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CHAPTER I

INTRODUCTION

Much work has been published on the analytical treatment of
problems in steady as well as unsteady laminar free convection. Schmidt
and Beckmann, 1930,(1) s. Ostrach, 1952,(2) E. M. Sparrow and J. L.
Gregg, 1956(3) and 1958,(4) Finston, 1956,(5) Millsaps and Pohlhausen,
1958(6) and some others have obtained analytical solutions for steady
heat transfer from vertical plates and cylinders, each using a differ-
ent condition at the wall. Yang, 1960,(7) lists possible similarity
(exact) solutions for the steady free convection flow and heat transfer
as follows:

1. From a vertical flat plate with

a. Prescribed constant surface temperature
b. Surface temperature varying with any power of a
linear function of x.
c. Surface temperature varying with an exponential
function of x.
2. From a vertical circular cylinder with surface tempera-
ture varying linearly with x.

In the above four cases, the restrictions are imposed only
on surface temperature, however, for each case, one can find the similar
restrictions on the surface heat flux. Sugawara and Michiyoshi, 1951(8)
obtained approximate solutions, valid for small time, for momentum and
energy equations in the case of a step change in the surface temperature

of a vertical flat plate. Siegel, 1958(9) treated both the above case and that

-1l-



~of a étep change in surface heat flux; he used integral techniques on the
boundary-layer form of momentum and energy equatioﬁs° Their work was
followed by a few unsteady exact solutions in which siﬁilarity techniques
were used exclusively. Yang,(7) presents possible unsteady exact
solutions obtainable by the similarity technique. These are:
1. For the case of a vertical flat plate.
a. Unsteady free convection with surface temperature vary-
ing inversely as a linear combination of x and t.
b. Surface temperature varying directly with a linear
function of x and inversely with the square of a
linear function of t.
C. Unifbrm but unsteady surface temperature variation at
large distance x.
2, For the case of a vertical circular'cylinder, uniform but
unsteady surface temperature at large values of x.
'Tn all of the above cases, the cause of the transient is some
unsteady thermal condition at the wall. Chung and Anderson, 1961(10)
treat the case of free comvection from a vertical plate and a horizontal
cylinder in which Grashof number is an arbitrary function of time. The
.solution obtained applies when either the uniform wall temperature or
ﬁhe acceleration field is arbitrarily time dependeﬁto. Their analytical
approﬁch is a combination of similarity and successive approximation tech-
niques.
In recent years much attention has been focused on unsteady con=
vection heat transfer caused by flow oscillations. This can be achileved

either by mechanical oscillation of the heat transfer surface or the-
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super-position of a sound field on the external flow. Lighthill, l95h(ll)
calculated the response of laminar skin friction and heat transfer from
an oscillating arbitrary cylinder. Illingworth, 1958(12) treated the case
of a heated flat platé with zéro incidence in a low sﬁeed stream contain-
ing a progressive sound wave. His calculations are for a compressible

fluid with a potential flow of the following form

Ty 1Y — { ~ 4 M wi X ]
g Uy=100, i R , )|

,J
where M is the Mach number of the mean flow. He carries only two approxi-
mations and bbtains limiting - solutions for both large and small fre-
quencies. Kestin, et al., 1961(15) analysed the same problem for an in-
compressible fluid wifh a potential flow of the form

Uity = ;+ecO5w(_§_~t>] .

L

They calculate the first three approximations for the case of small fre-
quency . Considering the third approximation in their calculation,
they obtain the net change in heat transfer and skin friction to be nega~
tive and positi&e, respectivélyq

In the abéve two cases, the effect of gravity has been neglected
such that the heat transfer mechanism is only forced convection. Schoenhals
and Clark, 1962(14) present an analytical treatment of the effect of trans-
verse wall vibrations on free-convective flow and heat transfer from a
vertical flat plate. They carry the first two approximations for the case
of an incompressible fluid. Blankenship(l5> extended Schoenhal's work and

carried the third approximation for both finite as well as infinite plate.
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The problem of free=-convective flow and heat transfer from a vertical -
plate oscillating in its own plane and in the direction of a force field,
has apparently remained untreated.

A limited number of experimental measurements have been made
of the average heat transfer coefficient. Chamberlin(l6) oscillated an
open=-end vertical cylinder in air and found no noticeable change in the
free convective heat transfer. Spratt, EE_§£°(17) studied the effect of
strong sound fields on free convective heat transfer from a horizontal
cylinder and found substantial increases in heat transfer. Holman,
gE_g&.,(lS) introducing artificial oscillation in free convective flow
along a flat plate, found no change in the steady heat transfer. Soehngen
and Holma,n,(19) studying the effect of sound fields on free convective
heat transfer from a horizontal cylinder, conclude that for low intensi-
ties there is no change in heat transfer but for high intensities sub-
stantial increases are noticed.

In the present research, the problem of free=-convective heat
transfer and fluid flow from a vertical flat plate oscillating in ité
own plane has been given analytical treatment. An experimental program
has been conducted. Measurements of the mean coefficient of heat transfer
from an oscillating cylinder with large diameter have been made. This

system adequately models a flat plate.



CHAPTER II

THEORETICAL ANALYSIS

Statement of the Problem

The analytical model is shown in Figure 1. It consists of a.
thin flat plate extending from O to o in x direction and from -« to
+eo in z direction. The plate has a uniform temperature T, which
is greater (for g being in the =x direction) than that of the ambi-
ent at rest, signified by iﬂn . The plate oscillates harmonically in
its own plane and in the direction of an external (gravitational) force
field. It is desired to determine analytical expressions for the rate

of heat transfer and the wall shear stress.

Formulation of the Problem

The following assumptions have been made in the formulation of

the problem described above:

a. The flow is laminar - this will restrict the upper limit
of Reynolds number.

b, The boundary=layer approximations are valid - this will
restrict the lower limit of Reynolds number.

c. The properties of the fluid are taken to be constant ex-
cept fér the thermally induced density variations which
give rise to a buoyancy term in the momentum equation
(c.f. Reference 1)

d. Viscous dissipation and other compressibility effects

are neglected.



HEATED PLATE
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Figure 1. Analytical Model.
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Based on the foregoing assumptions and with respect to a reference frame
fixed to the plate, the momentum, continuity and energy equations, and

the appropriate boundary conditions are:

EL U U \fﬁi, 40 1
at+uax+vb;}_>32+698}+dt (1)
u(x,0,t) = vix,0t) = 0

U(X,00, ) = UCE)

ou AU -

Soray <o @)
40 )6 de 6

5 t U + UV = (3)
P} X ,}01 ayz

@(K, O)t> = 8W

O(X,00,L) = 0

The same formulation would be obtained for a fixed plate in an oscillat-
ing potential flow. This fact has been demonstrated in Appendix I.
Equations (1), (2), and (3) must now be solved simultaneously for u, v,
and 6. Considering that a similarity solution does not exist¥* and Equa-
tion (1) is nonlinear, a linearization process must be carried out if
the problem is to be approached analytically. Assuming e to be a
positive number less than unity, the velocity of the potential flow

can be specified as

U(t) = ey Coswl (4)

* The possibility of a similarity solution, in its classical sense, was
investigated but no suitable transformation was found that would re-
duce the partial differential equations to ordinary differential equa-
tions.



where Up 1s assumed a constant independent of frequency of the plate
oscillation. The order of magnitude of U,, as a reference velocity,

is assumed the same as the maximum veldcity of steady free convection

at a distance x = f. Introduction of e into the expression for U(t),
is the first step towards perturbation of the governing differential
equations, which is a well=known technique of linearization. The quanti-
ties u, v, and @ are perturbed around their steady state values i.e.,

the case where € = 0.

‘Perturbation of the Differential Equations

Considering the nature of U(t) expressed in Equation (4), the

following forms may be assumed for the functions involved.

W(xsfsb) = uo(x)yﬂeut(x,y.;{i) +€&ua(>«>g>t) (5)
. 2
U(x,j>f>:’m(x)y) +59;(x7v;t)wr615(x)g>f> (6)

00 1) =6,(x,) FEO (x, 1) +€ 6, (x5, ) (7)

Substituting Equations (5), (6), (7), and (L4) into Equations (1),
(2), and (3), and arranging according to the powers of e and neglecting

terms of the order of &3 and higher, results in
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First Approximation, €©

o, o, XU
o*g*;'r"l/; 3 ﬁg@ ‘f‘)) a
(8)
Uo(%,0) = 15 (%,0) =0 5 Up(X;00) =0
U, IV, |
—_— —_— =0
T + 32’ (9)
uaeo 9@ - 960
° X 3'3 92’
(10)

B (X,0) =0y 3 Gol(X,00) =0

The above equations which are the formulation of steady laminar free con-
vection from a vertical flat plate, have been solved and tabulated for

eight different Prandtl numbers by Ostrach.(g)

Second Approximation, el

* *
—‘)E{ - U coswt ,9)";' + 1 i;’ LR
(11)
* JZM*
1
33 'U’ /3‘36 93?_ =0
* * *
u(x,0,t) =% (x,0.L) =0 ; Uy (%0, L) = U, Coswl
(12)

x
IV

;“4
2 +T3"‘0
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6, e o, a6, a6, X Ja, ¥
A TN L Il R 1) b
at'f‘ﬂax +U:3'J agyz+axu1+33w-o
(13)
* %
81(X,0,t)=@,(x;°°)t):0
Third Approximation, @
Uz My U, Uy | U, I
5E T Y 3 +~ax u?_+?/;-—9—7—+ 7 Jéw))—;f—
* ,)u* ou
1 o
ﬂg@z_+u1 *a;—'f“'l/; —g-j*“ =0 (1k)
Uz(x,o,t):?fz(x)o)t):’
PLLYS pNIP
ox g T (5
36, 36, )6, 36, 26, ‘6,
b T T TR TRy T by RPIT
£ 0, * 26
U ! 21 -0
1 U 33 (16)

62(x>09[) =0

In all the above equations, uf, Up, Qf and 6o are functions of time t,

as well as x and y. If solutions are sought for large values of time
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where the effects of initial transients have died out, the initial con-
ditions become immaterial and the time dependency of the functions may
be predicted. The periodic term Uy cos wt appearing in Equation (11)
suggests that all the first approximation functions are also time wise
periodic functions with the same frequency . In effect, the solutions
thus sought will be steady periodic in nature.

