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ABSTRACT
~ A novel and pragmatic method for the identification of multivariate (MIMO) ARMAX processes

from input/output observations is proposed. At the core of the method is a parameter estimator that
is based on the replacement of the original nonquadratic Prediction Error (PE) estimation problem
by an appropriate sequence of simpler quadratic PE and/or linear subproblems, for which uniquely-
determined closed-form solutions can be obtained. This is achieved by using basic ARMAX process
properties, a truncated ARX representation, and appropriate filtering operations. By offering low
computational complexity and mathematically guaranteed algorithmic stability, requiring no initial
guess parameter values, and circumventing the local extrema/wrong convergence problems, this pa-
rameter estimation technique overcomes some of the main ]i_mitations and drawbacks of the currently

pvailable methods that have thus far hindered multivariate ARMAX identification in practice.

For the practically important case of unknown process structure, a computationally efficient struc-
ture and parameter estimation procedure that overcomes the prohibitive computational requirements
of alternative approaches, as it does not need to store the original data or repeat the full estima-
tion calculations as the model order is varied in search of a statistically adequate representation, is

introduced within the context of the proposed method.

The paper is divided into two parts: The basic forms of the proposed parameter estimator
are derived in the first part, whereas in the second (Fassois and Lee, 1990b) the computationally
efficient structure and parameter estimation procedure is developed, and the performance of the

method evaluated via numerical simulations.
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1. INTRODUCTION

The problem of determining stochastic linear multivariate (multiple-input multiple-output)
models from noise-corrupted observations is of particular importance in many branches of engi-
neering and science. Stochastic linear systems may be represented in a number of ways by using
infinitely or finitely parametrized models, such as impulse response models (IR’s), matrix fraction
descriptions (MFD’s), state-space models (SS’s), and vector difference equation models (VDE’s),
which are often refered to as AutoRegressive Moving Average models with eXogeneous inputs
(ARMAXs) (El-Sherief, 1982; Ljung, 1987; Gevers and Wertz, 1987).

In this paper the problem of multivariate ARMAX process identification is considered. Mul-
tivariate ARMAX models offer a convenient finite-dimensional representation of the wide class
of multiple-input multiple-output linear é&stems characterized by rational transfer functions and
subject to stochastic disturbances having rational, Hermitian, and positive definite spectra. In
addition, they are also well-suited for parameter estimation, and transformations to other model
forms may be easily establishbed. ‘

Although multivariate ARMAX models have a superficial resemblance to their univariate coun-
terparts, their structure is much more complicated and gives rise to important identifiability issues
that have been studied by a number of mathematicians associated with systems theory (Akaike,
1974; Kalman, 1974; Hannan, 1976; Priestley, 1981; Deistler, 1983; Hannan and Kavalieris, 1984).
This complication is due to the fact that there exist many different multivariate ARMAX models
giving rise to the same input/output relationship, and hence the same Gaussian likelihood. The
set of all possible ARMAX models may be in fact divided into likelihood equivalence classes, and
the identifiability problem then resolved by selecting a set of models composed of a unique repre-
sentative from each class. Such a set is known as a (uniquely) identifiable form or parametrization,
and a number of identifiable parametrizations that can be classified as either canonical or pseudo-
canonical (overlapping parametrizations) have been constructed (Hannan, 1976; Kashyap and Rao,
1976; Gevers and Wertz, 1987). Canonical parametrizations are characterized by the fact that they
contain a (unique) representation for any given system; a fact that is not true for pseudo-canonical
forms (see Section 3 of the present). '

Although identifiability may be thus resolved, the problem of multivariate ARMAX process
identification is still far from being trivial. This is due to difficulties associated with both subprob-
lems into which the (full) identification problem may be decomposed, namely parameter and model
structure estimation.

Indeed, parameter estimation in multivariate ARMAX models is much more complicated than

.in their univariate counterparts (Pandit and Wu, 1983; Brockwell and Davis, 1987), much more
prone to difficulties related to local extrema/wrong convergence and algorithmic instabilities, and

the availability of good initial guess parameter values is of critical importance (Jones, 1985). Fur-



thermore the computational complexity of multivariate estimation methods is typically excessive,
to the point that identification becomes unrealistic for many applications (Kashya,p and Nashburg,
1974; Keviczky et al., 1987; Stoica and Soderstrém, 1983).

