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I. Introduction 

A small topic in the abstract theory of system modelling is investigated in this 
paper. As understood here, a system is a map F from an input space U to an 
output space Y. The systems with which we are concerned are causal dynamical 
systems for which inputs and outputs are functions of time. The topic under 
consideration is the choice and topologization of input and output spaces and 
their relation to system behavior. The concepts described below, which underlie 
the work in [1] and [2], provide intuitive background for the development here. 

Let y = F(u) be the input-output map of a causal (in general of a nonlinear, 
time-varying) system, where u and y are functions of time belonging to suitable 
function spaces U and Y, respectively, and F is causal, continuous and bounded. 
Let Pt, t ~ R ,  denote projection on the past; i.e. for any function of time z, 
(Ptz)(s) = z(s) or 0 according as s < t or s > t. Fix T > 0 and define fit for all 
t ~ R  by 

Ft(u) = [ P t - P t _ v ] F ( u )  (1) 

where it is assumed that U is a large enough space to contain all Psu, u ~ U. 
Each Ft is the input-output map of a "truncated" system derived from F for 
which the inputs are applied prior to t and the outputs are observed over the 
interval ( t -T , t ] .  fit is a map from the point-set PtU into the point-set 
[Pt -Pt - r]  Y. If the spaces U and Y are invariant under arbitrary time-shifts, 
then elements of Pt U may be identified with elements of P0 U, and elements of 
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[ P t - P t _ r ] Y  may be identified with elements of [ P o - P _ r ] Y .  Thus Ft 
corresponds to a map Ft:PoU---)[P o -  P_r]Y.  As t varies, a trajectory of such 
maps is described in an appropriate space of maps from Po U into [ P 0 - P - r ]  Y. 
This trajectory characterizes the time-varying behavior of the system; if F is 
time-invariant the trajectory reduces to a single point. 

One may consider a whole class of such systems and the corresponding class 
of trajectories. In [1] a mathematical framework is provided and a set of 
conditions stipulated such that under these conditions the trajectories of a class 
of causal systems are generated by a strongly continuous semigroup of linear 
transformations acting on a Banach space of mappings from Po U into 
[ P 0 - P - r ]  Y. It is required that the maps F t have uniformly bounded finite 
memory. The input space U is a metric subspace of any one of certain special 
Banach function spaces, and the output space Y is also any one of these Banach 
function spaces. In the conference paper [2] the result just referred to in [1] is 
extended to classes of systems that no longer have finite memory. This extension 
is an easy modification of [1], but it requires that the truncated maps F t not be 
too sensitive to what happens in the indefinitely remote past. Since the F t are to 
be continuous, this in turn means that the topologization of the input space must 
be such as to become increasingly coarse as regards the behavior of inputs in the 
more and more distant past. Some form of this requirement seems to be 
essential, and part of the motivation for the present work was to investigate it 
more fully. 

When the trajectories of a class of systems are generated by a strongly 
continuous semigroup of linear operators as described, the class has a linear, 
time-invariant structure even though the systems are individually nonlinear and 
time-varying--one may say the class of systems is "hyper-linear" and 
"hyper-time-invariant." 

One would be pretty sure even without further study that the kind of system 
behavior described in [l] and [2] does not depend critically on the particular 
Banach spaces employed. So, partly as a matter of esthetics, but more to avoid 
having to paraphrase the proofs in [1] when similar results are wanted for other 
cases, a structure is developed here which is one level more abstract than that of 
[1] but yields corresponding results. In particular it includes the structures in [1] 
and [2] as special cases, and it is applicable to systems with stochastic outputs 
and stochastic inputs. (Stochastic systems as such are not discussed here, 
however.) This more abstract treatment brings out what appear to be essential 
features of the spaces and mappings involved, including especially the 
requirements on memory mentioned above. 

We proceed as follows. In the next section families of normed linear 
function spaces parametrized by pairs of points on the real line are considered. 
Thus, As, t will denote a normed linear function space whose elements are 
equivalence classes of functions on R, but for which two functions are 
necessarily equivalent if they agree on the interval Is, t]. If these spaces are 
interrelated in certain ways, they are called a fitted family of normed linear 
spaces. From the As, t, spaces A t = A  ~,t are derived. In certain cases the spaces 
A t are suitable as output spaces in mathematical models of input-output 
systems; special subsets of A t are suitable as input spaces. More precisely, the 
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spaces A t can take the role of the moving observation spaces [ P t - P t - v ]  Y 
referred to above, and Ut C At can take the role of Pt U. It is unnecessary to use 
the projections Pt. 

Given a family (As, t), a "bounding space" A is introduced in such fashion 
that each element of A corresponds to an element of each As, t (although of 
course not vice versa). The global system will be modelled as a mapping F from 
U, a subset of A, into Y where Y is a bounding space for some (possibly 
different) fitted family of normed spaces. We shall use the notations {As, t}, {At} 
and A for spaces related to inputs, and {Bs, t), (Bt), and B for output spaces. 
Thus Y = B ,  and F:  U ~ B .  Conditions will be imposed so that, as above, F 
induces a map F t : Ut.---->Bt, and again this will correspond to a map F t : Uo~Bo.  
Truncated-system trajectories are then defined as above. 

In the last section it is shown that with certain reasonable properties 
assumed for the input and output spaces and for F the trajectories are 
continuous. Conditions are then established for the hyper-linearity and 
hyper-time-invariance mentioned above. 

In order to have a satisfactory mathematical system model there are 
requirements which input and output spaces and input-output maps should 
meet, depending of course on circumstances. Considering that we are concerned 
with causal systems with well-defined inputs and outputs, which are to operate 
for indefinite periods of time and which are in general nonlinear and 
time-varying, there are certain general conditions which seem desirable. These 
will be postulated below. One of the objectives of this work is to investigate the 
properties of fitted families of normed linear spaces in order to establish 
hypotheses under which these conditions are met. A second objective is to show 
that when these conditions are met a truncated-system trajectory theory makes 
sense. 

The conditions we set are: 

(1) input spaces U and output spaces Y should be shift-invariant; i.e. if L, 
denotes translation to the left by s, Ls(U) = U, Ls(Y) = Y, s ~ R. 

