)~= l a n d  l'l~t i 

as in Lemma 3.1, put ~(o5)  ~ l,~/(~0), o5= (s, to) ~ ~), i = 1,2 . . . . .  Then ~ 121~/Fe~ 
i = 1  

is a B-valued random variable. It may be shown for each y ~ B *  that 

l i m ( ~ i F e i ,  y) exists a.e. (m) and defines a weak random variable ~,:¢; 
n ----" ~ i = l  B 
further, (17Vt,~t) is a c.W.p. (see Thm. 2.1). Thus the weak stochastic integral 

:o' (:0 ) (w) ~(t, os)dW t is well defined, and (w) l~(t, os)d~TVt (y), y~B~ ,  is ~- 

measurable; i.e., it is ~[0, 1]x ~-measurable. 
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Now take a sequence (~ , ( t ,  03)),~= ~ of stochastic step functions belonging to 
]f/(B, B1) that approximate ~ in the sense of Thm. 3.1. Put Cn(t, s, to) & ~ , ( t ,  03), 
03 = (s, to). By the Fubini theorem we have for y ~ B~ 

1 1 * fo[foElld~n(t,s)Y-~*(t,s)yll2, dsldt 

f o  I ~ ~ , = EII~'," (t)y F~*(t)Yll2,dt ~ 0 as n ---, oz. 

Hence for almost all s ~ [0,1], for some subsequence (still denoted Cn) it follows 
that 

folEll~*(t,s)y - ~*(t,s)Yll2,dt ---, O. 

Then by Lemma 3.3, for almost all s ~ [0,1] and all y E B~' 

((W) folqj(t,s)dWt)(y) = nfim ((W) folr~,(t,s)dWt)(Y) (4.7) 

where the limit is a strong limit in L 2 ( ~ , ( ~  , m). It is not yet clear that 
/ 

( ( w ) f .  !q '(t ,  s ) d W t ) ( y  ) is ~[0,  1]× C-measurable. However we show below that 
1 

it is equal a.e. (l×m)to ( ( w ) f l ~ ( t ) d l ~ t  }(y), which is ~[0, 1]× C-measurable. 

Once this is done the lemma is proved, because by Thm. 3.2 this last integral is 
square-integral (rh = l × m) and hence determines a real-valued stochastic process 
for which almost all sample functions are Lebesgue integrable. 

Since E w • 03) d y exists for a.e. s, as do also the corre- 

sponding integrals with cP,, one can write for a.e. s and y ~ B~' 

I ((W) fol~(t'03)dlTVt)(Y)-((W) fo l~(t's'to) dWt)(Y) L2(a,~,m) 
<F,,+G,,+H,,, 

where 

F, = ((W) folF~(t,~)dlTVt)(y)-((W) fol~n(t,03)dlFVt)(y) L~(a,~e,,n) 

G, = ((W) fol',(t,03)dl?~t)(y)-((W) fold~n(t,s,to)dWt)(y) 
/ [ IL2(~ ,~ ,  m ) 

H, =1 ((W) fo ld~n(t's'to)dWt)(y)-((w) fOlql(t's'to)dWt](y) " 
] L 2 ( ~ , ~ ,  m ) 

Straightforward calculations show that G, = 0 for almost all s ~ [0, 1] and all 
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fo 2 n = 1, 2 , . . , .  By Lemma  3.3, F n d s  ---, 0 as n ---) oo; so some subsequence of the 

Fn's approaches zero for almost all s ~ [0, 1]. Finally, for  a.e. s, each ~ , ( . ,  s, -) c 
M(B, Bl) and is an approximating sequence for "I '(- ,s ,  .) in the sense of Thm.  
3.1, and H ,  ---, 0 as n ~ 00 for a.e. s E [0, 1]. Thus  the assertion concerning equali ty 
of the two stochastic integrals is proved.  [] 

Theorem 4.1. With Xly and X2y as defined in Lemmas 4.1 and 4.2, Xly = X2y 
a.e. (m) for each y ~ B~. Thus the weak random variables X 1 and X 2 are equal. 

Proof We show that  X 1 = X 2 for the case q ' ( t , s ,  ~0) is a stochastic step funct ion 
in the variable t. By identifying 'I '(t,  s, co) with O(t, o3) as in the preceding lemma 
it is s traightforward to carry through the passage to the limit for  each of X 1 and 
X 2 to extend the result to arbi t rary 'I t ~ N(B, B1). 