On the other hand structure estimation is accomplished by determining the system’s Kronecker
indices in the case of a canonical, or the autoregressive (AR), moving-average (MA), and exogeneous
(X) orders in the case of a pseudo-canonical representation. This can be achieved by using MFD
representations and rank tests of covariance matrices or linear dependence tests on the rows of
the estimated Hankel matrix (Tse and Weinert, 1975). Such procedures are, however, not only
time-consuming but also numerically sensitive, and this may create significant problems as the
accurate estimation of the Kronecker indices is of critical importance for the consistent estimation
of the process parameters (Caines and Rissanen, 1974; Gevers and Wertz, 1987). Alternatively,
procedures based on statistical decision theory criteria, such as the Final Prediction Error (FPE)
criterion, Akaike’s Information Criterion (AIC), and the BIC, have been also proposed (Akaike,
1974; 1977). These, however,brequire the successive fitting of a possibly large number of candidate
models to the data, so that in addition to the difficulties associated with parameter estimation, an
enormous computational complexity that makes them prohibitive for many applications is required
(Hannan and Kavalieris, 1984).

Because of all these difficulties and limitations, multivariate ARMAX process identification
methods are far from being standard in practice, and have been thus far applied to a relatively
small number of actual problems. Furthermore, the multivariate identification problem has been
significantly less extensively studied in the literature when compared to its univariate counterpart.
The main available methods are briefly reviewed in the sequel.

The primary method for multivariate ARMAX process identification is based on the Maximum
Likelihood (ML) principle [and becomes essentially equivalent to a general Prediction Error (PE)
method if the Gaussianity assumption is removed], combined with an appropriate structure estima-
tion procedure. In early approaches the parameter and structure estimation subproblems were in
fact separated, with the latter solved by using rank tests of covariance matrices or linear dependence
tests on the rows of the estimated process Hankel matrix, and preceding the former. More recently,
however, combined structure and parameter estimation methods that involve the extension of the
likelihood function with a penalty term that is a function of model complexity, have been intro-
duced. Structure and parameter estimation is then achieved by optimizing this combined criterion.
The aforementioned FPE, AIC, and BIC criteria have all been proposed within this context.

The ML method has been discussed in a number of publications, including Kashyap and Nash-
‘burg (1974) who considered the estimation of multivariate ARMAX processes in the so-called canon-
ical form I by using both the exact and conditional ML methods, and Keviczky and Banyasz (1978)

who discussed ML estimation for ARMAX processes in the fully-parametrized pseudo-canonical



form. Deistler (1983) is an additional reference in this context. The ML method is characterized
by optimal asymptotic properties, namely consistency and efficiency (Hannan and Kavalieris, 1984;
Keviczky et al., 1987), but the estimation procedure is very complicated as the maximization of the
likelihood function has to be performed simultaneously with respect to all unknown parameters,
unlike the univariate case where this can be relaxed and the innovations variance estimated after
the rest of the parameters have been obtained (Brockwell and Davis, 1987). As a consequence,
the computational complexity becomes prohibitive for many applications, especially in the case of
unknown model structure where a possibly large number of models has to be successively fitted.
In addition, the problem of algorithmic instability becomes much more severe in the multivariate
case, especially in conjunction with processes having MA roots close to the unit circle, and the
likelihood function may be (even asymptotically) characterized by several local maxima that are
much smaller than the global maximum and therefore lead to completely erroneous estimation re-
sults (Brockwell and Davis, 1987). As a consequence “good” initial parameter values are of crucial
importance, and towards this end, the use of suboptimum procedures, such as the initial fitting of
univariate models to each scalar component of the model, has been recommended in the literature
(Jones, 1985). With respect to structure estimation the general comments made earlier regarding
the difficulties associated with the estimation of the process Kronecker indices or the AR, MA, and
X orders, are fully applicable here as well.

In an apparent attempt to alleviate some of the aforementioned difficulties, Kashyap and Nash-
burg (1974) also proposed the Limited Information Estimates based on their so-called canonical
forms II and III. The main idea is on the ad-hoc decomposition of the multivariate estimation
problem into a set of simpler univariate subproblems that are independently solved.