For mathematical convenience, use is made of the imaginary ex-

ponential functions in the following manner.

cwl » _
U(t%:G{{cer ){:eUac@smt
g " . i((r i
tﬁ(x)g)[)::&@{iM(ny}c ) ? S
- (17)

* i i:UVL )

U g i) W[ wpe o
* " ( twl
6, (.0 =R {60y } ;

where G& denotes the real value of the complex quantity‘in the brackets.
The new functions wuj, vy and @7 are now complex quantities and inde=-
pendent of t. Substituting (17) into (11), (12), and (13), and observing
that the symbol da,appéars in front of every term, it is concluded that
since G% is a linear operator (the sum of real values is the real value

of the sum), it can be dropped out of the equations. All terms are now
linear in el®t which can also be dropped out. In this manner, time
dependency is omitted from the differential equations and time-independent

equations and the boundary conditions are obtained for the second
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approximation

duy 9‘1{1 L)U\ QU
ca(uy=T,) +u, 50 + % 3} S a} Yy -
36 9 Ll1 -5 (]_8)

i

MJX,O):'U}(X,O):O 3 u,(x,m>:[L

oWy X | |
o 2 = 1
x Ty 0 (19)
00, 2 6 2 &
LD @1 + W, —— s e L
° X °33 331
26, b
- W, + \f)_ém v, = 0 (20)

JUs dUz | U, AU, | ot
G ThTI Ta T y Tay R
>2L'\a S t“mt‘ fam Lu)t?
/536?_—»«5?—2 ‘,w&l me Ry j-— (21)
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The terms on the right of Equation (21), can each be reduced into a

time-independent term and a harmonic term in the following manner.

twl ‘ \
0{{{:\18 J)— oo L\,RCOS wZﬁ - b{”f‘ﬁthwt 2
twl
6{ Ve = CoSwl — v . Sinwl
1 1R " 11~

where u and u are the real part and the imaginary part of u
1R 1I 1

respectively. vqigp and vy, similarly, correspond to the real part

and imaginary part of the complex quantity vjy. Then,

L : N
(et pfowm ot Uk ur
(Rlu,e R e | = U3 x Cos ol

éu_,l;

1y S';Y\';wt - (2la)

U

Ju Ju \ |
B ATE Al 1R . .
g% 1 Y3y ) Sinawl
Considering that,

.2 ,

Sinwl = ?(1-Coszwf)

cCoswl = ;(1 + CoSawl) 5
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Equation (2la) reduces to

d X 2 IR 2xX

@.{’418“0?} G{{ ?,&eicol'} =1 (u ﬁf‘g_ Qu”)

iR U Ui
7 {(M,KT Mir—s-;-> COSZLUZT -

AL(”; QM’R ;
(U 555 + iy S558) Sinzwl

This can be further reduced by the use of the following identities

-y U d Uig 2 Wiy
o T =Mt )

and

3'/(1 Ziwt _ QU\R 9
(R{u,_ﬁ_e % = (a,-\m-Ti._-u, ».M_v-)Costh-

auu 3“1&
(um T t Uy )Samawf 5
to its final form
(}{{u,e }R{%e } =

———

1 — JUy )lM \ 3M1 Zi(.L)[:.
T Sorw S Ringee ,

(21b)

o X
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where the superscript bar (—) denotes the complex conjugate. The

term

)
(21c)
4 40 34 %-)3 ) PRI 3y
Substituting Equations (21b) and (2lc) into (21) results in
2
Mg e AU, Uy Al ) U,
o Tk Tox et a;} *“}'"5” v, =V "’;é”
(22)

2wl
3(5}6? = W, * ﬁ{u&,, e } )

where

/ 33 + Y ay ) 2

u1 =

and ,

1
H“ :—-Z—-((Ai"";;(“ +'lf1' "53‘"‘) .

Inspection of Equation (22) reveals that, if it is to be satisfied

uniquely, for large values of time, then the quantities Up, Vo and 92
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must have the following forms

Al el o] 2
Uy (%, 95 T) = Uy ;,u\&m,«\\;€ \
and,
-/ i P \ llU/
L) = (st iy mln e (25)
and, Lol
6,069,0) = 6, 7) lfx]@a J\@ g

in order to comply with wujg + @{{ulleghbt} in Equation (22). It is
obvious from Equation (22) that unless u;g 1is identically zero, the
functions wup, 8o and vo cannot be purely harmonic. Conditions of
Equations (23) are such that Equations (15) and (16) are also identi-
cally satisfied in time domain. Substituting Equations (23) into (1),
(15) and (16) and separating the terms with the symbol (K, and without,

the following sets of equations are obtained for the third approximation.

a. Non=Oscillatory Components

?
()L{Zo t-)uo ()L 2() ) lv , (‘(Z.c
T e T Rem300,,m 0

t 91 ‘—Q(M /_S_K1 "‘3‘\1 _
H(“’ax““””ax”: iy 133) o) (2k)

U (X:0) =95 (%,0) = 0
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A(;;o T );;o =0 - (25)
uo‘)ae;" + 9365" -a 3:;" +uzo-‘§%— + 7, i;

(u1 361 + Uy 9;): + 1 9;1 733 ) =0 (26)
6,,(x,0) =0

b. Oscillatory Components

U U, u
gl B e B o
Ay g 2y
B0+ 5 (U= > + 5 )= 0 (27)
Uy (X50) = Uy (%,0) = Uy (X,00) = 0
3uz| 9V3|
-'- —
X 2y 0 (28)
; 2, 36s _, 38 9 26,
2Ltwé, t U, + -a +Uyso+ Y, t
2 ° 2 x| e
A %
| 39' 36’
T (W5t Uh=sr)= 0 (29)
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Solutions of the Differential Equations

Analytical treatment of Equations (18) - (20), (24) - (26)
and (27) - (29), in their present form, is very unlikely to produce the
solutions desired. It is, however, possible to obtain solutions valid
for limited ranges of some of the variables and parameters involved.
One such parameter, is the frequency w, It is mathematically possible,
for large values of this parameter, to evaluate the order of magnitude
of the terms in the différential equations., This would suggest that solu-
tions be attempted for two regions, nemely, the large w region and the
small ® region. In each of the above mentioned regions, it is sometimes
necessary to subdivide the already limited range of w, into subregions
of small y and large y. This subdivision, however, does not affect
substantially the accuracy of the results obtained for heat transfer and
shear stress at the wall, considering that these quantities themselves

are evaluated at the wall.

Large w Solutions for the Second Approximation

It can be shown that in Equation (18) which is linear in uy

but nonhomogeneous,

" —%—;—‘ = O): (aUVz uJ )

when o becomes substantially large. Rewriting Equation (18) with the



-19-

order of magnitude of each term written beneath it, one obtains,

auq 3“1 o U, guo 3“1
0 ax + 0 32 "5‘ LL1 33 )) 3 Z —_—

o) ) W) fw) o [Wa] fen)

Ll + U2t 6;6+ twl,

Comparing the linear terms and retaining the ones with the highest order

of magnitude namely [wuj], results in

2
Lwu, - i;; = 496, + twl, :

The nonhomogeneous terms, however, should be compared not to the linear
terms but to themselves. It is now physically obvious that since the
cause of transient (which produces ©7) is mechanical, in nature, rather
than thermal, Pgd®] may be neglected, for large w, compared to iwUs.

Therefore,

i

U (x,0) = o0 | (30)

u,(x,oo): Uo 9

is the governing momentum equation within the limits of the foregoing
assumptions. The solution of Equation (30) may readily be obtained in

the form

-3/
-€

> P (31)
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and furthermore, vi =0 from continuity considerations. Evaluating
the order of magnitude of terms in Equation (20), in the same manner as
above, one obtains the following

¢
C.(’U@1 * Moi{)%' + 'l/';‘g%]“ ‘“CL—%61Z - 36" _2@1

[{’U 61] [ 61] ["’1’/261] [”U 6, ] | '

Neglecting the terms whose order of magnitude is smaller than [w@l]
and considering that vj = O, one obtains the governing energy equation

and its appropriate boundary conditions for the second approximation as

2
. 2 6 6,
Lw@, - a2l = -
08, 72 U
‘ - (32)

61<X>0> = @1<xjoo> =0

The general solution to Equation (31) is readily obtainable, however,
the particular solution will involve the function Oo(x,y) which is
available in tabulated form and therefore cannot be operated on analyti-
cally. This may be overcome by approximating the‘exact value of 6,

by its tangent at the wall, for small values of y, in the form

36, \ .
6o<x’y) - 6W +( ;Bin)w~‘:;

then,
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A e o
Considering that (%—Q)W is independent of vy, égg expressed in

N
Equation (33) is now explicit in y and can readily be operated on

with respect to y. Then the solution of Equation (32), near the wall,

is

i/ tw

Q(&HJ = igi(éﬁ&s& a2(1_”%%?€ 5y ) 1

Qw rayox
G o, R s
oS CHEE DN

Away from the.wall (near the edge of the boundary layer), as Lighthill(ll)

2
points out, g_gl may be neglected compared to i1w®; and thus a solu-
N

tion is obtained for Ol(x,y) valid for large values of 1y, as

; UD 360
@(x,}) = Lw X

Small w Solutions for the Second Approximation

In the preceding section asymptotic solutions were obtained for
large values of frequency m.\ In order to estimate the range of validity
of these asymptotic expfessions, it seems essential to attempt solutions
that would be valid for the other extreme, namely small values of frequency.

When such solutions are compared with each other, it is usually possible
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to estimate, by observation, the vicinity of the point of transition of
one limiting solution to the other.

Solutions will be obtained for Equations (18), (19) and (20),
for the case of small values of frequency w, using integral techniques.

The integral procedure adopted in this work requires an inte-
gral solution of the steady state free convection. Although some inte-
gral solutions do exist in the literature for the case of steady free
convection (c.f. References 20 and 21), an integral solution was derived

using fourth order profiles both for temperature 6, and velocity u,.

2
Uy = V() 7 (=1)(2-1)
3

6, = Ow(h“?e}(l-?e}. )

where
_ 4
(el
-4
?e— 5 ’
and 2

Equations (36) already satisfy the appropriate boundary conditions,
second order smoothness on the edge of the boundary, and the following

conditions obtained from Equations (8) and (10) for y =0 (at the wall)
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and namely,

33‘2 ) ‘/33%

96
a(535), = 0
S
- Defining A = 6@/ 9, there are two unknowns to be found, & and A.

These will be found by satisfying the integrated form of Equations (8)

and (10) over the thickness of the boundary layer,

£ udy = 9“") +—0ifed3 ; | (38)
0
and -
d 360
'Iff u,6, o{g - > . (39)

0

The following value is obtained for &.

Yy
} (40)

b =5 [ A-1)

@gew
Here A satisfies

378 A (1.84-1)6(A) :-F:‘;'F 5 (41)
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where

py=Ld-Ld - s ¢
(42)
\ S A Ny
EB"'—-A+W3A s0q > A

The values of A have been tabulated as a function of Prandtl number Pr
in Appendix II. Figure 2 shows a plot of N’ux/(er)l/lL versus Prandtl
number Pr and a similar plot has been presented in Figure 3 for
umax'ﬁ/5é5;;1 . The agreement of these calculations with the exact
similarity solution (2) is very good for Prandtl numbers ranging from
0.7 to 200,

A somewhat similar procedure is used for obtaining solutions
for Equations (18), (19) and (20). Here it was found convenient to use

fifth order profiles for the functions involved. The result is

4 5 4 J
= 57 -47 + B(7-47 +37 )+
ng LUJB
(7+37-a7)+ 5(7—27 +7 (43)

_QQO_Wé 81(‘73 + aV; ~75>

YU,
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o _ U VPR
B T 51[76-‘/76 Rl S " )J ()

at 'y =% u1__ Ljo ; __%%L..
32
at y =0 u1:o ; Y M':—LwU ; (45)

where the last two conditions have been derived from Equation (18). On

the other hand, the temperature profile @7, satisfies,

at y =25 é% =0 | —g%?— =0
58
at y =0: 6, =0 —é—%:—.o ; (26)
3
_éfﬁ - i w ~29L J.