(2) The spaces Ut and Yt (whose elements represent, respectively, inputs 
and outputs over all or some portion of the past up to the present) should be 
shift-continuous; i.e. Lhu----~u in the metric of U t as h--~0 and Lhy----~y in the 
metric of Yt as h~0 .  

(3) Within the overlying structure (i.e. with a given family {As, t} ) it should 
be possible to choose input spaces U which satisfy the other criteria and are also 
such that each U t is totally bounded, while at the same time, of course, being 
"large enough" sets to contain the inputs of interest. 

(4) The maps F t should be continuous and bounded. 

Not much argument will be offered here to justify these requirements (there 
is quite a bit of related discussion in [1]). Condition (2) is relevant to the 
continuity of truncated-system trajectories. (3) can be important in modelling 
nonlinear systems, where restrictions on the class of inputs are usually 
important. (4) is more or less arbitrary; some regularity condition on the 
input-output maps is needed and we have chosen a mild one. 
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II. Fitted Families of Normed Linear Spaces 

Let C be a linear space of functions from R into a fixed real Banach space 
such that any translate of a function in C is also a function in C. Let 
N--{ll.lls, t , - o o < s < t < o o  ) be a family of seminorms on C satisfying the 
following conditions: 

1. If f l , f  z ~ C and fl(~- ) =f2(T),s <T ~< t, then ]lfl-f211~,~ =0 .  
2. Jlt~f[]~_~,t_~=l[fll~,,,fef,-oo<T< oo. 
3. If r<s<t,[]f[]~,t< Ilfllr,,,f~C. 
4. If r<s<<.t,[lf[Jr,, < Ilfl[,,s +llfll~,,, f ~c .  
5. For some a > 0 (a may be + o0) and K/> 1, and for all f E C, 

Ilfl[r,s <gl[ftlr,, ,  r <s  <t,  whenever t - r < a .  

A pair (C, N)'satisfying these conditions is called a fitted family of seminorms on 
C. The normed linear space formed from equivalence classes of functions in C 
with norm [1 " ][s,t is denoted As, t. The elements of As, t are the equivalence classes 
of functions from C given by: f~gif f l l f-gll~,t=O. The set {A~,,} is the fitted 
family of normed linear spaces given by (C,N). It is to be observed that the 
equivalence classes for different (s, t) pairs may or may not be simply related to 
each other. For  example, if r<s<t ,  I l f l - f2 l l r , ,=0  implies Ilfl-f2l[s,t=o, but 
does not imply ][fl-f21[ r,~ = 0 in general. The difficulty is caused by the rather 
weak condition (5) which st'ands in place of the stronger requirement, 
I lflJ ~,s < I If[I ~,,, r < s < t. Unfortunately this latter condition simply does not hold 
in many situations we wish to include. 

Examples 

(A) C is the set of strongly measurable (Lebesgue) functions f from R to 
such that 

( f t  \l/p IIfl[,,, = If(v)lPdv) , 1 < p < oo (1) 

exists for each pair (s, t), - oo < s < t < oo. N is the set of Lp seminorms defined 
on C by Eq. (1). In this example, condition (5) is satisfied in its trivial form, of 
course, with a = oo, K =  1. 

(B) Example (A) is modified as follows. Fix T > 0 .  If t - s  < T, define 
Ilflls,, as above; if t - s  > 7, define IlfJls,, by 

( f t t  [f(v)[Pdv) 1/p 1 < p < oo. Hfl ls , ,=  - T  

Condition (5) is satisfied with a = T, K =  1, but for no larger a. 
(C) Example (A) is modified by using a weighting function. In particular 

let eo:R~R be a function satisfying: q,(t)=0 for t < 0 ;  q,(0)= 1; ~, monotone 
nonincreasing on [0, oo); q,(t)~0 as t~oo ,  and f~q,(t)dt=A, 0 < A  < oo. Then 
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put 

,,,s v,4" 
This example contains (B) as a special case. 

(D) Example (C) is modified as follows. 

[If[Is,, = sup - v ) d v  
s < t "  < t  

(E) C is the class of continuously differentiable functions from R to R 

Jlflls,, = max [f'(~-)[ 
s < ' r  < t  

(F) Example (E) is modified by using a weighting function q~ as described 
in (C), except that the integrability condition is not required. 

Jlf[ls,, = max [f '(~)qfft-~)[ 
s < "r ,~ t 

Some of these examples will be expanded upon later. 
We note that if (C ' ,N ' )  and ( C ' , N ' )  are each fitted families of seminorms, 

then (C ,N)  is also, where C =  C 'A C" and the norms II " [Is, t in N are given by 

~- ! b t! Ilflfs,, allfJls.,+ Ilflls,, 

with a,b>~ 0, and l[ • I [ ' s , , e N ' ,  [I" I['s',, ~ N ' .  A l s o ,  from the shift-invariance and 
condition (2) it follows that any As, t iS isomorphic to Ao,,_ s under the shift L s. 
Consequently the family N of seminorms can be defined in terms of a 
single-parameter family, { II " I[0,r), 0 < r < OO. 

We extend the class of seminorms so as to be able to account for the 
behavior of functions on the entire left half-line. Let C O = { f E C: lims~_ ~ I[fll ~,, 
exists, t E R }. F o r f E  Co, define [Ifll-~,, =lim~.__._ ~llflls,,; obviously, I t ' l l -~ , ,  is 
a seminorm on Co. Henceforth IIf[I-~,, will usually be denoted Ilfll,. We now 
put N =  { [I " []s.t, - m <s < t  < o0 }, where Ilfll- ~,, is defined only for f E C O c C. 
It is clear that the properties (1) . . . . .  (4) still hold for (Co, ~V) if the left-most point 
is replaced by - m ;  (5) holds for r = - m  if a = oo, otherwise the property is 
irrelevant to the case r = - c o .  The normed linear space formed from 
equivalence classes of functions in C O with norm II • II, is denoted A t. C O is also 
invariant under shifts, so, in analogy to a remark made above, it follows that any 
A t is isomorphic to A o under a shift operation. 

Given (C,N) ,  it is useful to define another, related, fitted family of 
seminorms on C and the corresponding fitted family of normed linear spaces. 
First, define [l" II ~'' by 

Ilfll s ' t=  sup J[fll .... f E c .  (2) 
s < z < t  
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Clearly [I " H s't is a seminorm. There  is a quest ion as to whether  [[fll s't is finite for  
all f E C and all pairs (s, t), - oo < s < t < oo, and  a second question as to whether  
the families are fitted. Rout ine  verifications show the answer to be yes to bo th  
q u e s t i o n s ;  we  c a r r y  ou t  a c o u p l e  of  these  be low .  P u t  M = 
{11" [1%- ~ < s < t <  oe). 