Let 't' ~ N(B,  B l) be of the form 

x l / ( t , S ,  C0) = ~ ¢i(S,o~)l[t,,t,+,](t ) ( 4 . 8 )  
i = l  

where 0 = t 1 < 12 < • • • < to+ l = 1 (again take l I = 1). Then,  for  each positive 
integer k and all y ~ B~ 

IlXly - g 2 Y l l L ~ ( u , ~ e , m )  ~ I I X ~ y  - PkllL2fU,~e,m) 

+IIX2y - PklIL~<U,~,m) 

where 

ek ( to ) = folQk ( S, co) ds 

with 

k 

Qk(S, ~) = E ~ (l~tJ~+,--l~/~)(d)i(s,°~)Fej, Y)B, • 
j = l i = l  

By the definition of Xl, and ~t' as given by  Eq. (4.8) and the s tandard calculation 
used in Lemma 3.2, 

I I X l y _  PkllL2(~,~,m) = f l[0 [ '0  f lEj=/~+l ~" (~l( t ,s)Fej ,  y)21dt ]ds. 

The  sum inside the integral approaches zero a.e. (l ×.l >: m) as k ~ oo and is 

/o'/o' domina ted  for  all k by  IIClln.Bllyll211"P(t, s)][ 2. Since Ell~/(t,  s)l[ 2 dtds < 00, 

the dominated  convergence theorem applies and ][Xly-Pkl[z,2(u,~e,,,)---,O as 
k ---, 00. 
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Now 

IIXEy z = - PkllL2(e,~,,,) EIX2y - Pkl 2 

= E fol[((W) folal(t,s, to)dWt)(y)--Qk(S, tO)] dt 2 

<_ e (w) s, 

But, using the development of Lemma 4.2, one may put Qk(03)= Qk(s, to), 
03 = (s, ~0) ~ ~. Then 

j = l  i=1  

n 

= ~" (W)fo'(*(t,03)Fej,y)sdl~Jt. 
j ~ l  

Since ((W)fola:(t,s, to)dWt)(y)= ((W)fol~(t,03)dlTVt)(y) the right-band side 

of the above inequality may be rewritten so that we have 

2 

[]X2y 2 ( f01~(t, l,~t ) - ekllL2(~,~,-,) < /~ (W) 03) d (Y) -0~(03 )  • 

This expression approaches zero as k - o  oo by the definition of the stochastic 
integral. [] 

One more preliminary fact is needed, an adaptation of the theorem of Hille 
on interchange of a dosed linear transformation with a Boclmer integral. 

Lemma 4.3. Let X be a uniformly square-integrable weak random variable and 
y(.) a B*-valued function on [0, tl] continuous in the strong topology of B*. Then 
fot~( Xy(s))(o~)ds is well-defined as a Lebesgue integral for m-almost all ~o ~ ~. 

Moreover, 

a.e. (m) 

where the integral on the right is a Bochner integral. 

Proof. The uniform square-integrability of X and the strong continuity of y 
imply the real-valued stochastic process (Xy(s)}s~ to t,l is continuous in m-mea- 
sure and hence has a separable, measurable version (which we still denote by 
(Sy(s))s~[o,t~]). Let D be the transformation in L(B*,L2(~,~ ,m))  that is 
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determined by X. Then 

(fotlElXy(s)l ds)2 __ < tlfotlElXy(s)]2ds 
f0 t. II 2 f0 t. )112 = tl IlOy(s)Jf 2as _< ql lD Ily(  , a s  < 

Thus by the Fubini theorem fttXy(s)as exists for m-almost all o~ ~ ~ and is 
i j  

m-integrable. 
Since 

(Dfotly(s)as)(o~)= (XfoqY(S)as)(o~) a.e. (m) ,  

it follows by the theorem of Hille referred to that the proof of the lemma will be 
complete once it is verified that 

(fotlOy(s)ds)(o$) ~ fotl(Xy(s))(og) dS a.e. (m) .  (4.9) 

Let (yn('))n°°z 1 be a sequence of simple functions in B* that converges uniformly 
on [0, tl] toy(s ) .  It is clear that Eq. (4.9) holds i f y  is replaced byyn, n = 1,2 . . . . .  

fo" fo t'Dy(s)ds in L2(~'  ~ '  m)" By definition of the Bochner integral, Dy,(s) as ---, 
To establish the convergence of the sequence of integrals to the fight side of Eq. 
(4.9) for m-almost all o~, we have: 

E fot'(Xy(s))(o~)as-fot~(Xy,(s))(o~)ds2<_ tlfotlE[X(y(s)-y,(s))12as. 