2y - Y

where the last two conditions have been derived from Equation (20). The
unknowns B and B; will be determined by satisfying the integrated

forms of Equations (18) and (20). The velocities vo and v] have been
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eliminated by the use of Equations (9) and (19).

o) 4y - agfe 4y g,
0 0

(47)
~{u uydy - oj%:{uoiy =0
iwfa,dy+a(i@' t‘dxf(ek'l-eu) 1= 0 (48)

Substitution of Equations (43) and (44) into Equation (47) results in

the following differential equation:

-1 3 . 33
| 7 d )
))Uoé 8"'2'“0"U,,‘v£ H<£> “/6;@W_B1(JS—[]2 ‘f“é—’é‘o““('woi“é“ > +
o 52 e 5
Wbl (-5 + 5B -5y +_3125%B 360 »UGZ B) +
S| a3 d ¢ 31
UOV;{ ,260;{;(3) t e “*"( B)— (49)

ﬁgev‘/ d (3581> + 17 LLU ol (g) +

I VA dx 40 Y dx

3780 Y dX

| iw "L(ﬁfﬁ)}:o ;

where ~T\—/’; - & '\/o(x)
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Equation (49) is the new form of the governing momentum equation.
Similarly, the new form of the governing energy equation can be ob-

tained by substitution of Equations (L43) and (L4L4) into (48), and

namely
. | . 2 2 -1
wnd 8 (5 v Al ) v e (08) B+
d . 3
:(;[Uozuwé + WD) 88 + T, S(8)66 +
| 5 o .03
~ Py Y(A)m‘iiﬁ B, + UQX(A%‘S%’—S n
.03
U, V) ‘-;“2 BJ -0
where
2 3
S(8) = 8 (F-Fe0rga-330)
! I | I | 2
2 3 y
3 | |2 [ >Z§é1
X(A) - A(“§-4‘+TZBA~—3'5A>
4 2 3
YO =0z b r gt =5 b)
S Y
2(8) =05 -550)

(50)
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Now, Equations (49) and (50) must be solved simultaneously for B and Bj.
However, before attempting this, new dimensionless parameters are intro=-
duced, for convenience, and equations are rearranged accordingly. The
independent variable x 1is replaced by the boundary layer thickness
5(x) and non-dimensionalized by using a characteristic length, 4. The

new dimensionless quantities are:

iy
$=7
2
n = 2&
Y (52)
2
890wl
m U,
By substitution and rearrangement, Equations (49) and (50) become
-1 . , 3
(|+<=<sz§) § F(GE + % eLf -4 N §)B =
4By
[(xzf+o<cﬂ_§)5,+a(§ J + (53)
-1 ) 2 3
°(3§ + O(SL_Qj -4, § §)
and
dBy ! ' 2 3
(1+8, L.Qf) + (8§ + B LE -8LE )8 =
| - oy dB ;3 o
_H[(/J)Bf +ﬁ7tﬂ>;€§" +</33) +ﬁ8L.D.§>B + (54)

6§3+59‘~ﬂ-f J ’
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where Q's and B's are functions of Prandtl number alone and are de=--
fined in Appendix III.

Since solutions are desired for the case of small values of
w, it seems appropriate to attempt a series expansion of B and B;
around their quasi-steady values (w = 0).

The quasi-steady case describes the case of a vertical heated
flat plate moving parallel and in the direction of gravitational field,
with a uniform velocity €U,. The two velocities will be additive and
increases are anticipated both in the rate of heat transfer and the shear
stress at the wall. This fact was the criterion for improving the pro-
files involved. The present profile for velocity wu; gives a friction
factor that when plotted against Pr, will cross the Pr axis around
Pr = 500. This will limit the upper limit of Prandtl number for which
the following solution will hold. The quasi=-steady friction factor and
Nusselt number are plotted versus Pr, in Figures 16 and 17 respectively.

In expressing B and Bl in their corresponding Taylor series

expansion, one can write

B(§>_Q): nl

B(i)ﬂ) _Q 351(§>O)

This assumes that B and B] are continuous functions of @ with con-
tinuous derivatives and that the order of differentiation with respect

’to Q and ¢t can be interchanged. By differentiating Equations (53)
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and (54), n times with respect to Q and setting @ =0. The follow=-

ing generalized equations are obtained:¥

(n 1 )
d B(§:0) d [ 0B(%:0)] _
°‘ﬂ§d§[ NG ] df[ 24" }
3 (n-2) (n-1)
NI | TERE 1 T
3 (nl>
oLf QB(f 0) = 1{ nixg € 5}1}5 0) + (55)
n n)
; “B,m of [aem]
2 G105
-1 3 /
Xono(.’»-% T g1n£°(5§ —Zgand,og ’

where  d; 3 is the Kronecker delta defined as,

¥ It is understood that 8(7) of any quantity is zero, when y < O and,

o7
the quantity itself, when 7 = 0.
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and

(n) (n-1)

dg{a&(ﬁ)o)] ronis,é dg{a B,(f;o)} _

> 20"
3 (” -2) n 1)
n(n- |)§ Sio(_ngazO) + niﬁb—f Bai‘gjn_O) +
- (n) -3 -l
43 ag’_ﬂ.w) ) _"%{ bon B § + gmi/jsf * (56)
(n=1)
9 B(§, )
i gy [ - el g {“a Bai =
VB, 0) = )'B(5,0)
Vl.[)’ >0 B ,0
oS T A T }

In order to satisfy Equations (55) and (56) simultaneously for all mn,

the n-th derivatives of B and B; with respect to Q, must have the

following forms,

(@)
0 B(§,0) _ o
aﬂn “Enxn§
(n)
a Bq(§)0> B . 2N-2
aﬂn ——%En%nf 2

where

1, when n is even

i, when n 1is odd
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When expressions in Equation (57) are substituted into (55) and (56),

powers of ¢ are eliminated from the equations for n >2 and general

expressions are derived for the coefficients of the series solution.

When n =0, 1 and 2, one should refer to Equations (55) and (56) and

solve the special form of these equations for the values of n<2.

These general expressions are:

where

- /qL, /\n—‘ "‘A3 >\h )

oy
by = 4 (1Y, A

S(C8, -G Aoyt Co }\n_2> + (58)

uf‘)
S
Y
n
<<
S
~ .
|
==
=<
=
|
>
P g
>
>
2
N
s

! 1
A, = - n{-1) {“r +a(n—|)o<”

A, = N (n-1) 4

v
Po
&
\O
~—r

A = 2(n=-1), + &, 5N

n
Ay == N(=1)

A5:2n+c<1 P



and

n 9
C1: —r‘(-,) !?_(Y\’“?>/3/IT/«$UJ
L
Ca_ n(n~l)/3;5
C,=(an+1)8 (60)
N
C”:—Y\/-i\‘-f_«’hm)ﬁ + A
\ 7 8’

2{n=1) + £,

I “

(
"

In terms of 7n and Ay, then, the'quantities B and By take the

following forms.

[E.C \:i o, 2" ;
B\§)J2‘> :) EV}TXV)§ - \O/o N LQ_X,S b
T
2 y 3 6
.& v £ + L AL . X (E +
2 20 s 3)
(61)
(29“‘ j{] 2h-2 | -2
N - _: N . S = -
B1(§99")— TT1L) [n /‘l/\hg - ”1()\°§ .
nN=o
I .
L_;- + = ¢+ ~‘ A Ev o
L R TRI A )

The coefficients 7y, and A\, have been evaluated for Prandtl numbers
0.757, 1, 10 and 100, using the University of Michigan IBM 7090 Digital

Computer. The first few of these coefficients are listed in Appendix IV.
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Comparison of the Two Limiting Solutions

The combination of €, Q, and n7 in the preceding calculations,

gives rise to two new dimensionless parameters which are independent of

4 and namely,

.X_
S wh
D
and
r'z
_ BY96w A

The quantities chosen for comparison are the frequency response of the

Nusselt number and the friction factor. These quantities are defined as:

= ln o,
7(; - %f[i\ - < Uo& ( arJ )W

For large values of frequency w, Nuy; and f7 are expressed as:

= 2 i
L SUs 1+2VPr 726, o ¢
NUy = 5 B (1P ) <bjax> -
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and for small values of frequency,

- _ Bl _ 1 - E £

Ao
N, = 21
(64)
_ 2V .
({; )u):o - SUO

The quantities in Equations (63) are complex whereas the ones in (6k4) are
real. Therefore, it 1s appropriate to normalize the quantities in Equa-
tion (63) with respect to their corresponding values in (64) and plot the
amplitude and phase angle of each quantity as functions of frequency w¥,
for different vaelues of Prandtl number.

5 One of the terms in Equations (62) is the steady function
(§;§§~W that can be obtailned from the numericel solution of Ostrach(a)

in the following menner. In Reference 2, ©, 1s expressed as

6=2¢6,H(1 >
where
-1/
7 =C J X ! ’
and Wy
296
c= ()
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Then it follows that,

26 oy o
L2\ = CO,H(0) X
(35 = co,Ho)

_S/LI

2
26 _ ) ! -
(__ng W—*TC%H“)X =
. 'y

After necessary substitution and rearrangement, the following expressions

are obtained for the normalized Nusselt number and friction factor fre-

quency responses.

4 -
NLM * 2
_l. = 0(“ w € , for large values of w¥
(Nu,)w_o
(65)
X n
= Z —=n ) W', for small values of w*
=) nl e
° N=o
/ e
! = Y w € , for large values of w¥
( ﬂ )UU=0 °
_ ) (66)
= L) Zny o lues of w*
= ¥ nt Sn , for small values of w¥ ,
(]
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where 0q7 1s a function of Prandtl number and is defined in Appendix
III. Defining Pr; @8 the phase angle of the friction factor and ¢y,
as the phase angle of Nusselt number and the amplitude of each quantity
by placing it between "absolute value" signs (| |), they can be ex-
pressed as follows:

(a) for large values of a¥

C@:#S

1

I ﬂ | _ 4 UJ*VZ
( %
Pocs (67)
]
%m,‘ =30
INLMI _— w*-1
- R
(Nu«,)mo
and (b) for small values of w¥
[o0)
&n+1 fnﬂ
(2n+1)l
-1 Z
(F = lon n=°
{ o)
1 X 2nh
2n
) e
Nn=
C (68)
/2
2 2
0o o0
MJ_ - 1 82n w*an + ansi w*M“
(£) % (zn)! (2n+1) 1



8

2n+|
AZH+_J___ (U* "
| C(ent) |
¢ = Lan 2: :
Nui )\ *2n
e -
oo (2n) ' (68 cont'd)
/ Ie
L. 2 5 2
IN‘MI — 1 J >\2V] w*zn + }\2n+1 :n+1 )
(Nuy), Ao L (2n)! (zn+1)l
- Nn=o n=o

Figures 4 and 5 show plots of amplitude ratios versus ¥ for Pr = 0.757.
This is the Prandtl number that makes A =1 and is the lower limit of
Pr in the small frequency analysis. Figures 6 and 7 show the variation
of phase angles with the frequency paramefer w*, In Figure 6 the two
limiting curves intersect at a frequency wg and in Figure 7 at wf .
These two frequencies, however, are identical for Pr = 0.757 where the
two boundary layers (velocity and thermal) are equal and different for
other values of Pr. Careful inspections of Figures 4 through 15 indicates
that the frequency wi is a good criterion for estimating the range of
validity of the two limiting solutions. It appears that 2 wg may be
used as the lower limit of the large frequency solution and 1/2 wg as
the upper limit of the small frequency solution.