Other alternative approaches that have been discussed in the literature include the Ordinary
Least Squares (OLS) method in conjunction with canonical form I (Kashyap and Nashburg, 1974)
and the fully-parametrized pseudo-canonical form (Keviczky and Banyasz, 1978), as well as versions
of the Generalized Least Squares (GLS) method in conjunction with canonical form I (Kashyap and
Nashburg, 1974). In Keviczky and Banyasz (1978) and Goodwin et al. (1978) the GLS method is
used in conjunction with AutoRegressive AutoRegressive models with eXogeneous inputs (ARARX
models). In addition to being unable to provide estimates of the MA parameters, the OLS method
is known to yield highly inconsistent estimates, whereas problems of poor performance at high
noise-to-signal (N/S) ratios, the possibility of slow or wrong convergence, and a relatively high
computational complexity due to a possibly large number of iterations, are associated with GLS.

Instrumental Variable (IV) methods for the estimation of the AR and X parameters have
- been also proposed (Stoica and Soderstrom 1982; 1983). Such a method was used in conjunc-
tion with canonical form I by Kashyap and Nashburg (1974), whereas IV methods based on the

fully-parametrized pseudo-canonical form and a canonical form characterized by a diagonal AR



polynomial matrix, were discussed by Stoica and Soderstrdm (1982). The same authors (Stoica
and Soéderstrom, 1983) proposed optimal IV methods, and a similar procedure refered to as In-
strumental Variable-Approximate Maximum Likelihood (IV-AML) was discussed by Jakeman and
Young (1979) for both the fully-parametrized pseudo-canonical form and the canonical form charac-
terized by a diagonal AR polynomial matrix. Both the optimal IV and IV-AML methods, however,
require “bootstrapping” procedures that combine, in an iterative manner, the optimal IV scheme
with an algorithm for the estimation of the noise dynamics. In the multivariate case the practical
implementation of such methods is thus cumbersome {Stoica and Séderstrém, 1983), and problems
of slow or wrong convergence and algorithmic instability may be encountered. It is in addition
known that IV methods do not, in general, achieve the asymptotic accuracy of ML (or general PE)
methods (Stoica and Séderstrém, 1983).

Kashyap and Nashburg (1974) have also discussed a method based on canonical form I and
the multivariate extension of a simple, but statistically inefficient, estimation scheme proposed
by Durbin (1960). Finally, Hannan and Kavalieris (1984) proposed a combined structure and
parameter estimation method based on a three-stage scheme also inspired by Durbin’s method and
using the BIC criterion. This method estimates the model structure (Kronecker indices) by using
inexpensively computed parameter estimates, and once the structure has been thus determined,
statistically efficient parameter estimates are obtained through nonlinear techniques based on the
Maximum Likelihood principle.

In this paper a novel and pragmatic method for the identification of multivariate ARMAX
processes, that is based on exclusively linear techniques, and overcomes the difficulties of alternative

approaches, namely:
e the excessive computational complexity,

e the occurence of algorithmic instabilities, and the approaches’ inability to estimate processes

characterized by MA roots close to the unit circle,

o the existence of local extrema in the identification criterion and the associated problems of

wrong convergence,
o the need for initial guess parameter values,

o the sensitivity and tremendous computational complexity problems associated with structure

estimation,

is introduced. The proposed method is based on a novel linear multi-stage parameter estimator
inspired by the newly developed univariate Suboptimum Maximum Likelihood algorithm (Fassois

and Lee, 1990a), the fully-parametrized pseudo-canonical form, and the BIC criterion.



At the core of the.proposed method is the main form of the linear multi-stage parameter
estimator that is based on the replacement of the original nonquadratic Prediction Error (PE)
estimation problem by an appropriate sequence of simpler quadratic and/or PE subproblems, for
which uniquely-determined closed-form solutions can be obtained. This is achieved by using basic
ARMAX process properties, a truncated ARX representation, and appropriate filtering operations.
In addition, a guaranteed-stability form of the estimator that overcomes the very important problem
of algorithmic instabilities, and allows for the identification of all types of processes, including those
characterized by MA roots close to the unit circle, is leveloped.