Now,  

EIg(y(s)-y,(s))(~o)l 2 ~ IlOll2.L211Y,(S) - y(s)llZB. --, 0 

uniformly on [0, tl] as n --, oo. Thus, by dominated convergence e),tlEIX(y(s )-  
-Ij 

yn(s))(6~)lZds ~ 0 as n ~ ~ .  [] 
We now return to a consideration of Eq. (4.1). First the conditions that are to 

hold are summarized, and then the class of solutions to be considered is defined. 
The space B l is a real, separable, reflexive Banach space. Let 

(i) (T(t))t>_o be a class C O semigroup defined on B 1 with infinitesimal 
generator A; 

(ii) (Wt, d~t)t_>0 be a cylindrical Wiener process in a real Banach space B, 
defined on a probability space (f~,d~, m), with covariance operator 
C~L(B*,B); 

(iii) ~(s ,  o~) be defined on [0, q ]×  fl, and ~ ( . ,  .) ~ M(B, B1) with respect to 
(f~, ~,  m) and the family of sub o-algebras (~t)t >_ 0; 
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(iv) X be a uniformly square-integrable weak random variable in B~ with 
respect to (~, ~,  m) with the further property that the real random 
variables ( Xy,  y ~ B~) are all ~0-measurable. 

Since B I is reflexive, ( T * ( t ) )  t > o is a class C O semigroup on B~ with infinitesi- 
mal generator A* (see [5], p. 52). Denote by @(A), °~(A*) the respective domains 
in B~, B~' of A, A*; each is dense in its respective space. 

Definition 4.2. A c.s.p. (Xt)t~to, t,] in B I is said to be an admissible solution to 
Eq. (4.1) if for eachy ~ Bt:  

(a) ( X t y) t  ~ to, t, 1 is continuous in mean- square; 
(b) (X t y) t  ~ [o, t,l is nonanticipative relative to (~t), >_ o; 
(c) for each t ~ [0, tl], X t is uniformly square-integrable; and if for each 

y ~ @(A*): 
(d) ( X t y )t ~ [o, ,1 ] satisfies Eq. (4.1) a.s. (m); 
(e) ( X t y ) t  ~ Io, t,i has continuous sample paths a.s. (m). 
Equation (4.1) is said to have a unique admissible solution if it has an 

admissible solution (Xt) t ~ t0 td, and if for any other admissible solution (Z t )  t ~ to, ill 
it is true that for each y e ]~' 

m(  sup I S t Y -  Z t y  I > 0} 0. 
t E [0, t I ] 

Remark 4.1. If (Xt) t ~ to t,l is an admissible solution to Eq. (4.1) then (Xty)t ~ [o, tll 
has a separable, measurable version for each y ~ B~'. We always assume such a 

version is chosen. Then the set ~ sup I X t y -  Z , y  I > 0} is measurable. 
1 % 

k 
t ~ [ 0 ,  tt] 

! 

Theorem 4.2. Let  the conditions (i), (ii), (iii), (iv) listed above be satisfied. Then 
the stochastic differential equation (4.1) has a unique admissible solution ( X t)t ~ [0, t l] 
such that X o = X (in the sense that for each y ~ B t ,  X o y  = Xy a.e. (m)) .  Further- 
more, a particular solution is given by the c.s.p. 

g t = T ( t ) X  + ( W ) f o t T ( t  - s )d~ ( s )  dW~ (4.10) 

where the c.s.p. T( t ) X is defined by 

( T ( t ) X ) ( y )  = X ( T * ( t ) y )  

Proof  (Existence). We first show that X t as given by Eq. (4.10) is mean-square 
continuous (i.e. X t y  is mean-square continuous). The process T ( t ) X  is mean- 
square continuous. In fact, if t > 0 and D ~ L(B '{ ,  L2(~, ~,  m)) is the operator 
determined by X, 