Proposition 1. (C, M) is a fitted family of seminorms on C. 

Proof. For  arbi t rary  ( s , t ) , - ~ < s < t < o o ,  and any f E C ,  Ilfll s't exists. Fo r  
suppose the contrary,  then there is a sequence {~'k) such that  IIf[l~,,~ ~>k, 
k =  1,2 . . . . .  By compactness,  we may  suppose the "rk-sequence chosen so that  
~'k--->z as k ~ .  Let  0 < f l < a / 2  and  consider ~k such that  I~-zl </~. Then  by  
condit ions (4), (5) 

Ilflls,~, < Ilflls,~-~ + Ilfll~-~,~, < Ilflls,~-/~ + KIIflI~-~,~+B. 

But the right side is a fixed number ,  so there is a contradict ion.  
To show (C,M) is fitted it is necessary to verify the fi t ted-family properties 

(1) . . . . .  (5). Consider  (4), for  example.  Given e > 0  there is ~',r< ~'< t, such that  

Ilfll ' '  < Ilfllr,~ + c, 

Consider  the two possible cases: ~-/> s, • < s. If T/> s, then 

Ilfll,,~ + c < Ilfll,,s + Ilflls,~ + c < Ilfll r's + sup Ilflls,~, + c 

< i l f l r  ,s + sup Ilflls,~, + c = ilfll r,s + ilfll s,, + ~. 
s < ~ " < t  

If z < s, then 

Ilfllr,~ + C < sup Ilfllr,~' + C = Ilfll "s + C. 
r<'r '  < s  

Since c is arbitrary,  one has in either case that  Ilfllr, t< Ilfllr'~ + IIf[I s''. 
The  other  condit ions can be established by  equally simple arguments.  [ ]  

Remark 1. Condi t ion  (5) is satisfied by  the family M with a = oe, K =  1. 
F rom Proposi t ion 1 it follows that  (C,M) determine a fi t ted family of 

normed  linear spaces, which will be denoted  (AS't). Then  for a class of 
functions C O c C, M can be extended exactly as above to a class 
M - -  (11 " I1% - ~ <<s<t< ~ ) ,  where Ilfll - ~ ' '  is def ined only f o r f E  C °. 

Remark 2. It is easily seen that 

[If l l -°° '~= lim Ilf l lS"= sup [Ifl[-o~,~. 
S - ' - >  - -  O O  

- -  o o  < ' r  < t  

As before,  we write I l f l l -oo, ,=  Ilfll'. 
The  class of functions C o is given by  C ° = ( f E  C : l ims~_~ l l f l l  s'° exists). 

Since both  Ilfll s,° and  Ilflls, o are mono tone  nondecreas ing as s ~ -  oo, and since 
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I[fll s'°~> Ilflls, o it follows that C ° c  C o. They may or may not be equal. If (C,N) 
is such that M = N ,  (C,N) is said to be irregular; otherwise (C,N) is regular. 
Obviously if (C,N) is irregular, C O-- C 0. Also, any (C,M) is irregular. Of the 
examples listed, (A), (D) and (E) are irregular. If the family of norms in example 
(C) is denoted N, then the family of norms in (D) is the corresponding M. 

One more space determined by (C,N) is to be introduced. Put 

Ilfll = sup [If H, (3) 
tER 

for all f E Co for which the right side exists. The linear space of all such f is 
denoted Coo, and the normed linear space of equivalence classes of Coo with 
respect to this norm is denoted A. A is said to be the bounding space for the 
family (As, t). We shall justify this term, but first some elementary facts about 
the norm I1" II are noted. 

Lemma 1 

(1) IIf[I = sup Ilflls,, 
(s,t),s < t 

(2) Ilfl[ = sup l l f f l '  
t 

(3) Ilfll = sup Ilfll s,' 
(s,t),s < t 

(4)  Ilfll = I lt~fl l ,  • e R 

Proof The proofs are all easy verifications based directly on the definitions. In 
(1) and (3) the supremum is over all pairs (s, t) with s < t. [] 

It follows from Lemma 1 that Coo is a shift-invariant linear subspace of C O 
as well as of Co, and that A is the bounding space for the family (A s't) as well 
as for the family (As, t). 

The connection between the bounding space A and other spaces considered 
can be stated in terms of a partial ordering. Let AI, A 2 be the normed linear 
spaces formed from (C1, I1" I[1) and (C2, II" II=), respectively. Cl and C2 are each 
to be shift-invariant linear subspaces of C with C1DC2; I]" Irl and II" Ih are 
seminorms defined on C 1 and C2, respectively (the elements of A i are then 
equivalence classes of functions with respect to II" Ili), with I l f l l l<  IIf[12 for 
f E  C2. This defines a partial ordering, and we write A1 <A 2. It follows from 
Lemma 1 that As, t < A ,  A t < A ,  A s,t < A  and A t < A .  Fu r the rmore :  

Lemma 2. A is the least upper bound (1.u.b.) of each of the following families of 
normed linear spaces: {As, t), {At}, (AS't)(At).  

Proof We prove the case, A =l.u.b. {As, t}; the others are similar. Suppose A' 
formed from (C',  I1" 113 satisfies A' >As, t for each (s,t) pair. Then, f o r f E  C', 

Ilflls,, -< IIf[l' for all - ~  < s < t < oo. 

Hence f E Coo, so that C ' c  Coo. Also, 

[If I[ = sup Ilflls,, < Ilf'll. 
(s,t) 
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That is, A < A'. [ ]  

Example (B'). Let As, t be as given by Example (B). Then the bounding space A 
is the space E~e) introduced in [1]. It is shown there to be a Banach space 
(actually in [1] the functions making up E~ ) were assumed to have values in R ' ,  
rather than ~ ) .  

Under certain general conditions the spaces A t are suitable for use as input 
spaces for causal time systems according to the criteria given in the 
Introduction; under certain other conditions they are not suitable. At this point 
two definitions are needed in order to set up these conditions. 