Figure 18 shows that mg is a decreasing function of Prandtl

number. This is the most important conclusion drawn from the small fre-

quency calculations. This criterion will be extended to the large
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frequency solutions of the third approximation; this would eliminate
the necessity of carrying out a separate integral procedure. Therefore,

only large frequency solutions will be obtained for the third approxi-

mation.

Solutions to the Third Approximation

As it was demonstrated in Equations (23), third approximation
velocities and temperature consist of a term which is only a function of
x and y, and another term which oscillates harmonically with a fre-
quency of 2w. The oscillating component that integrates to zero with
respect to time, is of less importance compared to the non=oscillatory
component which contributes to the steady phenomenon of flow and. heat
transfer. It is this component that results in a net change in friction
and the rate of heat transfer. Therefore, attention is focused on these
components that are governed by Equations (24), (25) and (26). Solutions
are sought for large values of frequency and the region near the wall
which allow simplification of the differential equations. Substituting

Equation (31) into (24) and (26), gives,

auZ_Q. _ 9(’\0 r_%_q.z\q_ __%..uo Y sl 3(/\2_0 N
Lax F o e T 2 ! 2y Y20 ”j{j? f /j?ezo
S
g 620 3 @za c)@a ” )flo
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r 3620 - ._1..( 0 38.1_“ | T{ ,.9?1 > .
PP A



-57_

Tt should be noted that near the wall (small ¥)s

oo
Ho >0 ™ 2 7
U
u?_o>O g _3_)29" >0 9
06, 20
3% 2 ¢ S 2 ¢
A YA
U, >0 Y Yo 2 j P

where OO signifies proportionality.
Near the wall and for large values of frequency, the differential equa-
tions can be simplified by retaining only the highest order terms.

Neglecting terms of the order of y2 and smaller, the follow-

ing differential equations are obtained.

U

)) 33220 = "6962_0
(69)
W,,(x,0) = 5
and,

¥ 20
a%e-é% = 1'7("\1%9;’ + L\1-a—x'—

°1 (70)
6,, (x,0) = 0

Equations (69) and (70) plus the condition of the boundedness of general
solutions of the differential equations, are sufficient to obtain ex-

pressions for the rate of heat transfer and shear stress at the wall.
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The value of 67 (x,y) used in Equations (70) was expressed in Equa-

tion (34).
Defining
- _ X 9620
Nu&()x @w< 53 )W
and

_ , 9 QU
f,, = h‘gz(“-a‘?;—o')w )

the final results of the third approximation are expressed as:

_ 5 Pr Moy, :
U, = 52y HO v e (6% )
and, (71)
2 Iy 3
- _ 5 ' P (5'+ Plf) - ot y
%;o = 32v2 H (o) (I+—Pr)5 (G'X ) <}UX1

Figures 19 and 20 show the Prandtl number dependency of Néox and f20'

Summing up the results for large values of frequency,

. 2[(.uf
3 R{ Nu,, € } ;o (72)

and

- ( ‘wl d 2 2wl
f_{;Jré(R-l,e }1—6{’201—6@\{7{2'3 }
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Substituting each term with its corresponding expression and retaining

the first three terms, the following equations will be obtained.

_ H<o> p VPl ey oo T
Nu, = (Gr x) F+o T Cos(wl - L) -
2
i Pr ) EUo

Y ap 9| { ’%‘wf«zéux T

7= ZW(U,,X> (Gry) | Fo) + 7= (61) > 5 Cos(wl +--
_ 5 H'o) Pr(5+Fr) (G 1/?'(_u)_xz)v3<€U¢,X)a
28 (14 Pr )3 nd 5 ) ?

Where F(n) is the n dependency of the stream function in Ostrach's

2)

similarity solution( defined as

L/J(x,rz) = 4ycC x%F(V])



CHAPTER III

DISCUSSION OF THEORETICAL RESULTS

In the preceding chapter, the problem was stated, formulated,
‘and treated analytically. The differential equations were perturbed
for émall oscillations and the first three terms calculated.

The first term is the steady free convection for which exist
both numerical and integral solutions. However, an improved integral
solution was obtained which agrees very well with the exact solution in
‘the range of Pr from .7 to 200. According to these calculations, the
Prandtl number at which the thermal boundary layer thickness equals the
velocity boundary layer thickness is 0.757. This solution was necessary
for the integral procedure used on the second approximation.

The differential equations for the second term were solved
using the classical simplifications for large values of frequency. Ex-
pressions thus obtained for Nu; and fj, show that heat transfer lags
behind the plate oscillations by 90 degrees with an amplitude which de=-
creases with frequency, and the shear stress at the wall leads the plate
oscillations by 45 degrees with an amplitude which increases with in-
creasing frequency. The heat transfer is a decreasing function and shear
~stress an increasing function of Prandtl number. In the small frequency
region, the shear étress increases its amplitude with inéreasing frequency
and always has a phase lead. This is the same trend that it possessed
for large values of frequency. The heat transfer, however, experiences
an increase in its amplitude and possesses a small phase lead at the be-

ginning of the small frequency region. The phase angle after reaching a

-6p-
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peak lead, decreases to a lag for slightly higher frequencies. The
amplitude of heat transfer should also begin to decrease but the pres-
ent series solution fails to demonstrate this fact for Pr = O0.757 and
10. For Pr = 100, Figure 13, this decreasing effect does fall within
the rahge in which the series solution is valid.

As mentioned in Chapter II, twice the value of wz is a
good estimate of the lower limit of large frequency range. For an
eight inch plate at 200°F, placed in air at 80°F, the boundary layer
thickness at x = 8" 1is 0.17 inches, w§ = 51.5 and the critical fre-‘
quency W,y beyond which the large frequency solutions are valid,

can be calculated as
*x
C‘L)CFA =2y W, Lg\ = |5 Y’CLA/SE’C.

which corresponds to 16 cycles per second. Therefore the assumption of
large frequencies does not present too much of a restriction and can
cover a wide range of frequencies.

The perturbation procedure shows that the functions of the
order of 62, or the third approximation functions, must be composed,
each, of two terms, a time=-independent term, and an oscillating term.
Calculations were carried out only for the time-independent, or the
steady terms. The perturbation procedure alone predicts a steady change
in heat transfer and shear stress due to a purely harmonic disturbance
(plate oscillations). The question is, whether this steady change is
zero, positive or negative. The results of the calculations presented
in Equation (71) show that this steady change is positive for the shear

Stress and negative for the rate of heat transfer.
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Any steady change in heat transfer coefficient, whether it is
a decrease or an increase, will have valuable engineering applications
provided the change is substantial. Although perturbation procedure in-
volves small changes, it will be helpful to estimate the order of magni-
tude of these changes and compare them with relative intensity of the
disturbance and namely, e. For an eight inch plate at 200°F placed
in air at 80°F,

.
Gr, = 4.59x 0 > NU =29, 36
°X

and

——
(-

U = = .14 b /sec

®max

Taking € = 0.2 (this corresponds to an amplitude of 0.022" for a fre-

quency of 20 cps) the steady change in the local Nusselt number will be

2
€ Pda&zox = - 0004,

which is a decrease of 0.014%. This change compared to 20% is negligi-
ble. TFor all practical purposes, one may conclude that in the laminar
region the rate of heat transfer is not disturbed by the oscillations of

the plate.

It is interesting to note that the per cent decrease in Nusselt

number is only a function of Prandtl number and Egg . By definition,

Gl Aw P (74)

€U,
where A is the amplitude of plate oscillations. But by (74), —2 =
wx

i.e., the per cent decrease in Nusselt number is only a function of Pr

A
andv T .
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Per cent increase in friction factor, thever, is an increasing
function of local Grashbfﬁ numberkas well as Prandtl number.

Although the expressions derived for the rate of heat transfer
and shear stress ét the wall are restricted to narrow regions and approxi-
mate, they have the imbortant advantage of being in closed form. Further=
more, these expressions are simple and expiicit with respect to all the
parameters involved. This will best serve the study of qualitative be-

havior of the phenomenon in question.



CHAPTER IV
(

STEADY LAMINAR FREE-FORCED CONVECTION PHENOMENON

This chapter is based on a portion of the analysis in Chapter
IT herein discussed in detail. During the course of obtaining a solu=
tion for small values of frequency, expressions were derived for Nusselt
number and friction factor for the case of zero frequency. These ex-
pressions added to their corresponding steady terms are solutions to the
problem of steady free-forced convection from a vertical flat plate.
Figure 21 shows the physical model where U, is the free stream velocity
and could be in either + x or = x direction.

Since the quasi-steady solutions are perturbations around
steady free convection, the results discussed in this chapter will only
represent the effect of a small free stream velocity on steady free con-
vection heat transfer and will not cover the regions where forced con=

vection predominates. The expression for local Nusselt number will be

,/H fl/Li ) i
My = b (6 v b (6h) Rey o (75)
where
U X
Rex wu_b >
and

0.004375 A,
“o . 3
: N(rsa-q)

Values of Dj are tabulated in Appendix II. The second term on the
right of Equation (75) can be integrated over a finite length of the
plate giving the average change in Nusselt number.
'I/L, -1/L|
_ 4 S . 2 o 6

P73
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HEATED STATIONARY
PLATE AT TEMPERA-

TURE Tw>Tw |
FLUID AT

| TEMPERATURE Tg

U

Figure 21. Physical Model for the Zero-Frequency Case.
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The above expression will hold as long as

_1/2

(Grp ) Rey L D(P)

-1/2
where Dz(Pr) = (Bgoyx) / Uopey Das been plotted versus Pr in Figure

3, and also tabulated in Appendix II. For a gas, (Pr = 0.76), in free
convection, with Gr, = 108, a free stream flow with Re = 105, will
give rise to a change of 5.8% in the average Nusselt number - an in-
crease if U, is in + x direction and a decrease otherwise. The use
of Equation (76) is recommended for predicting changes in average Nusselt

number up to about 10%.