E I ( T ( t  + s ) X ) ( y )  - ( T ( t ) g ) ( y ) l  2 

= E I X T * ( t  + s ) y  - g T * ( t ) y l  2 

< IIDII2tL2IIT*(t)II2BtIIT*(s)y -- yli2r --, 0 

a s s ~ 0 .  
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Consider the stochastic integral in Eq. (4.10). Define 

• l s<_t. 
O, s>t 

It is easy to check that ff'~N1(B, BI), so that the integral 
well-defined. With A > 0, y ~ B~', 

((W) fot+AT(t+ A-s)dP(s)dW~)(y)- ((W) fotT(t-s)dp(s)dWs)(y ) 

+((w)ftt+aT(t-sWA)~P(s)dW~)(y ) (4.12) 

The first integral on the right side of Eq. (4.12) can be written 

((W)fotT(t--S)~(S) dWs)((z*(m ) - I * ) ( y ) ) ,  

as follows immediately from the definition of the integral (I* denotes the identity 
on By). By Thm. 3.2 and the strong continuity of the semigroup (T*(t)), 

= fo tEIIF*,~*(s)T*( t  - s)(T*(A)- I*)Yll2nds 

<_ IIFII2nBMII(T*( A ) - I*)  Yll2Br fotEIlaP(s)ll~B ds 

where M is such that IIT(s)IIB,B, --< M for all s ~ [0, t]. 
For the second integral on the right side of Eq. (4.12) one has 

E ((w) ftt+ AT( t -  s + A )dP(s) dW~)(y)l 2 

ftt + aEllF*dP*( s ) T*( t - = s + A)(y)l l2nds,  

whichobviouslyapproacheszeroasA--,O. Hence((W)fotT(t-s)dP(s)dW~)(y ) 
is mean-square continuous. 

For fixed t and with ~t' as defined above in Eq. (4.11) the integral 

(:0 ) (w)  ,t,(t, s)dW~ (y)  is ~r-measurable; hence, in particular, when r = t, the 

(4.11) 

in question is 



120 N. Berman and W. L. Root 

'--t(w)J, jT(t-s)d~(s)dW~J(y) ~ is 8{t-measurable. This fact together with integral 
/ 

the hypotheses on the ~0-measurability of the initial weak random variable shows 
that the X t of Eq. (4.10) satisfies condition (b) in Definition 4.2. The uniform 
square-integrability of this X t follows immediately from Thm. 3.2 and the 
requirement on X. 

We now show that for y ¢ @(A*), XtY as given by Eq. (4.10) satisfies Eq. 
(4.1). Since the function q defined in Eq. (4.11) belongs to N(B, Bt), Thm. 4.1 
applies to the iterated integrals with integrand g/. Thus for y ~ @(A*) one may 
write 

fot[(W) foT(S-O)+(o)  dWo]( A*y) ds 

= ((W)fot[fotT(s-o)+b(o)ds]dWo)(A*y) a.e. (m).  

By definition of the weak stochastic integral, 

°)°(°) 

= ~=,fot((fotT(s-o)+(o)ds)Fes,A*y)BdW~ 

where the limit is understood to be in mean-square (m) and the inner integral on 
the right is the operator as defined in Eq. (4.4). Now, for all i = 1,2 . . . . .  and for 
m-almost all ~0, 

= ( f j r ( s - o ) + ( o ) r e ,  as, *y) +, 

= f j (r (+-o)+(o)re , ,A*y)+a+ 

= fj(+(o)re+,r*(+-o)A*y)+a+ 

= (d~(o)Fei,fotT*(s-o)A*yds)B ' 

= (d~(o)rei ,T*(t-o)y)n ' - (d~(a)re i ,y) .  ,. 
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Thus, 

oo 

= ~_~ fot(gg(o)Fei, T*(t-o)Y)s,  dW i 
i = l  

oo £'( - E e(o)Fe,, y) ,dWj 
i ~ l  

-((W)fot~(o)dWo)(y ). (4.13) 

Since the initial weak random variable is uniformly square-integrable, Lemma 4.3 
applies to give: 

(XT*(t)y)(o~) = X[fotT*(s)A*yds+ y](o~) 

= fot(XT*(s)A*y)(o~)ds - Xy(o~) (4.14) 

for m-almost all ~o ~ fL Note that the last equality shows that the real-valued 
process (XT*(t) y)t ~ ~0, t,] has continuous sample paths with probability one. 