Definition. (C ,N)  has the support property (property (S)) if for any (s,t), 
- ~ < s < t <  ~ there is a function f ~  C which satisfies Ilflls,,v~0 and f ( r ) = 0  
for z<s,r>t .  

Definition. Consider a family {As, t}. For any c > 0  and any t let 

G(c, t )= {fECo:l[fl[~<c, W - < t ) .  

Then {As, l} is tapered if for any e >0,  c > 0  and t E R, there is a positive number 
6 = 6(e, c, t) such that 

Ilfll, < Ilfllt-8,t + c 

for all f E G(c, t). 

Remark 3. Since G(c,s)=L t s[G(c,t)] it follows that 6 does not in fact depend 
on t. For s <  t, it is also true that G(c,t)c G(c,s), hence the conclusion above 
can be strengthened to read: there is a positive number 6 = 6(e,c) such that 

IIf[Is < Ilflls-~,s + c 

for all f E G(c, t) and any s < t. 

Example (C). We show that {As, t} is tapered. From the conditions on q~ one 
has: for some T > 0  there is a > 0  such that ~( t )>  a, 0 < t < T. Then, for any 
f E G(c, t), 

£~ % )dr " Pdv If(v a lY(v)l < )1 ( , - v  
- T  - T  

£ < [f(v)lPq,(r-v)dv < cP,r < t; 
O0 

or, 

fr cP r PdD --,'1" [ f (v)[  < < t. 
- - T  a 
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Then, for any n = 1,2 . . . .  , 

l i .r l le = + 

The integral can be written as 

,f.v),Pep.t v)dv < -  ~ (kT )  
k = n  --(k+ 1)T a k = n  

o0 

f0 Now, since ep(s)ds=A < oo and since ~ is nonincreasing, ~ ep(kT)---~O as 
k = n  

n ~ .  Thus for sufficiently large n o, the integral term does not exceed c p for any 
n >/n o for all f E G(c, t), and 

Ilfll~ < IIf[lPt-nz, t + cP < (]lfll,-,~,,-I-~)P, n ~ no. 

Note that this also shows that the family (As, t) of Example (B) is tapered. 
The spaces of Example (C) are those used in [2] with p =2  (A t = L2(/~t) in the 
notation of that paper). Thus, tapered input spaces are used in [2], although the 
abstract concept is not introduced there. 

By an easy argument using calculations similar to those above one sees that 
the bounding spaces for Examples (B) and (C) have equivalent norms, no matter 
what ~ may be as long as it satisfies the weighting-function conditions (see [2], 
Lemma 2.). It is shown in [1] that the bounding space for Example (B) is a 
Banach space, so the bounding space for Example (C) with arbitrary ~ is also a 
Banach space. 

Proposition 2. I f  (As, t) has property (S), then (A t.s) is not tapered. 

Proof Let f E C ,  f(1-)=0 for ~ - > - 1  or ~'~>0, and Ilfll0=l[fll_~0>0. Then 
Hfll°=c>~ Nfrl0>0. For any b >  1, I lZJ l l °= l l t J l l -b=c .  In fact, IIL~N-b-- I[fN ° 
by condition (2). But IIZ~ll ° <  IIt~ll -b + l [ t ~ l l  -b'° = l l t ~ l l  -b since Lff  
vanishes on the interval [ -b ,0 ] ;  and IIL~fl[-~ < Ilt~][ ° by condition (5) for the 
family (A s,t}. 

Now suppose {A s,t} is tapered. Then, given ~ > 0  there is 6=  6(c,E) such that 

Iltbfll ° -  Iltofll-8'° <~. Take e = c /2  and b > 1 + 6, then Iltbfll ° -  IlZbfN-~'°= 
c -  0 >c /2  which is a contradiction. [ ]  

The bound provided by the following lemma is useful in discussing shift 
continuity. 

Lemma 3. For any (C,N), any f E C o, and any "r satisfying IT[ <~, 

][Z,f - fNt <~ NfN,-, + KIIf[I,-~., + 211flit + KIIfll,.,+~ 

where (a, K) are as in condition (5). 
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Proof Take 0 < z < a, then 

I I t ~ f - f [ I ,  < [It~fll, + Ilfll, = Ilfll,+~ + Ilfllt 

< 21lfll, + Ilfll,,t+~ < 21lf[I, + K[lfl[t,t+~ 

and 

I I L - ~ f - f l l ,  < IIL-~fII, + Ilfll, = IlL-vii + Ilfll, 

"<< Ilfll,-~ + Ilfllt-~.,-, + IIfl[, < Ilfll,-~ + gllfl l ,-~, ,  + Ilfll,. 

Proposition 3. I f  (As,,) is shift-continuous and tapered then IlL~f-fll,-->O as 
"c--->O for all f E C ° ( c  Co). 

Proof It follows immediately from the preceding Lemma that with It] < a, 

I I t , f - f l l ,  < Ilfll,-~ + ( K +  1)llfll, + KIIfl[,+~. 

Since f E C °, for any fixed t 0, sup_ ~<t<to+, Ilfll, exists. Then, 

I I t ~ f - f l [  , <<. constant = a, fo r t  -<. t o 

so that the functions ( L ~ f - f )  all belong to G(a, to) for IT[ <a .  Then, for e > 0  
there is 8 > 0 such that 

IIt~f - f l l ,  - IIt~f - f l l ,-~, ,  ~ c, t < t o. 

Since (As, t} is shift-continuous and t o is arbitrary, the conclusion follows. []  
Proposition 3 does not cover the standard cases of Lp spaces, since they are 

not tapered. For the Lp-spaces, 1 < p < o o ,  the fact that the condition 
[IfHP, t = [[fIlP.s + []fllP.t holds instead of just the weaker condition (4) is of course 
sufficient for the proof, without regard to the tapering property. As will be seen, 
Lp spaces on R or on the half-line are of little interest here in any event. 

To set off against the preceding Proposition we have the following: 

Proposition 4. I f  {As, t) has property (S )  and is tapered, and if A o (and hence 
each At) is a Banach space, then there is a function f E C  ° such that I I Z J - f l l  ° 
does not approach zero as "r---~O. That is, A t is not shift-continuous. 

Proof See Appendix. []  
The proof consists of constructing a function f consisting of an infinite 

string of isolated "bumps" which get narrower and taller as t--->-oo. It is 
necessary that A 0 be complete in order to make this construction. 