For the practically important case of unknown process structure, a novel and computation-
ally very efficient procedure for structure and parameter estimation, that is based on a very fast
correlation-type form of the linear mdti-Stége parameter estimator, the fully-parametrized ARMAX
pseudo-canonical form, and the BIC, is developed within the context of the proposed method. This
procedure uses the second-order moments of the measured data as a (pseudo) sufficient statistic,
and is also based on exclusively linear techniques. The numerically sensitive calculations required
for the estimation of the Kronecker indices and the tremendous computational complexity of alter-
native methods are circumvented, as the proposed procedure needs to estimate only the AR, MA,
and X orders and achieves remarkably low computational and memory storage requirements since
the original observations need not be stored in tlie memory, and only a small portion of the total
estimation calculations has to be repeated as the model order is varied in search of a statistically
adequate representation.

This paper is divided into two parts: Parameter estimation is primarily treated in Part I, where
the main and guaranteed-stability forms of the estimator are derived. The combined structure and
parameter estimation problem is treated in Part II (Fassois and Lee, 1990b), where the correspond-
ing procedure is developed, and, in addition, the performance characteristics of the proposed linear
multi-stage method are examined via numerical simulations. The presentation in Part I of the pa-
per is organized as follows: The exact problem statement, along with some necessary background
material on multivariate ARMAX processes, is presented in Section 2, and the derivation of the
main form of the linear multi-stage parameter estimator given in Section 3. The derivation of the
guaranteed-stability form of the estimator is discussed in Section 4, and the conclusions are finally

summarized in Section 5.



2. MULTIVARIATE ARMAX PROCESSES: DEFINITIONS AND STRUCTURAL
CONSIDERATIONS

In this section the multivariate ARMAX processes are defined, the corresponding identification
problem posed, and certain issues pertaining to identifiability discussed.

The working assumption throughout the paper is that there exists an actual multivariate
stochastic system S, that belongs to the class of discrete-time linear systems whose input-output
relationships are characterized by rational transfer functions and the disturbances acting on them
are wide-sense stationary stochastic signals with rational spectral densities, which is to be identified
based on input/output observations. The system S is thus amenable to a multivariate ARMAX

description of the form?!:
S: A°(B)-ylt] = B°(B)-x[t] + C°(B)-wlt] (1)

with {y[t]} representing the observable noise-corrupted s-dimensional output sequence, {x[t]} the
observable m-dimensional input sequence, and {w[t]} an unobservable s-dimensional zero-mean
white noise (innovations) process with covariance matrix £°. A°(B),B°(B), and C°(B) represent
polynomial matrices in the backshift operator B (defined such that B - y[t] = y[t - 1]), and are
refered to as the Autoregressive; Ezogeneous, and Moving Average polynomials, respectively. Those

may be expressed as:

A°(B) & I, +A°1)-B+--+A(na)- B™ [s X 5] 2)
B°(B) £ B°(1)-B+ - +B°(nb)- B™ [s X m] (3)
C(B) £ I,+C°(1)- B+ +C°nc)  B™ [s X 5] (4)

where I, stands for the identity matrix of order s, A°(5), B°(j), C°(j) are coefficient matrices,
and the quantities in the brackets indicate vector/matrix dimensions. The nonnegative integers
na,nb, and nc that represent the polynomial orders are known as the autoregressive, exogeneous,
and moving average order, respectively.

The system of Eqs. (1)-(4) is also assumed to satisfy the following standard assumptions:

Al. The sequence {wf[t]} is an s-dimensional, zero-mean and uncorrelated (white) process that is

wide-sense stationary and second-order ergodic with a positive-definite covariance matrix X°.

A2. The observable input {x[t]} is an m-dimensional, zero-mean, wide-sense stationary and second-
order ergodic process with a positive-definite covariance matrix, and is persistently exciting

of sufficiently high order.

A3. The input {x[t]} and the white noise {w[t]} are mutually independent.

! The superscript o is used to indicate the actual system and distinguish it from any given model.



A4. All zeros of the determinant of A°(B) lie outside the unit circle ( “stationarity assumption”).
A5. All zeros of the determinant of C°(B) lie outside the unit circle ( “invertibility assumption”).

A6. The Smith form of [A°(B),B°(B),C°(B)] is [I,0], or, equivalently, the greatest common
left factor of A°(B),B°(B) and C°(B) is a unimodular matrix (i.e. a matrix with nonzero

constant determinant).