With X, as given by Eq. (4.10), and with substitutions from Eqs. (4.13) and 
(4.14), one has 

t * 

+ fot[(W)joT(S-O)d~(e)dwol(A*y)ds 

= XT*(t)y-  Xy+((W)fotT(t-o)d~(o)dWo)(y ) 

-((W)fot~(o)dW,,)(y ) a.e. (m).  

A rearrangement of terms in the above equation yields 

Xt(y) = XT*(t)y + ((W) fotT(t-s)~P(s) dW~)(y) 
t * 

= Xy+ foX, A yds+((W)fot~(s)dW,)(y ) a.e. (m).  

Thus the differential equation is satisfied for all y ~ @(A*). Since each term on 
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the right-hand side of this last equation has continuous sample paths a.s. (m), so 
also has the solution Xt(y ). 

(Uniqueness). This proof follows exactly the scheme of a uniqueness proof 
for a nonstochastic equation (see [1]). Let (Xt),(Zt), t ~ [0, tl] be two admissible 
solutions of Eq. (4.1) and put Yt = Xt - Zr Then fo ry  ~ ®(A*) 

t * 
(Yty)(t~) = fo(Y~A y)(~)ds,  a.e. (m) .  (4.15) 

Let t be (temporarily) fixed, 0 < t <  t 1, and define a c.s.p. (Zs)s~to, o by Zsz = 
Y~T*(t - s)z, z ~ B'~. Since Y~ is uniformly square-integrable and Y~z is continu- 
ous in mean-square, it follows easily that Z s is uniformly square-integrable and 
Zsz is continuous in mean-square. For y ~ ®(A*) it follows from Eq. (4.15) that 
(Zoy)(~) = 0, a.e. (m). 

Now require t ha ty  ~ 69(A'2) and 0 < s < t. Then for A sufficiently small, 

1 1 
s ( Z ~ y - Z ~ _ a y )  = s ( Y - Y s _ a ) T * ( t - s ) y  

1 , 
+ ~ [Ys_aT (t - s)y - Y~_aT*(t - s + A)y] .  (4.16) 

The first term on the right side above is equal to 

I rs+a 
-~.] YuA*T*(t-s)Y du 

by Eq. (4.15). It converges to Y~A*T*(t- s)y in mean-square (i.e., strongly in 
Lz(~, ~, m)) as A ~ 0; in fact 

A f  s+a * *" s)y Y u A  T ( t  - s ) y d u  - Y ~ A * T * ( t  - 
L2 

1 [ s + a  
< ~j~ II(Y,-Y~)A*T*(t-s)ylIL2 du 

and IIY~zllL2 is a continuous function. 
The remaining term on the right side of Eq. (4.16) may be written 

For A >_ 0, this equals 

Y ~ _ a [ - l  f o a ( A - o ) T * ( t -  s + o)A*2ydo- T * ( t -  s)A*y]. 
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Now IlY~_aZllL= is bounded as A ---, 0, and 

Af0 ( A - 1  a o)T*(t-s+o)A*2yda] = O(A); 
L2 

so by uniform boundedness 

as A ~ 0. Thus the second term on the right side of Eq. (4.6) converges in 
mean-square to - Y~T*(t - s)A*y.  For A < 0 a similar calculation yields the same 
result. 

Thus, for all y ~ @(A*2), 

1 Z ~ y -  Zs_ay  ) [L2 = 0 limo] 0 < s < t .  

This implies that the real-valued function [IZsYllL2 has derivative equal to zero for 
0 < s < t. Since IIZsYIIL2 is a continuous function of s for 0 < s _< t, it follows that 
it is constant on [0, t] and hence equal to zero. In particular IlYtYllL~ = [[ZtYllL2 = O. 
This has been shown for 0 < t < q, but by continuity it holds at t = 0 and t = t l 
also. Since °~(A*2) is dense in By and Yt is uniformly square-integrable, we have 
IIYtYIIL~ --- 0 for all y ~B~'. Finally, the separability of the process (YtY)tE[O, td 
implies that 

m (  sup [ Y t y [ < O ) = 0 .  
t E [O, tl] 

[] 

We apply the theorem to an example of a stochastic differential equation in a 
Banach space Lp, 1 < p < 2. This choice of B and B l makes the example easy 
because the injection F is self-evident. 