We now consider the existence of totally bounded shift-invariant subsets of 
A t. It is irrelevant to this discussion whether the spaces As, t,A t are complete or 
not. It is convenient to use the following alternative characterization of total 
boundedness: a subset S of a metric space is totally bounded if every sequence 
of points in S has a Cauchy subsequence. 
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Lemma 4. Let T > 0  be arbitrary, and S be a subset of C. I f  L tS  = ( L f f  : f E S ) is 
totally bounded in A r,o for each t E R, then S is totally bounded in every As, t. 

Proof The hypothesis is equivalent to: S is totally bounded in every A,_r, ,. 
First, suppose t - s <  T, then if {f,} is Cauchy in At_T, t it is also Cauchy in As, , 
by condition (3). Thus S is totally bounded in any As,, with t -  s < T. 

On the other hand, if {f,} is a sequence of points in S which is Cauchy in 
At_T,t, there is a subsequence ( f l , )  which is Cauchy on At_2T, t_T, by the 
hypothesis on S. By condition (4), { f l , )  is also Cauchy in At_2T,  t , SO S is totally 
bounded in At_2T,  t. By induction, S is totally bounded on any As, t for which 
t - s =  kT, k =  1 . . . . .  Then, as in the first remark, S is totally bounded in any 
As, t, - ~ < s < t  < ~ .  [ ]  

Lemma 5. Let S C C be totally bounded in each As, t and in addition be uniformly 
bounded over all As, t. I f  (As, t} is tapered, then S is totally bounded in each A t. 

Proof By the uniform bound hypothesis, [Ifll, exists and does not exceed some 
constant "~, for all f E S  and all t. Consider G(27,t) for an arbitrarily fixed t; 
given c > 0 there is 6 > 0 such that 

Ilgll, < c +  Ifgll,-8,, for all g E G(27, t). 

From any given sequence of points in S extract a subsequence { fn } which is 
Cauchy in At_8,t, and let m, n be large enough that IlL -f,,ll,-~,t <c. Then, since 
( f , - f , , )  ~ c(2-; , t) ,  

IlL --fmllt < C + IlL -frai l , -8, ,  < 2e.  [ ]  

The following Lemma is used here and also in the next section. 

Lemma 6. Let/3 satisfy 0</3 < a / 2 ;  let - oo <a  <b  < oo, and let U be a subset 
of C that satisfies: 

(i) [I t f f - f l la ,  b---~O as r--~O,f~ U. 
(ii) U is totally bounded in A~_a,b_ B and also in Ab_a,b+ B. 

Then U is uniformly shift continuous in A~,b; i.e., (i) is satisfied uniformly. 

Proof It follows readily from conditions (3), (4), (5) that for any r, I~l </3, and 
with/3 as specified, 0 < / 3 < a / 2 ,  

IIf[l~-~,~-~ < Ilfll~-B,b-B + gllfllb-z~,b+~. (4) 

For all f ,g  E U we define 

d(f,g) = I l f -  gll~-~,b-B + Kit f -  gllb-~,b+B" 

d ( . ,  • ) is a metric on equivalence classes of functions in U; call the metric space 
so defined, U. From hypothesis (ii) it is easily seen that /) is totally bounded. 
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Hence, for any • > O, there is an •-net of points wi, i = 1 . . . . .  N(e), for /~. 
We now have 

[ [ t~ f  -- f][a,b < IlL, f - -  t~wi l la ,  b + IIt~w~ - willa, b + Ilwi -- f [ la ,b 

< Ilf-- wil]a-~,b-~ -t-IIt~wg - w~ll~,b + Ilwi - - f l l~ ,b  

for any w i. Choose z small enough that I l L . w e -  will~,b < e for each wi, i =  1 . . . . .  N, 
a n d  also that [~'1 < ft. Then for a n y f E  U there is a w~ such that 

t l f - w i l [ a - , , b - ,  < d(f,w,.) < c 

and, 

[If-Wi[]a,b ~ d( f ,  wi) ~ c, 

so that 

[It~f -- f[la, b < 3C. 

Note that the proof is valid for a = - oo as well as for a > - oo. [] 

Proposition 5. For f i xed  a, b, - oo <a < b < oo, let M o C C be a set of functions 
that vanish outside the interval (a, b). Further let it be required that M o is totally 
bounded in every As, t with a < s < t  <<,b. Then if  {As, t) is tapered and the As, t are 
shift-continuous, the shift-invariant set M = { L~f : f E M o, • E R } is totally bounded 
and shift-continuous in each A t. I f  C has property ( S)  a nontrivial M o satisfying the 
conditions is guaranteed to exist. 

Proof There is no loss in generality in assuming a = 0, so that the functions in 
M 0 are supported in [0,b]. We show first there is ~,>0 such that Ilflls,,-<~' for all 
f ~ M 0 and all s, t, - oe <s  < t < oo. Suppose to start with that b > a  and partition 
the interval [0,b] at the points (0 ,a ,2a  . . . . .  ka,b) ,  where a ~>b-ka  >0.  Since M 0 
is totally bounded in each of the Ai~j~ and in Ai~,b, where i < j  are integers 
between 0 and k, there is a constant 7' such that the norm of f in each of these 
spaces is less then ~,'. Then by conditions (3), (4), (5) it follows readily that 
[Iflls,, < (1 + K ) y ' = y  for all (s , t)  satisfying 0 < s  <t  <b.  Since each f vanishes 
outside (0,b), condition (1) implies Ilflls,, <~' for all finite s , t , s  <t. If b <a ,  the 
same result obviously holds. It is then immediate that M is uniformly bounded 
over all As, t. 