CHAPTER V

EXPERIMENTAL WORK

Introduction

An experimental program has been conducted as suggested by
the analysis of Chapter II. Before the final design of the test sec-
tion, a number of preliminary isothermal tests were made in water of
different geometrical configurations. The purpose of these tests was
to seek an experimental model that would closely approximate the analyti-
cal model of Chapter II. These visual studies were carried out on a
plate 1/16 of an inch thick and on a cylinder one inch in diameter. The
cylinder was oscillated once with its spherical end open and once with
its end projected through a large plate. It was noted that vortices
produced in the wake of the plate and the open=-end cylinder, would dis-
turb the flow around the test section. By introducing the large plate
mentioned above, these disturbances were eliminated. A slight disturb-
ance, however, was introduced at the intersection of the plate and the
cylinder but was of a local nature. Based on these observations it was
decided to use a cylinder, with a diameter many times greater than the
steady boundary layer thickness, and to project it through two large
plates one on each end, heating it only in a section away from the two
end plates.

All the experiments have been made in an enclosure containing
atmospheric air. Measurements were made of the mean coefficient of heat
transfer. For small values of velocity amplitude, slight decreases were

noticed which confirm the results of the analysis in Chapter II. At
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higher velocity amplitudes increases were observed which were assumed
to have been caused by'transition to turbulent flow. This was con-
firmed by a series of smoke studies. The maximum decrease obgserved in
the coefficient of heat transfer is 1.2% at a frequency of 10 cycles
per second, which is of the same order of magnitude as the prediction

of the theoretical analysis.

The Test Apparatus

The assembly drawing of the test section and other mechanical
components of the test apparatus are shown in Figure 22. At the bottom
of the drawing, the vibrator has been showﬁ schematically. The vibration
equipment is built by the MB Manufacturing Company. The vibrator is a
model C-5B and its control unit is a model T-51D. The vibrator together
with its control unit can be seen in Figure 24. As it is shown in
Figure 22, the moving horizontal plate is connected to a steel rod (item
4) through a flexible connector (item 11). This is the driving rod which
in turn is connected to the bottom end cylinder (item 2) and the test
section (item 1). This driving mechanism will cause the oscillation of
test package (items 1, 2 and 3) through two bearings provided by teflon
O-rings. These O-rings serve both as bearings and seals. The test éec-
~ tion is made of Aluminum tube, eight inches long which is highly polished
on the outside. The outside diameter is 4.870 inches and the wall is
0.310 inches thick. Ring heaters are provided at either end of the test
section and serve as guard heaters. The ends are closed by aluminum
disks fastened to flanges welded to the cylinder wall. Alllthe threaded

Joints are.secured by double-nuts or slotted nuts held with wire. The
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List of Items in Figure 22

Test section

Lower cylinder

Upper cylinder
Driving rod

Upper rod

O0=-Ring supports

Lower bearing support
Upper bearing support
Lower cover

Upper cover

Flexible connector

0-Rings

Insulating tape
Supporting structure
Vibratioﬁ exciter
Supporting rods
Enclosure walls

Ring heaters
Electric tape
Heater ribbon

Thermocouples



gaps on either end of test section are covered with a strip of electrical
tape to secure a continuous surface on the outside. A view of the test
section and the end cylinders is shown in Figure 235. Also shown in this
figure and in Figure 24, is the masonite enclosure k4 feet by 4 feet by 1.5
feet surrounding the test areé¥ Its function is to insure that the meas-
urements are not influenced by drafts and air currents produced by the
ventilating system of the building or the cooling fan on the vibrator.

The energy input to the main heater and the guard heaters is
supplied by a 120 volt AC line. The line power is passed through'a volt-
age regulator and then to three separate variacs each controlling the
voltage across their corresponding heater element.  The voltage regulator
is a Sornesen 0.5 KVA Model 500. This device will minimize any voltage
changes that may occur in the line,

The smoke studies made use of a smoke generator bullt by
Blankenshipo(ls) A schematic diagram of the smoke generator is shown in
Figure 25, The smoke from cigars soaked in oil was used as the indicat-
ing medium. The smoke was generated by blowing compressed air down over
two cigars in a copper tube. The smoke from the cigars was then bubbled
through a layer of water in the bottom of a glass container. This layer
of water would filter the unburned oil and tar from the cigars. The
smoke then filtered out through a steel wool filter to go to the injecting
nozzles located on a fixed plate at the bottom end of the test section.
The injectors consisted of ten small nozzles of approximately OvOj2 inches

diameter. However, only three of them were used for visual studies.



Figure 23. A View of the Test Section
and End Cylinders.
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Figure 24. General View of the Test Apparatus.
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Figure 25. Sketch of the Smoke Generator.
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Instrumentation of the Test Section

The test section is heated by Chromel=A heater ribbon l/h of
an inch wide by 0.002 inches thick wrapped uniformly on the inner sur-
face of the test section. The ribbon .is sandwiched between two layers
of Scotch No. 69 electrical tape to provide both electrical insulation
from the wall and maintaining the relative position of sections of the
ribbon. This tape is thermosetting and can withstand a maximum tempera-
ture of 356°F, The resistance of the main heater is about 18 ohms.

Two guard héaters are provided on either end of the cylinder. The pur=-

pose of guard heaters is to prevent the leakage of any part of the main

heater energy from the ends. These are Chromalox ring heaters each with
a capacity of 100 watts at 120 volts.

Chromel=-Constantan thermocouples. have been used for temperature
measurements consisting of 30 guage twin wires insulated individually and
placed in fiber glass insulation. The thermocouples used for measuring
surface temperature, are installed in 1/52 of an inch holes in the wall
and are secured in place by filling the holes with aluminum cement such
that the tip of each thermocouple is almost in the same level as the outer
surface of the cylinder. A total of eighteen thermocouples have been
used, thirteen of which are installed in the test section, four in the

walls of the end cylinders and one within the masonite enclosure for meas-

uring ambient temperature.

Measuring Instruments
Thermocouple wires are connected to a system of rotary switches

making it possible to switch to any single thermocouple and read its



-78-

indicated output voltage using a Leeds and Northrup Model 8662 portable
precision potentiometer. An ice bath is used for the reference junction
and the thermocouple wire has been calibrated in the laboratory. Some-
times a Sanborn four-channel recorder was used during fhe initial tran~
sient period in order to observe the approach to eqﬁilibrium. However,
all the actual temperature measurements were made by the potentiometer
mentioned above. These measuring devices can be seen in Figure.ah.:

Figure‘26 shows a diagram of the heating circuit. The eﬁergy
input to the main heater is measured by reading the current and voltage
drop across the heating element at all times. The current is measured
by a Westan Model 904 AC ammeter and the voltage by a Westan Model 155 AC
voltmeter.

In evaluating heat transfer measurements it is important to
know the magnitude of the radiation losses from the outer surface of the
test section. For this reason the emissivity of the polished aluminum
cylinder was measured using a Model 810069 Cenco Thermopile. The output
of the thermopile was measured by a precision potentiometer. A black body
constructed by Schoenhals(25) was used as an essential device for measur-
ing emissivities. This and the thermopile can be seen in Figure 24. The
procedure for obtaining the emissivity of the aluminum surface was to
focus the thermopile on the surface of the aluminum cylinder and to record
the output of the thermopile for each surface temperature. This was done
after every run. This process was repeated for the black body in a wide
ragnge of black body temperatures. The ratio of the thermopile outputs at
a given temperature, then, would give the emissivity of the aluminum sur-

face. The emissivity of the polished aluminum surface of the test section
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Figure 27. A View of the Amplitude Pick-up.
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varied between 0.062 and 0.07h for surface temperatures ranging from
120-270°F.

The frequency of oscillation is set on the frequency dial of
the vibrator control unit ranging\from 5 to 500 cycles per second. This
frequency was measured by a Model 631-BL Strobotac manufactured by
General Radio Company. The results of strobatac measurements agreed
closely with the numbers indicated on the frequency dial of the control
unit,

The amplitude of oscillation is monitored by means of a
Schaevitz Linear Differential Transformer Model 100=-AS=L and a movable
core attached to the top of the top end cylinder with a small brass rod.
The transformer has a stationary mounting, built by Schoenhals, (23) pro-
vided with fine position adjustment by means of a sliding memeber con-
trolled by a threaded shaft. The transformér and movable core system
can be seen in Figure 27. A Hewlett-Packard Model 200 CD Audio Oscilla-
tor is used for an imput to the transformer. The output is displayed on
a Model 30LH Dumont Oscilloscope. A diagram of this system is shown in
Figure 28. In order to calibrate the system, the transformer is first
placed in its null position with respect to core, by moving it until a
zero signal is shown on the scope. Then the sliding member of the trans-
former mounting system is moved against a spacer having the same thick-
ness as the amount of the desired amplitude to be measured. The spacer
is placed in a slot provided for this purpose. This displaces the trans=-
former by the amount desired; with respect to the core, away from the
null position so that the high carrier frequency causes a blurred signal

on the scope as shown in Figure 29. The oscillator output or scope gain
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is then adjusted until the signal occupies the full scale of the scope
screen. This calibrates the system so that the full scale corresponds
to the same displacement as the thickness of the spacer. During vibra-
tory conditions the sweep frequency on the scope is set equal to the
frequency of vibration. The signal appears as the envelope of a sine
wave as shown in Figure 30. Then the amplitude is increased by turning
the amplitude knob on the control unit such that the image on the scope
covers full scope; now the vibrator is oscillating with the desired fre-
quency.

A view of some of the instruments is shown in Figure 31. The

black body is shown on the lower left corner.

Procedure and Results of Heat Transfer Measurements

The procedure for temperature measurements and the determination
of the total heat input have been discussed earlier. Based on these two
measurements and knowing the heat transfer area (0.85 square feet), a

total heat transfer coefficient can be defined as

h (2/A;)

—
e
—

where q is the main heater wattage in its proper units. In order to

correct for radiation losses, a radiation heat transfer coefficient hy

may be defined as

_—y

— 1;v"w
— L]

hy = € € ==
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Figure 31. A View of Some of the Instruments.
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Then the average convection coefficient Ec would be the difference

h, = h -k

A series of steady heat transfer measurements were made which correspond
closely to the free convection correlation given in Reference 22. Figure
32 shows the experimental data obtained for Nusselt number plotted against
the product of Grashof and Prandtl numbers. The solid line is a plot of
the correlation equation in Reference 22.

The same procedure was used for measuring heat transfer coeffi-
cient while the cylinder was oscillating. The test section was allowed
to come to equilibrium condition under nonoscillatory conditions. The
guard heaters were carefully adjusted so as to prevent énd losses., At
this time the temperature distribution in the cylinder wall was essen-
tially uniform. The test package was then vibrated at a known frequency
and with a desired amplitude. The wall temperature difference (T, - ﬁn)
was carefully observed on the precision potentiometer and the guard heaters
monitored at all times.

| For small values of velocity amplitude, the wall temperature

difference rose slightly in all the experimental runs. The guard heaters,
under these conditions, did not require any further adjustment. At higher
velocity amplitudes, however, an abrupt decrease was noticed in the wall
temperature and the guard heaters required further adjustment. This abrupt
decrease in wall temperature was attributed to transition to turbulent.
flow.