Example 4.1. Consider the weak stochastic differential equation in real L , 
1 < p < 2, for the classical problem of heat conduction in a thin ring with t~e 
addition of a "white-noise" forcing function. The equation is 

fo t * Uty = UoY + U,(A y ) d s  + Wry , (4.17) 

y ~ °~(A*), where A is the infinitesimal generator of the semigroup involved. 
Thus the ~(s ,  ~0) of Eq. (4.1) is taken to be identically one; however it would 
make little difference in what is to follow if it were chosen arbitrarily. 

We suppose the ring has radius one, so that the function spaces involved are 
for functions on the unit circle. We write Lp for real Lp[0,27r], Lq for real 
Lq[0,27r] where q is fixed by q - l  + p - 1  =1,  and AC2~ r for the space of real 
functions absolutely continuous on the circle. Since p < 2 < q there is a natural 



124 N. Berman and W. L. Root 

injection G: Lq ~ L 2 and a natural injection F: L 2 --* Lp. The spaces B 1 and B 
used in the specification of Eq. (4.1) are both taken to be Lp; B~ and B* are then 
identified with Lq. 

The operator A is the closed linear operator in Lp defined by A f  = f "  with 
domain ~ ( A )  = ( f  ~ Lp: f ,  f '  ~ AC2, , and f "  E Lp). It generates a semigroup 
(T(t); 0 < t < oo), and 

u(t; fo) = T( t ) fo  (4.18) 

is the unique solution to the homogeneous heat conduction equation in L?. More 
precisely, it is the unique solution to the Cauchy problem: given f0 e Lp, find a 
function u(t)  = u(t; fo) on [0, oo) to Lp such that: (i) u(t)  is strongly continuously 
differentiable in (0, oo); (ii) for t > 0, u(t) ~ ®(A)  and u'(t) = Au(t);  (iii) 
s-lim u(t, fo ) = fo (see, for example, [5], Sect. 1.5.2). A formula for (T( t ) f ) (~) ,  
t - . 0  + 

f ~ L p ,  is 

oo 

( T ( t ) f ) ( ~ )  = E e-k2tf(k)q~k(~), t > 0, (4.19) 
k = - o o  

where ~P0(~) = (27r)-1/2; t~k(~)  = ~ -  1/2CO S k~, k = 1,2 . . . .  ; d?k(~ ) = -- ~'- 1/2sin k~, 

k = - 1, - 2 . . . . .  and f (k)  = f2~f(~)~k(~ ) d~. It may readily be verified that T(t)  
k /  

is symmetric and that (T*(t)g)(~), q ~ Zq, is given by a formula like that of Eq. 
(4.19), with ~(k) replacing )?(k). The generator of the C O semigroup (T*(t); 
0 < t < oo) is A*. 

The c.W.p. W t is constructed as in Thm. 2.1. By identifying the Hilbert space 
H =  L 2 with H*, one has that the injection G = F*. Define C ~ L(Lq,  Lp) by 
C = FF*; C is of course just the natural injection of Lq into Lp. The o.n. set 

(q~k)~= -oo introduced above lies in ~ ( F * )  and forms a basis for ~ (F*). Let (W/, 
t > 0)~= _ oo be a family of independent Wiener processes defined on a probability 
space (~2, C, m). By Thm. 2.1 a c.W.p, is defined by 

oo 

Wty = W/CFeoi, Y)L,  = E wti(dt)i, Y)14 
i =  - ~  i =  - - o o  

c o  

= E Wti.y(i), y E Lq, (4.20) 
i = - - o O  

with covariance operators tC. By Lemma 2.2 there is a family ((~t)t>_O of 
increasing sub-o algebras of ~ such that Wty is nonanticipative with respect to d~ t 
for all y ~ Lq. 

If U 0 satisfies condition (iv) of Thrn. 4.2, then by that theorem, the cylindrical 
process 

U t = T ( t ) U  o + (W)fotT(t  - s) dW~ (4.21) 
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gives an admissible solution to Eq. (4.17). Thus, for all y ~ @(A*), 

Uty = Uo(T*(t)y)+ ~_, fot(T(t-s)Fepk,Y)dWf " 
k = - o o  

) So -~ e 0 =~_ e-kt2.F(k)dPk + ~ t ( z ( t - - S ) d P k ,  Y ) L ,  dWs k 
k ~ k=-oo 

o o  o o  

= E e-kt~p(k)Uo(ePk) + E fi(k)fote-k2(t-s)dWks. 
k= -oo k= -oo 

(4.22) 
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