We show next that M is totally bounded in each As, t. Since L t M =  M,  it is 
sufficient by Lemma 4 to show that M is totally bounded in Ao, b. Consider a 
sequence ( f ,  }, f ,  E M. Each f~ = L, f~ with f~ E M. If there are infinitely many r ,  
with %1 >b  the corresponding f ,  trivially form a Cauchy subsequence in A o b; in 
fact each f ,  in this subsequence has []fn II0,b =0. If there are only finitely many % 
with I .1 >b  then there is necessarily a subsequence (z l ,  } with 1-1,~z in [ - b , b ] .  
There is then a subsequence (f2,} with ('r2n } a subsequence of {~'l,} such that 
(f~, } is Cauchy in Ao, b+ , if ~- < 0 or in A,, b if • < 0. Let it be understood that for 
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what follows n, m belong to the second subsequence of the integers. Then 

IlL--fmllo, b = I I Z J n  - Z j "  llo, b < IIt~o-~f" -- f ' l l~,b+~ 

+ IIt~m-~f~, --f'll~,b+~ + I1£ --f~ll~,b+~" (5) 

where - b  < z < b. We recall that each f,' vanishes outside (0, b). Thus the third 
term is equal to IIf~-£,ll0,b+~ if ~" < 0 and is dominated by II£--fmll~,b if "r >0.  In 
either event, there is N 1 such that the third term does not exceed e > 0  for 
n,m ) N  n. 

Let N 2 be such that I % - z l  < a / 2  for n >~N 2. Then the first term is equal to 
Z ! t • • ! f • II ~o-~£-f~,ll-~/2,b+~ if I"<0 and is dominated by IIt~ -~f'-£1l~ b+~/2 If "/'>0. 

It follows from the hypotheses that M o is totally "bounded in the spaces 
A_~b+~_~/2 and Ab+~_~/2b+,+,/2 , for - b < z < 0 ,  and in the spaces 
A~-~/2 b,Ab b+~ for 0 < r  <b. q~fien 1or m,n >IN 3 >IN 2 the first and second terms 
of (5) clo not exceed e by Lemma 6, uniformly in f,~. Thus for m,n ~ max(N1,N3), 
IIL-fmll0,b < 3c, so {fn} is Cauchy in Ao, b. 

From Lemma 5, it follows that M is totally bounded in each At, and from 
Proposition 3 that M is shift-continuous. 

If C has property (S) one can take M o to be a totally bounded subset of 
[a, a + a], then M o is totally bounded in each As, t, a < s < t < a + a. [ ]  

Remark 4. It is easily seen that no A t can contain a totally bounded 
shift-invariant subset which contains a function not equivalent to zero and with 
support in a finite interval. 

This fact plus the conclusion of Proposition 4 suggest that A t spaces are not 
satisfactory as input spaces--at  least they cannot meet all the criteria stated in 
the Introduction. Thus any irregular family of spaces {At} is not suitable as a 
family of input spaces, and in particular no Lp-space, 1 < p < oo, is suitable. 

On the other hand, any family {As, t} that is shift-continuous, tapered and 
has property (S) will yield a suitable family {At} by the preceding Proposition. 
Although the requirement that the family {As, t} be tapered has not been shown 
to be necessary for the conclusion of Proposition 5, the preceding results give 
some evidence that something like this property is needed for the kind of system 
structure desired. Indeed, the property of being irregular can be interpreted as 
being very strongly non-tapered. Some further discussion of what tapering seems 
to mean is given in the next section. 

The question as to whether the spaces {At} are complete or not is largely 
irrelevant for our immediate purposes. Completeness is only needed for 
construction of examples involving limit processes, as in Proposition 3. 

One can stipulate conditions on the class of functions C so that if the spaces 
As, t are complete, then A t will be complete, but this is not done here. 

III. System Trajectories 

Let (As, t) be a fitted family of normed linear spaces with bounding space A. U 
is a subset of A with the properties: (i)L t U =  U; (ii) U is totally bounded in A0; 
(iii) [ILhu--u[10~0 as h ~ 0  for all u E  U. Sufficient conditions on {As, t) for the 
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existence of such a metric subspace U are given in Proposition 5. Hypotheses (i) 
and (ii) imply that U is totally bounded in each A t and each A s ,  t and is bounded 
in A; (i) and (iii) imply shift continuity with respect to any II " IIs,, o r  I1" I1,. U is 
the input space for a system (U, Y,F). We denote by U t the metric subspace of 
A t defined by regarding U as a subset of A t ;  thus (see preceding section) an 
element u ' E  Ut can be regarded as an equivalence class of elements in U, where 
u 1 ~ u 2 means II u~ - u211, = 0, or alternatively as an equivalence class of functions 
in C, where again f l a y 2  means Ilfl-f2ll ,--0.  

Let {Bs,t} be a fitted family of normed linear spaces with bounding space B 
and with the property that II LhY--Yllo~0 as h ~ 0  for all y E B. Henceforth, to 
avoid confusion, we use the notations 111 "llls, , , l ll" II1,,111" III for the norms in 
Bs, t, Bt, B, respectively. B is the output space for (U, Y ,F) .  We also use the 
notation Yt = Bt. 

F is a map from U into Y= B with the properties: (a) if u~,u2~ U satisfy 

I l u ~ - u 2 1 1 , = 0  then IIIF(uO-F(u2)lllt=O; thus F induces a map F t from Ut into 
Yt = Bt; (b) F, is uniformly continuous and bounded for each t. We refer to 
(U, Y, F)  as the global system and (Ut, Yt, Ft) as a truncated system. 

The condition (a) on F forces F to be causal, but it also imposes a further 
restriction. In general it is possible that two distinct elements u~,u2E U can 
correspond to the same element of A t and also to the same element of every A s 
for s >i t. Heuristically speaking, u~ and u 2 are distinct in U because they differ in 
the remote past, but they do not differ in the future. An arbitrary causal map 
from U into B could carry u I and u 2 into different image points in B t and thus 
not even generate a map from Ur Thus, condition (a) is part of the requirement 
that F not be too sensitive to the remote past. The continuity condition Co) 
strengthens this requirement. 

If F has bounded finite memory this subtlety need not occur. In [1], for 
example the spaces are set up so that if a causal F with bounded memory is 
continuous and bounded from U into Y, ~, is automatically well-defined and is 
also continuous and bounded. 

The map F t : Uo~ Yo is defined by* 

Ft(u) = L, Ft(Rtu) ,u  ~ G .  

Each Ft E ~ (Uo, Y0), the Banach space of bounded continuous maps from U0 
into Y0 with norm: IIFtll=suPulllF,(u)lllo, u ~ U o  . A s  t runs through the real 
numbers, the mapping t ~ F  t describes a trajectory in ~ (U0, Yo)- 

Proposition 6. With ( U o, Yo, Ft) as specified, the trajectory t---) F t is continuous. 