Figure 33 shows two sets of experimental data obtained at a

:frequency of 15 cycles per second. The Nusselt number based on total
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Figure 32. Steady Free Convection Data.
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length of the cylinder, decreases slightly with increasing values of
A/ﬂ, reaches a minimum and then reversing its trend, increases abruptly
over its steady state value. The solid lines in Figure 33 are curves
best fitted through the experimental points. Each of these curves crosses
its steady state value at an amplitude ratio whose magnitude is a de-
creasing function of Grashof number. The curve for Gr. Pr = 3,65 x 3_07‘9
crosses at A/f = 8.6 x 107> whereas the one for Gr. Pr = 4.37 x 107
crosses at A/4 = 7.6 x 1073, Also the rise in Nu, is sharper for the
higher value of Gr. Pr.

Figure 34 contains data obtained for different frequencies and
a constant Grashof number. Heat transfer data has been presented in terms
of per cent change in Nusselt number caused by oscillations of the test
section.

Smoke studies revealed that all the experimental points on
Figures 33 and 34 that represent a decrease in heat transfer coefficient
are in laminar region. The procedure for smoke studies consisted of per-
mitting the test section to achieve different temperatures for different
power inputs. Once the test section reached equilibrium, the smoke gen=-
erator was started. An optimum smoke exit velocity was found by adjust-
ing the compressed air and the various valves, Two Plexiglass windows
were provided on two of the enclosure walls, one for lighting purposes
and the other for observing the smoke patterns. The criterion for smoke
exit velocity adjustment was to obtain the minimum velocity possible for
the smoke filaments to be stable and clearly visible. Then the flow pat-

terns were observed for different values of frequency and amplitude.
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For small values of velocity amplitude the smoke filaments re-
tained their streamline shape as in the case of no oscillations. For
larger values of velocity amplitude, however, a mixing action was ob=
served on the upper portion of the test cylinder. The region where the
smoke was mixed rather than streamlined, would move downward when the
amplitude of oscillation was further increased. It was concluded that
this mixing action was due to turbulence. In each run the length of the
cylinder in turbulent regime was measured by means of a scale mounted on
the test section.

Figures 35 through 37 show the results of smoke studies shown
schematically for the data presented in Figure 3L,

Figures 38 through 42 are photographs of the smoke studies.
These photographs are representative of what was seen without a camera.
Figure 38 represents the smoke pattern in steady state case (A = O)° In
Figure 39 the cylinder is oscillating with a small amplitude, however,
the smoke patterns are identical to the steady state case. In Figure Lo,
where the cylinder is oscillating with a higher velocity amplitude, a
change is noticed in shape of the smoke filaments. Within the top three
inches of the test section the smoke is slightly mixed which signifies
transition to turbulence. In Figures 41 and 42 the cylinder is oscillat-
ing under more severe vibratory conditions. The mixing action is stronger
and it covers a wider region along the length of the cylinder.

All the photographs were taken by a Graflex f/4°7 camera using
Polaroid Iand 4 x 5 type 57 film. This type of film has an ASA equiva=
lent exposure index of 3200. This film was used with a setting of 1/200

second at £/4.7.



*SqUSWSINSBIN JISJSUBI], 3BSH SNOTJIBA JIO0F JISPUITAD aU3l JO

ya3uaT oYz JUOTV swiBsy MOTA JO aangeN ay3 Julmoyg ezed LApnag oyous - G¢ 2In3Td
no_xll
v
Ll 9l Sl 14 el 2l I (0]] 6 8 9 S b <€ 2 | (o)
| | | | | ! I | | | | 1 | | T T Z-
4 1-
o o
_—_——— — — _—— e — — - —_— ———— — - —_—_—— - — — —00
7
(0]
\‘\ \
(o] 7 O 0 o 1+
| w\h 4 i 1 x |
2 - 2 2 z 2 |
€ . € € € Z S I
14 <~ b 14 v T 14
S W. S S S w S _| c
9 v\.\. 9 9 9 9
L < L L L L
8 278 8 8 s ]?
IN3ITNgyNL HVNINVT HVNINVT HVNIAVI HVNIAVA
: — S
-1 9
SdJ Oi= 4}
e (0]
hO_ X9°'¢€= A4 49
| ] | ] | ] | L | | ] ] L ] 1 |

0

tonN
Yony -InN



_95 -

*SqUAWSJINSBIN JI9FSUBIL], 3BSH SNOTIBA JIO0J JSPUTITLD =ayz Jo
ygdusl ayz JuoTV swIdsy MOTJ JO aangBN oyl Jutmoys BIe@ LApnag sijoug

"9¢ 2anSTd
¥
Oy
1| 9| Gl id €l 2l 1 ol 6 8 yA 9 S 1% ¢ 2 | (o}
_ T T T T T T _ T _ T _ _ 1 T T T |
—_————— e N Y- —————_ vo
=N
4 .
(0] — 2
I x
Nt —
€ mm (@)
b T
m 2
w ~
AV =z 1
L slz
YYNINVY o=
0 —1 9
|
2
€
/AE ¥
A | Sdd Gl = 4} ‘
130 9 ] v
mHu 2 01X 9°€ = ad - 49 %
?»UN\( 8
IN3Nn8YNL
| | | | | | | | | | | | | | | | |




*S3USWSINSBOW JISISUBLI, BSH msmﬂ.ﬁm\r JI0J JISPUlTLD ay3 JO yadus]
Y3 BUOTY swTdsY MOTL JO aanjeN sya JuTmoyg 'vle@ Apngg oows *L¢ oanITd

¥
Ol X g
2l 9l Sl bl el 2l " ol 6 8 L 9 S v € 2 _ )
| | | | | | | 1 1 I i 1 1 1 I 1 1 1=
—————f-——— ——p--———— 1 0
1+
0 e
1 x
e -
o c W €
2 v &
S »u v
/ €
e o 9
c? v 2
I ¢ T o S
ICOE o | ®
S0 | 2 ¥YNIAV
I, .m 9
f SR m n
IN3INBYNL v
S r\g s L
\)( 9
oA
- n L =
cE L $d2 0z =4y | 8
o] 1N3In8yNL L01%X9°€ = Ud 49

0]0]

fonN
tonN - 3nN



-95_

*sdo 9T = a3

pus sayouT S0°0 =V
‘A,6¢T = 9L - AL

J0J ydsa8oqoyd sioug

"6¢ SIMITA

"UOTJBTTTOSO ON

puB ‘I, 66T = L
Jo0J ydeadojoyd 3

- .B.H
oug

8

¢ 2an8td




-96-

*sdo G = aF *sdd 9T = aJ

pue saydUT LO°0 =V pue SSUDUT TT 0 = V
‘d,9LT = L - AL ‘d,9LT = L - AL
xoJ ydeadojoyd oowg ‘Tt =INITA J0J ydsal3oqoyd oxous

Ot SanStd




Figure 42,
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Smoke Photograph for
Tw - To = 176°F,

A = 0.005 inches and
fr = 200 cps.
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Another set of heat transfer data has been presented in Figure
43 for a frequency of 12 cycles per second. Fach experimental measure-
ment shown in Figure 43 has been accompanied with a photograph indicating
the flow regime for exactly the same conditions. The experimental points
in Figure 43 which correspond to Figures L4 - 47 are definitely in
laminar region and represent decreases 1in the coefficient of hegt trans-
fer. A slight undulation can be seen in Figure 49 on top of the test sec-
tion, Thi§ implies that at these conditions a very small portion of the
test section is experiencing minute turbulence whose gross effect on the
average coefficient of heat transfer is to nullify the decrease which pre-
vails in the portion of the test cylinder still in laminar region. The
measurements relating to Figures 50 and 51 show increases in the coeffi-
cient of heat transfer. There is a definite disturbance in the smoke
filaments near the top of the test cylinder which is interpreted as the
start of transition to turbulent flow. The smoke patterns in Figure 48
indicate a slight waviness on the outer filament suggesting that transi-
tion to turbulent flow starts from the outside.

The over-all study of the smoke photographs brings about a gross
indication of transition to turbulence as a consequence of longitudinal
oscillation of the test cylinder the mechanism of which is to be deter-

mined by further research,

Correlation of Experimental Data

It was pointed out earlier that for high values of velocity
amplitude the coefficient of heat transfer under vibratory conditions ex-

periences an increase over its steady state value. It was also established
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Figure 44, Smoke Photograph for
Gr. Pr = 3.56 x 107,
and No Oscillation.
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Figure 51. Smoke Photograph for Gr. Pr = 3.56 x 107,
Afg =18.1 x 1070 and fr = 12 cps.
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that in such cases the flow is in turbulent region. An attempt has
been made to correlate this data in terms of a suitable parameter which
would take into account both the free convective effect and the influ-
ence of oscillations. Figures 33 and 34 indicate that the Nusselt
number increases with increasing Gr, A/4 and ®. This was the cri-
terion for defining a modified Grashof number Gr,, which would have
the above-mentioned characteristics. It was found that Nuy, could be

correlated as a function of Groy defined as

2 13

G""“C\/ o Gb’g + ZH;‘% (GQ) (Pr)

Figure 52 is a plot of Nu, versus Grey - Pr where the solid line is
the best curve fitted through the data points. The experimental measure=
ments presented in Figure 52 do not test the Prandtl number dependencies
since all the data is for air with Pr = 0.72. The Prandtl number appear-
ing in the definition of Grcv, however, has been extracted from thebreti-
cal analysis of steady free convection and it is expected to apply to

fluids other than air.

No attempt has been made to present a correlation equation be-
cause of the limited range of the vibratory as well as thermal and geo=
metrical parameters. More data in a wider range of parameters is necessary
if a meaningful correlation equation is to be obtained. Nevertheless,

within the limits of this work an equation of the form

/3
NU\E = K(GFCV Ff)

appears to correlate the turbulent data.
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The heat transfer data obtained in laminar region under vibra-
tory conditions indicate that the average coefficient of heat transfer
falls slightly below its steady state value. The analysis of Chapter II
shows the same trend. Equation (73) determines the local Nusselt number
and is valid as long as w* 1s greater than 2 wg . Since w¥* is
proportional to wxl/2 then the use of Equation (75), for a fixed value
of w, restricts the lower limit of x. In other words, for finite w,

X cannot arbitrarily approach zero if Equation (75) is to be used. This
implies that the local Nusselt number cannot be integrated over the total
length of the heated section to yield an expression for the average
Nusselt number. Considering the fact that the experimental measurements
include not local coefficients but the average coefficients of heat trans-
fer, a direct comparison between theory and experiment is not possible.

It is intended, however, to make use of Equation (73) in order to obtain

a semi-empirical expression for per cent change in Nusselt number caused
by oscillations. It was pointed out, in Chapter III, that the relative
change in Nusselt number is a function only of Pr and A/x, for large
values of w* . This suggests that an attempt could be made to correlate
the experimental data using A/z as the main parameter describing rela-
tive change in Nusselt number for laminar heat transfer phenomenon. The
expression in Equation (73), for Nuyx, could be integrated, for each
frequency w, kfrom a point x = x, where ¥ =2 wg up to the point
where x = 4, Then from x =0 to X = Xo, it 1s concelvable to assume
a distribution for relative change in Nusselt number that is similar in
nature to its functionality in the range x =xo to x = f. A two region

integration over the length of the heated section will then lead into a



-108-

semi-empirical equation. This procedure has been carried out for air

(Pr = 0.72); the following equation is obtained

In the above equation

R (78)
and p; 1s a constant that should be determined experimentally for each
set of conditions excluding the parameter A/ﬂ.

In Equation (78) xo is in feet, fr in cycles per second and
Te = %(TW +T) is the film temperature in degrees absolute. The ex-
pression in Equation (77) has been worked out for two sets of conditions
and the results are presented in Figures 53 and 54 together with the ex-
perimental data obtained for the same conditions. The plots in Figures 53
and 54 indicate that as long as the flow is in laminar region Equation (17)

agrees with the data as expected, deviations for larger values of A/z

being a consequence of transition to turbulence.

Summary of Experimental Results

A vertical heated cylinder with a diameter many times greater

than the steady-state boundary layer thickness was oscillated vertically
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in atmospheric air and heat transfer measurements were made. The changes
in the coefficient of heat transfer under oscillatory conditions were
compared to their measured values in the case of no oscillations. It was
found that for small values of oscillatory velocity amplitude there was
a small decrease in the coefficient of heat transfer. For higher values
of velocity amplitude, however, increases were observed in the average
coefficients over their measured steady state values. This reversal in
the behavior of heat transfer coefficient was attributed to a transition
phenomenon from laminar to turbulent flow. Smoke studies were carried
out and evidence of a transition to turbulence was observed.
Semi-empirical equations were devised for the flow region asso-
ciated with decreases in the heat transfer coefficient which are of a
monotonically increasing character, in absolute value, with respect to
the amplitude ratio defined as the ratio of oscillation amplitude to the
heated length of the cylinder. The data in the turbulent region was
correlated in terms of a modified Grashof number defined such that it is
a superposition of the free convective and forced oscillation effects.
Furthermore, a correlation equation was suggested that has to be verified

by more extensive data.
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APPENDIX I
EQUIVALENCE OF THE CASE OF AN OSCILLATING PLATE IN A
STAGNANT AMBIENT TO THE CASE OF A FIXED PLATE
IN AN OSCILLATING POTENTIAL FLOW

The terms in the energy equation will retain the same form
whether the system of coordinates is fixed or accelerating. The boundary
layer equation, however, being the x-component of momentum equation would
undergo some changes.

Iet us first consider the case where the plate moves in the

x-direction with a velocity -U(t) relative to a fixed coordinate axis.

In this case, the boundary layer equations become,

2
DU _ o ou 1 P, .4 '
B“E’“’)ayz £ X 3+At[U(t)J
dU _ 1 9P 4 AU
T ok 4T
Wix,0,t) = V(o t) =0 5 U(x, 00, L) = U(t)

P _
BT
and finally,
2
DU U dU
oF N P pY(T-T,) + T

Wix,0,t) = vix0,b)=0 ;ulk e t)= UE) -

-11k-
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In the other case where the plate and consequently the system of coordi-

nates are fixed, there are no inertia forces present and the equations

take their classical form of

dt

dU _ 1 9P
L 7

\ W(x,0,t)=v(xro0,T)=0 s U(x,e050) = UL)

P dU
TR ARy )
and finally
Du Ju dU
-B—E = 3)—3"37 t+ ﬁg (.T‘"'T,x> + 1t

WG t) = vk 0, E) =0 u(x,e,t) = Ut) >

which are exactly the same as the equations obtained for the first case.

In conclusion, the term %% appears in the first case as an

inertia force (body force) and in the second case as a pressure force.



APPENDIX II

TABULATION OF THE RESULTS OF THE STEADY STATE INTEGRAL SOLUTION

Pr A D] = Z‘§E§I7E D3 = ———E@§§T7§
Gry) (Begoyx)
0.005 6.03117 0.03173 1.91931
0.010 L. 47T 0.04695 1.6169k4
0.02 3.31645 0.07849 1.36287
0.05 2.81680 0.08L76 1,235k
0.60 1.0591k 0.32816 0.58206
0.70 1.01935 0.34805 0.55859
0.72 1.01237 0.35178 0.55L437
0.733 1.00799 0.35417 0.55170
25/33 = 0.7575 1,00000 0.35859 0.54681
1 0.93727 0.397k2 0.50676
2 0.81129 0.50749 0.L41478
10 0.64106 0.84L61 | 0.23984
50 0.57733 1.32017 0.12104
100 0.56692 1.58179 0.0874k
1000 0.5567h 2.83381 0.02825
10000 0.55567L 5.04329 0.00895

o 5/9 = 0.5555 - -

In Chapter II, the functions H'(0) and F"(0) from Ostrach's numeri-
cal solution,(e) have been refered to. These functions are tabulated

below for different Prandtl numbers.

-116-
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Pr 0.01 0.72 0.733 1 2 10 100 1000

-§'(0) 0.0812 0.5046 0.5080 0.5671 0.7165 1.1694% 2.191  3.966

F"(0) 0.9862 0.6760 0.674l 0.6421 0.5713 0.4192 0.2517 0.1450
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DEFINITION OF o's AND PB's

45 50
62 + 93y
- 5

= -39.407 H(0)(,
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5
Py = 3 252 Pr A oly S(A)

- 2D
By = € 5n)
W)
By =6 i
_ A p YD)
4 = A L SPrY()
5 7 25249S(D) 6 S(A)
A A
- r
BG T 18l44edy S(A)
)
By = & Sy
By = 34,
X(A)

Also values of Q1 have been tabulated for some Prandtl numbers.

Pr 0.757 L 2 10 100

O 1.490 1.4068 1,0999 0.5088 0.1225
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APPENDIX V

COMPUTATION PROCEDURE

All the expressions derived for large values of frequency in
Chapter II were simple and explicit in all the parameters involved and
therefore, did not require extensive computation. The integral proce-
dures, however, did involve some numerical evaluation. For this part of
the analysis, the IBM 7090 Electronic Computer of the University of
Michigan Computing Center was utilized. Three sets of computer programs
were written for different stages of the computation.

The first program was used to obtain a numerical solution to
Equation (41) of Chapter II. This resulted in tabulation of A for
different Prandtl numbers (Appendix II). Newton's iteration process was
used and the initial values of A, for each Pr, were estimated by a
rough plot of Pr versus A.

The second program was written for the evaluation of the first
three terms of the series solution for B and Bj, i.e., 7, through
yo and Ay through X\o. This program was simple in nature and involved
only evaluation of a set of formulas for a few values of Prandtl number.

The third program was set up to calculate coefficients
7n and A, for the values of n greater than two for which generalized
expressions were derived in Equation (58) of Chapter II. These are the
coefficients listed in Appendix IV.

The series themselves, however, were calculated on a desk cal=-

‘ cuiator. This would allow one to observe the convergence behavior of the
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series and does not present any problem concerning the order of magni-
tude of the numbers involved.
A1l the programs were written in MAD (Michigan Algorithm

Decoder).
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$ COMPILE MAOD,EXECUTE,PRINT OBJECT,PUNCH OBJECT,DUMP

PRINT_FORMAT F1

VECTOR VALUES F1=$///S10,35HFOR PRANDTL NUMBERS LESS THAN 0.7

157///55,85HSIGMA I DELTA I CONST
2 1 ERRDEL I UMAX/S2,91H*ssunnnssux I
3 RERRREERRER I HEERERRERRRS I ERRERERRAER 1

BASE2

LERERERBRARRRS

_ READ_FORMAT F2,SIGMA,DELTA

VECTOR VALUES F2=$2F15.5#%
WHENEVER SIGMA.G.0.757,TRANSFER T0O BASES

THROUGH BASEL,FOR 1=0y1y(.ABS.(2.52-8.316#DELTA-1./SIGMA+0.15
1/(DELTA.P3)-0.81/(DELTA.P.2)+0.972/DELTA+6,804#%(DELTA.P.2)).

2L«1E-6).0R.1.G.15
DELTA=DELTA+(1./SIGMA~2.52+8.316#DELTA-6.804#%(DELTA.P,2)-0,.15

1/(DELTA.P.3)+0.81/(DELTA.P.2)-0.972/0ELTA)/(-8.316+13.608*DEL
2TA-0.972/(DELTALP.2) +1.62/(DELTA.P.3)-0.45/(DELTA.P.4))

WHENEVER SIGMA.L.0.757,TRANSFER T0O RASE4
PRINT FORMAT F4

VECTOR VALUES F4=$///S10,35HFOR PRANDTL NUMBERS MORE THAN 0.7
157///55, 85HSIGMA I DELTA I CONST

21 ERRDEL I TTUMAX/S2,91He¥nenunnnns i

3 EEEREERRRERE 1 ERERENE AR I (22222222227 1

LERRBERRRRERRS

READ FORMAT F2,SIGMA,DELTA

_BASE4

THROUGH BASE7,FOR J=041s(.ABS.(-1./SIGMA-5.04*(DELTA.P.3)+14.
 1472#(DELTA.P.4)-12,15%(DELTA.P.5)+4.794%(DELTA.P.6)-C.756%(DE
2LTACPL T WL IESTY.ORVULGL 15
DELTA=DELTA+(1./SIGMA+5.04% (DELTALP.3)-14.472#(DCLTA.P.4)+12.
115%(DFLTA.P.5)-4,794% (DELTA.P.6) +0.756% (DELTALP.7))/(-15.12
2% {DELTALP.2)457.688%(DELTA.P.3)-60.75% (DELTA.P.4)+28.764%(DEL
3TAP.5)-5.252=(DELTA.P.6)) '
CONST=1./(DELTA#( 15.6%(1.8%DELTA-1.)).P.0.25)
WHENEVER SIGMA.L.C.T757
 ERRDEL=1.E-6/(-8.316+13.608%DELTA=0.972/VELTALP.2.+1.62/UELTA
1 P 30-0.45/DELTALP.4.)
OTHERWISE

FRRDEL=1.E-7/(-15.12%DELTA.P.2.457.888#DELTALP.3.-60.75#DELTA
1P 4.+28.T64#DELTALP.5.-5,292#NDFLTA.P.6.) i

END OF CONDITIONAL

UMAX=(9./128.)%(75.6%(1.8%DELTA-1.)).P.C.5

PRINT FORMAT F3,SIGMA,GELTA,CONST,ERRUEL,UMAX ~~ 7777777
VECTOR VALUES F3=5S2,F10.4,55,1HI,S2,F13.8,54,1HI4S4yF1l1e6,54

Ty THI yS4 ELT 4,4y IHI,S4,F11.6/%%
WHENEVER SIGMA.L.C.757,PRINT FGREAT Fli,l
VECTOR VALUES F5=$S114,[3%%

WHENEVER SIGMALG.0.757,PRINT FORMAT Fé,J

"7 VECTOR VALUES F6=5S114,13%%

WHENEVER SIGMALL.0.757,TRANSFER TN RASE?