Proof. 

liFt - F~+hl[ = sup IIl(F~- Ft+h)ull]o 
U 

= sup [llZtFtRtu -- Zt÷hFt÷hRt÷hulllo, u ~  Uo. 

*The notation R t = L _  t is used here. 
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We note first that the supremum in the above expression can be regarded as 
being over all u E U, since each element of U is a member of an equivalence 
class defining an element in U 0. Second, by the causality of F and the definition 
of F t, 

[[[ZtFtRtu - L,  FR,  uII[o = 0 

for all t and all u E U. Thus we can write 

liFt - Ft+hl[ = sup I l lL t fR tu  - Lt+hfRt+hull lo,  u ~ g .  
u 

Then, 

lift - Ft+h] [ -<< I + II, 

where 

I = sup [[ILtFg, u - Lt+hFRtulllo 
u 

Ii = sup ][[Lt+hFRtu - Lt+hfRt+hU[[[o. 
g 

Since U is shift-invariant, 

I = sup IIIZ, F u -  t,+hFurl[o = sup [ l I F u -  thFull l t .  
u u 

F(U)  is totally bounded when regarded as a subset of any B s since U is totally 
bounded in A~ and ffs is uniformly continuous. Hence by uniform 
shift-continuity (Lemma 6) I--->0 as h--->0. 

II = sup IHFRtu - FRt+hulllt+h < sup [[[FRtu -- FRt+hul[lt-~,/2 
U u 

+ Ksup IIIFRtu - fRt+hulllt+~,/2 
u 

for [h[ < a / 2 .  Consider the first of the two terms bounding II. Again by uniform 
shift-continuity 

IIR, u - R , . , . h u l l , _ , ~ / 2  = I l u  - Rhuil_,~/2 --> 0 

as h ~ 0 ,  uniformly for u E U. The uniform continuity of fft-,~/2 then gives 

sup I[]FRtu - FRt+hull[t_,, /2 ---> O. 
u 

The second term bounding II is treated in exactly the same fashion. [ ]  
It is easy to construct examples of systems for which a truncated system 

trajectory is not continuous when various of the hypotheses of the preceding 
Proposition are not satisfied. We give one s impleexample  for which U and Y 
are shift-invariant and shift-continuous, and each F t is continuous and bounded. 
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U is totally bounded in each As, t for finite s, t, but fails to meet the conditions of 
Proposition 6 in that it is not totally bounded in A t. 

We take A~, t to be the Lebesgue space L~(s, t), with real-valued functions, so 
that A t is L I ( - o o , t ) .  U consists of the function u o and all its translates, where 

Uo(t ) = 1,0 < t < 1 /2  

-- 0 otherwise 

Clearly U satisfies the conditions mentioned but is not totally bounded in A 0. 
The B~, t are also Ll-spaces of real-valued functions. If ( t - s ) <  1, B~, t is 

Ll(S,t); if ( t - s ) ~  1, Bs, t is L l ( t - l , t  ). Thus Yt=Bt is also L l ( t - l , t  ) (see 
Example B). The input-output map F is defined by 

[ F ( u ) ] ( t ) = O , - 1  < t  < - 1 / 2 ,  = ~_~ 2n/-"+2 nu( s )ds , -1 /2  < t  < 0  
n = l  - - - n  

for the interval ( - 1 , 0 ] .  The defining equations are translated by k for the 
interval ( - 1  +k,k], k an integer. The infinite sum is just a notational 
convenience, since for any u ~ U at most only one term of the sum is nonzero. 
Obviously F is causal, also [F(u)](t) .<< 1 for all u E U and all t, so that 

IIF, II = sup [ l lF(u)l l l ,  = 1 /2 .  
u 

is continuous on Ut, although not uniformly so of course. 
We now have 

I[Fh - -  F0l f = sup [IILhFRhu - -  Full]0 > 1 / 4  (say) 
u 

for any [hi < 1/2, since for an arbitrarily small h some u far enough to the left of 
the origin will yield [F(u)](t)= O, - 1 /2  < t < 0 but [F(R h u)](t)= 1, - 1 /2  < t ~< O. 

Remark 5. This example illustrates how difficulty can arise because the 
input-output map has "too much memory." If F were defined as it is above 
except with a finite sum so as to have bounded memory, the trajectory would be 
cont inuous--or  if the "divergence factors" 2 n were eliminated the trajectory 
would be continuous. 

It is not claimed that the hypotheses of Proposition 6 cannot be weakened. 
However the theorem invokes .only what seem to be natural hypotheses. It 
includes the trajectory continuity results in [I] and [2] and is applicable to a wide 
variety of normed linear space topologizations. 

A theorem of the type of the above is of interest, to the author at least, for 
two reasons. First, a time-varying system that fails to have continuous 
truncated-system trajectories shows a fundamental type of instability. It 
suddenly changes its mode of operation. If one is devising a mathematical model 
of a real-life system, he should at least be careful not to introduce such possible 
instability artificially when there is no evidence such behavior can occur in the 
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real system. If such behavior can occur, that is an interesting fact in itself. 
Second, the continuity of trajectories is one essential requirement for the 
evolution of the system to be determined by a continuous semigroup of linear 
operators; i.e. for the system to have the hyperlinear, hypertime-invariant 
property mentioned in the Introduction. The other requirement is that the 
trajectories "behave like dynamical system trajectories," i.e. do not cross 
themselves or each other, do not split, etc. We conclude by establishing 
conditions for such a semigroup. This is done in essentially the same fashion as 
for the special case in [2]. 

Let U and Y satisfy the conditions of Proposition 6, and 9(~ be a set of maps 
F:  U ~  Y each of which satisfies the conditions of Proposition 6, Note that the 
set ~- of all F that satisfy these conditions is a linear space. Let cAlL = V(~) ,  the 
linear span of ~ in ~-. The mapping ~r t defined by "ntF= F t is linear on ~, and 
we put M t=~rt(cSqL), t E R .  cAlL t is a linear subset of the Banach space 

(~to, 20); its closure in ~ (~to, 20) is denoted ~--~,. 
Now suppose the following condition is satisfied. 

(SG) For F,T~C/)]L, if ~rtF=~r~G for some t,s>O, then ~'t+aF='n's+a G for all 
a > 0 .  

If H ~ ~Lt, let 

~,-IH = (FEg]L  :~r,F=H). 

Define an operator O(t,s)GZL,--->G2ffC,, 0 < t <<. S by 

O(t,s)H = ~r~o~rt-lH 

O(t,s) is well-defined and linear. Now suppose that H E ~'C t and also H E c)lL,+a, 
a > 0. Then H = ~rtF= rrt+~G for some F, G ~ ~'C. Thus, for s > t, 

O(t,s)H = ~rsO~rZl(~rtF) = TrsF 

O ( t + a , s + a ) H  ow -1 = ~',+a t+~(~+~G) = ~,+aG. 

By condition (SG), ~rsF= ~rs+aG so that 

O(t,s)H = O ( t + a , s + a ) H .  

Now define 0(z) by 

O($)H = O(t,s)H, s = t + "r,.r > O,t >>. O, 

for all H such that for some t ,H E GZL,. The calculation just made shows that 
0('r) is well-defined, because if more than one pair (t,s) satisfy the conditions 
they all yield the same O(t,s)H. The domain of 0('r), for any ~>0,  includes 
tO t>09TC,. This may be extended by linearity to include ~gL+ -- V(U ,>_.0sO]L,). The 
family (0(r) ,r  > 0} is a one-parameter semigroup of linear transformations on 
9L+. If the 0(~) are bounded linear operators (this amounts, of course, to 
requiring the trajectories to vary continuously with respect to an initial point) 
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they may be extended by continuity to ~ + ,  the closure of ~DL+ in ~ (Uo, X0). 
Then we have: 

Proposition 7. Let U and X satisfy the conditions of Proposition 6. Let ~ be a 
class of maps F: U---~ Y that satisfy the conditions of Proposition 6, and let ~3~ also 
satisfy (SG). Then if the 0(~:) as deft'ned above are bounded operators and are 
uniformly bounded in a neighborhood of the origin, {0(l"),z_>0} is a strongly 
continuous semigroup of linear operators on the Banach space ~+.  

Proof There is nothing remaining to prove except that { 0(~-), ~" i> 0} is strongly 
continuous, but this follows immediately from the continuity of the trajectories 
(see [11). []  

The semigroup 0(r) generates the truncated-system trajectories for all the 
systems in ~ and thus gives the prediction for future system behavior. As in any 
dynamical system theory, prediction is possible only because each "state" of the 
system is a point on a trajectory which is distinct from all other trajectories as 
time is increased. The role of state is taken here by the truncated system map Ft; 
the condtion (SG) assures the proper trajectory characteristics. The fact that 
0(T) is linear comes about, of course, because (SG) is required to hold for the 
extension of Tr t to V(~).  Thus the existence of the semigroup (0(~-) depends on 
genuinely restrictive conditions, as must be expected. However, it is implicit in 
the results of Section 2 and Proposition 6 that getting the semigroup to be 
strongly continuous is pretty much a matter of choosing suitable spaces for the 
system model. 

Some further results are obtained in [1] on the existence of the strongly 
continuous semigroup as the finite observation interval length is changed, and 
also some results on approximation of trajectories. One would expect analogues 
of these results to hold in the more general case treated here, but no effort is 
made here to investigate this. 

Appendix 

Proof of Proposition 4. We construct a function h -Y~, = oh~ which has the stated 
properties. The functions h n are defined by 

h. = L~f~ (A1) 

where the numbers 3. and the functions f.  are as specified below. 
Let a > 0 , K  >/I satisfy condition (5). By property (S) there are functions 

f . ,n =0, 1 .. . . .  which satisfy the conditions: 

(-°) f . ( t )  = O , t ~ I n  C ~ , 0  (A2) 

ot ~ IlL{I-.+,,0 ILL{10 1. (A3) 

The numbers 6. > 0 are chosen large enough to satisfy the following conditions 
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for all g E G(2 + 2K, 0). This is possible because {As, t ) is tapered. 

81:81 > 2~, 

II gl lo-  II gll-~,.0 < 2-~ 

82:82 > 81 + 2a 

II gl lo-  II g[I-8~,o < 2-2 

II gll-~, - I1 g [ ] -~ , -~ ,  < 2-1 

83:83 > 82 + 2a 

II g l l o -  II g l l -~ ,o  < 2 -3 
It gll-~,  - II gr l -~ , - e l  < 2 -2  
II g l l - ~  - II g l l - ~ , - ~  < 2 -  

etc .  
Now, for m < M  <N,  

N N N 

II ~ h.ll-8. < ~ Ilhnll_sm--- ~ IIt~of~ll_sm 
n ~ M  n = M  n = M  

But I l tn.LII ,  = IILll,+sn < K  for all t, hence L~oL ~ G(2+2K,0)  and 

[Itnof~ll-no,- Ilt~oLll-~o,-Sm < 2 - ("-m)  

Since 

IILs.LII-~o,-~ = 0, IIts.LIl-~m < 2-("-m). 

Thus, 

N N N - m  

II ~ h.ll-8~ << ~ 2--(nlm)= ~ 2 -p 
n = M  n = M  p = M - m  

which approaches zero as N, M ~ o ¢  with m fixed. Since A _~  is a Banach space 
h exists as an element of A_8~ for each m = 1,2 . . . . .  It follows readily that h 
exists as an element of each At, t < O. 

Furthermore, 

Ilhll-~m < ~ Ilhnll-sm < 2 - n =  2 
n = 0  n = 0  

for all m. Then, if t < 0 does not lie in the support of one of the h,, 

Ilhll, < Ilhll-,m for some m. 

If t does lie in the support of one of the h, the standard argument involving 
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condition (5) yields 

[[hll t < < 2 + 2 K ,  t < 0  

Hence, h E G(2 + 2K, 0). 
Now, for any r, satisfying I*1 <~ ,  
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IlL, h - h i [  ° = sup IlL, h -  hi[, /> IlL, h -  hi[,,, 
- ~ o < t < 0  

for any t~< t<O.  Choose n large enough that ~--+--~ < 2 '  and take [tl, t] to be 

the support of h n. L,h then vanishes on [tl, t], so 

][L~h- hl[t,,t = I[h][t , , t  = []Lsnfn[[t l , t  = ][f~l[-~+~.o = I. 

Thus L~h does not converge to h. [ ]  

References 

1. 

2. 

Received July 5, 1978 