WHENEVER SIGMA.G.C. 757, TRANSFER TC HASLC
INTEGER I,J

END OF PROGRAM
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$ COMPILE 'MAD,EXECUTE ,PRINT OBJECT,DUMP

MAD (16 APR 1962 VERSION) PROGRAM LISTING see eoe oo

PRINT FORMAT F2

VECTOR VALUES F2=$//59,5HSIGMA,S12,5HALPH8,S12,SHALPHI,S1246H

1ALPHL4,S12,6HALPH15,512,6HALPH165S1256HALPH17#$

ALPH3=4.8387097
ALPH4=1./93.

READ FORMAT F1, SIGMA, DELTA
VECTOR VALUES F1=$2F20.5+#$
ALPHT=1.8+DELTA-1.
ALPHO=1./93./DELTA

ALPH1=3.425./31./ALPHT
ALPH2=5./93,/DELTA+5, #DELTA/31./ALPHT
ALPH5=5./93.+5./31. /ALPHT
ALPH6=5./2232./ALPHT
ALPH10=(5./2232.)#(1./DELTA/ALPHT+SIGMA/ALPHT#DELTA.P.3.)
ALPH11245./62.+50./93./ALPHT
ALPH13=5./186./ALPHT
S=(DELTA.P.2.)%(2./21.~6./35.¢DELTA+1./9.#DELTA.P. 2.

1 -8./315,#DELTALP.3.)
W=(DELTALP.2.)#(1./15.,-1./45.#DELTA.P.3.41./105.

1 *DELTA.P.4.)
V=DELTALP.4.#(1./560.~1./540.%DELTA+1./1890.¢DELTA.P.2.)
X=DELTA.P.3.#(~1./84.+1./120.%DELTA.P.2.~1./315.4DELTA.P.3.)
Y=OELTA.P.4.#(1./105.-1./56 #DELTA+1./84.DELTA.P.2.-1./360.#

1DELTA.P.3.)
2=(DELTA.P.5.1#(1./36.-4./315.#DELTA) .
BETAL=3.4(5,/252.)/(SIGMA=DEL TA#S ALPHT)

BETA2=6.42/$

BETA3=6.4W/S

BETA4=SIGMA#Y/6./S

BETAS5=DELTA/252./S/ALPHT+5.#SIGMA®Y/6./S
BETA6=SIGMA*DELTA.P.3./18144./S/ALPHT

BETAT=6.#V/S

BETA8=3,#BETAT

BETA9=18.#X/S

ALPHB=(ALPH3#BETA3+ALPH1+BETA2)/ (ALPH2#BETA3+ALPH1#BETAL
1-2.#ALPHO#BETA3-2,#ALPH1)

ALPH9={1./ALPH1)* (ALPH3+ALPHB® (2, +ALPHO-ALPH2))
ALPH14=(BETAl#(ALPH11-ALPH10#ALPHB-ALPHS5#ALPHI) +ALPH2#{ALPHB*
1(BETAS5-2.#BETA4)-ALPHO*BETAB-BETA9)) /(2. #BETAL+ALPH1+BETAL+
23.#ALPH2#BETA3)

ALPH15= (ALPHB#(BETAS-2.%BETA4)~BETAB#ALPHI-BETA9-3. #BETA3
1ALPH14) /BETAL

ALPH16=( (4. +ALPHI)#(2.#BETAS#ALPH15-2. *BETA6#ALPHS+
12.#ALPHL4#(BETAB4+2,#BETAT))-5.#BETA3# (2, #ALPH6#ALPHI-2. #
2ALPH13+2,#ALPHL4# (ALPHS5+2 . #ALPH4) -2 #ALPH10#ALPH15) ) /(5. %
3BETA3#(ALPH2+2.#ALPHO )+ (4. +ALPH1 ) #(2.+BETAL))
ALPH17=(2,#BETAS#ALPH15-2, #ALPHB#BETA6+ALPH14# (4. ¢BETAT+2. #BE
1TAB)-ALPH16%(2.+BETAL))/5./BETA3

PRINT FORMAT F3,SIGMA,ALPH8,ALPH9,ALPH14,ALPH15,ALPH16,ALPH1T
VECTOR VALUES F3=$TE17.8%$

TRANSFER TO BASEL

END OF PROGRAM _

%001
+002
#002
#003
#004
+005
#006
#007
#008
#009
#010
#011
#012
#013
#014
#015
#016
#016
=017
#017
#018
#019
#020
#020
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*022
#023
*C24
#025
#026
*027
#028
#029
#+030
#031
#031
#032
+033
#033
+033
*034
+034
#035
+035
#035
035
#036
#036
+037
#038
039
#040

000036
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"~ $ COMPILE MAD,EXECUTE ,PRINT OBJECT,sUMP e 057458
MAD (16 APR 1962 VERSION) PROGRAM LISTING ese eoe ose
PRINT FORMAT F2 . *001
VECTOR VALUES F2=$///S10,1HN,S10,5HSIGMA,S510,8HGAMMA(N),5S10,9 #002
LHLAMBCA(N) #$ %002
J=1 %003
DIMENSION GAMMA(IOO).LAMBDA(IOO) 004
ALPH4=1,/93. *005 o,
BASEL READ FORMAT FL,STGMA;DELTASNL N2, ~ GAMMA (1) GAMMA(2) s LAMBDA( *006
11),LAMBDA(2) *#006
VECTOR VALUES F1=$2F20.5/215/4F15.5#3 *007
ALPH7=1.8%CELTA-1, %008
ALPHO=1.7/93./DELTA *009
ALPH1=3.425./31./ALPHT *010
ALPH2=5./93./DELTA+5.#DELTA/31./ALPHT «011
ALPH5=5,/93,+5,/3]./ALPHT *012
-~ ALPH6=5./2232./ALPHT *013
ALPH1C=(5./2232.)%(1./DELTA/ALPHT+SIGMA/ALPH7#DELTAL.P.3.) #0014
S=(DELTA.P.2.)%(2./21.-6./35,#DELTA+1./9.#DELTA.P.2. *015
1 -8./315.#DELTA.P.3,) *015
W=(DELTA.P.2.)#(1./15.-1./45.#DELTA.P.3.+1./105. +016
1 *DELTA.P.4.) 016
V=DELTA.P.4.#(1./560.-1./540. +DELTA+1./1890.%DELTA.P.2.) *017
Y=DELTAoPe4o#(14/1054=1./56.#DELTA+1./84.#DELTA.P.2.~1,/360.% »018 -
1DELTA.P.3,) *018
BETALl=3.+(5./252. )/(SIQMA:QELTA-S*ALPH?) #019
BETA3=6.#W/S #0207
BETA4=SIGMA®Y/6./S %021
BETAS5=DELTA/252./S/ALPHT+5.%SIGMA*Y/6./S %022
BETA6=SIGMA#DELTA.P.3./18144./S/ALPHT %023
BETAT=6.#V/S «024
BETA823,#BETA7 #025
THROUGH BASE2,FOR N=N1,N2,.ABS.LAMBDA (N-1).LE.1.E-36.0R. %026
1.ABS,GAMMA(N=1) .LE.1.E-36.0R. . ABS.LAMBDA(N-1) .GE. 1. E+36,.0R. 2026
2 ABS.GAMMA(N-1).GE.1.E+36 %026
Al==N#{ALPH5+2, #(N=1. )#ALPH4) #(=J) PN __ *027_
A2=N#(N-1,)#ALPH6 %028
A3=2.%(N=1,)*ALPHO+ALPH2 #029
A4=-N#ALPH10#(-J).P.N +030
A5=2 sN+ALPH] +031
Cl=-N¥(2,#(N~-2. )iBETA44BETA5)l( =J).P.N %032
B, C2z=N#(N=-1,)%BETA6 #033
C3=(2.#N+1.)#BETA3 034
C4==N#(2.#(N-1, )lBETA7+B[TA8)I( ~J)eP.N %035
C5=2.#(N-1,)+BETAL %036
LAM = 2A5+A3e #(AS# (~C1#LAMBDA(N-1)+C2#L AMBDA(N #037
1-2)+C4*GAMMA(N=1)1+C3# (A2 #GAMMA (N-2) -AL*GAMMA (N-1) -A4 L AMBDA ( *037
R 2N=1)1). %037
GAMMA(N)=(A2#GAMMA(N-2)-A1#GAMMA (N-1)-A4*LAMBDA(N-1)-A3*LAMBD %038
1A(N))/AS #038
BASE2 PRINT FORMAT F3,N,SIGMA,GAMMA (N),LAMBDA(N) %039
MECIOR VALUES F3=6S11,13,S12,F7.3,2F20.6#%¢% 2040
TRANSFER TO BASEL *041
_________________________ INTEGER NsN1sN24N3sd. : %042
%043

END QF PROGRAM
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APPENDIX VI
EXPERIMENTAL DATA

A fr Tw = T T, hp h,, he
BTU BTU BTU
in. cps °F °F hr-ft2-°F hr-ft°-°F hr-ft°-°F
.035 10 147.3 79.1 1.1172 0.0998 1.0170
.082 10 147.5 82.2 1.1160 0.1013 1.0150
.103 10 147.8 82.4 1.1138 0.1015 1.0120
.032 10 150.9 82.8 1.0962 0.1127 0.9835
.06k 10 151.0 83.4 1.0955 0.1130 0.9825
.120 10 149.6 83.6 1.1057 0.1127 0.9930
.0225 15 135.6 76.1 1.0393 0.1026 0.9367
.0k9 15 135.8 76.4 1.0377 0.1029 0.9348
Koy 15 132.2 78.5 1.0660 0.1029 0.9631
.107 15 130.3 79.0 1.0815 0.1027 0.9788
.ol7 15 150.7 83.6 1.0977 0.1131 0.9846
.083 15 1h2.3 8L.8 1,162k 0.1113 1.0511
.026 15 187.3 85.6 1.2433 0.1271 1.116
.0l8 15 187.3 8k.0 1.2433 0.127% 1.116
.081 15 185.1 83.6 1.2581 0.126M4 1.132
.108 15 177.6 84.9 1.3112 0.1248 1.186
.0162 20 150.1 79.6 1,099k 0.0982 1.0012
.0325 20 150.2 79.8 1.0986 0.0983 1.0003
.061 20 142.6 80.0 1.1572 0.096M4 1.0608
.089 20 1k2.0 82.2 1.1593 0.1175 1.0418
.120 20 138.1 83.2 1.1920 0.1168 1.0752
.033 50 139.8 83.1 1.1775 0.0997 1.0778
.080 50 175.5 86.0 1.3h22 0.1191 1.223
0 - 157.1 83.6 1.1526 0.1305 1.0221
.023 12 157.3 83.0 1.1511 0.1302 1.0209
.0Ls5 12 158.4 81.7 1.1431 0.1298 1.0133
.06k 12 158.2 83.0 1.14h6 0.1305 1.01k1
.076 12 157.7 83.5 1.1482 0.1307 1.0175
.090 12 157.2 83.8 1.1519 0.1307 1.0212
.118 12 152.1 8k.5 1.20k0 0.1288 1.0620

L1hs 12 147.8 8L4.6 1,2251 0.1280 1.0971



IIHHNIHIMIHI?INWINVIHHIHIH\I?IWHIIIHIH!IHI

015 02826 8285