The problem of multivariate ARMAX process identification may be then posed as follows:
“Given a set of N input {x[t]} and noise-corrupted output {y[t]} vector observations, identify

a model of the form:
M: A(B,8)-y[t] = B(B,0)-x[t] + C(B,0)-e[t/0]  E{e[t/0]-€T[t/0]} = £(6) (5)

that “best” fits the data.”

In Eq.(5) 6 denotes the 4-tuple 8 2 (A,B,C,X) that includes all parameters to be estimated
and e[t/d] the one-step-ahead prediction error corresponding to the model structure M.

As is however well-known, this identification problem is ill-posed, because of the lack of identi-
fiability within the general ARMAX model structure M defined by Eq.(5). This is true even under
the assumption of existence of a system S, defined by Eqgs.(1)-(4) and subject to assumptions
A1-A6, actually generating the observations, and is due to the fact that there exist many AR-
MAX models giving rise to the same input/output relationships (Hannan, 1976; Kashyap and Rao,
1976). All multivariate ARMAX models may be thus divided into equivalence classes according
to an appropriate equivalence relationship. By considering the equivalence relationship giving rise
to the same Gaussian likelihood function, likelihood equivalence classes may be constructed, and
a set consisting of a unique representative from each such class is then called an identifiable form
or structure. Since the Gaussian likelihood depends only on the spectra of the signals {x[t]} and
{y[t]}, the likelihood equivalence classes in the Gaussian case? are identical to spectra equivalence
classes, and an identifiable form can be in this case constructed by selecting elements from each
equivalence class that yield distinct auto and cross spectra Sy, (w), Syz(jw), where w represents
frequency and j the imaginary unit.

A number of such identifiable forms, that can be classified as either canonical or pseudo-canonical
(overlapping parametrizations), have been constructed (Hannan, 1976; Kashyap and Rao, 1976;
Gevers and Wertz, 1987). Canonical forms have the advantage that any given system will al-
ways have a (unique) representative within the canonical form. Their utilization in identification
becomes, however, problematic because of the fact that estimates of a set of structural param-

" eters, known as Kronecker indices, need to be obtained by very time-consuming and sometimes

21t should be however clarified that Gaussianity is not restrictive in this context. Identifiability can be always
defined based on spectra; just in the non-Gaussian case the term second-order identifiability should be more appro-
priately used.



numerically sensitive procedures (Gevers and Wertz, 1987). Moreover, the accurate estimation of
the Kronecker indices is very critical for obtaining accurate parameter estimates, and, as is well-
known, inconsistent parameter estimates are obtained if the indices are wrongly estimated (Caines
and Rissanen, 1974). For these reasons the use of pseudo-canonical forms has been often recom-
mended in identification. Pseudo-canonical forms may be indeed advantageous in the sense that
instead of estimating the full set of structural indices one only needs to determine the system orders,
and the given system may be then almost surely identified within the pseudo-canonical form. Their
main disadvantage is that they may contain a few parameters more than canonical forms, but this
is not viewed to be a serious drawback since it has been observed that the difference in the number
of parameters between pseudo-canonical and certain canonical forms may be quite small (Kashyap
and Rao, 1976).

3. THE MAIN FORM OF THE ESTIMATOR

In this section the main form of the linear multi-stage method for parameter estimation of
multivariate ARMAX processes represented in the fully-parametrized pseudo-canonical form, also
refered to as pseudo-canonical form II (Kashyap and Rao, 1976), is presented.

The fully-parametrized ARMAX pseudo-canonical form is characterized by full polynomial ma-
trices A(B,8), B(B,0), and C(B,0), and an also full innovations covariance matrix X(f) [see
Eq.(5)]. This parametrization yields identifiability provided that the system § to be identified is
described by Eqs.(1)-(4), and is subject to assumptions A1-A6, as well as the additional assumption:
A7. Rank[{A°(na) B°(nb) C°(nc)]= s ’

This fact has been proven by Hannan [see for instance Hannan (1976)], who has additionally
shown that there exist equivalence classes with no representative in the fully-parametrized pseudo-
canonical form. Those correspond to systems that do not satisfy A7, but, as it has been pointed out,
those equivalence classes are not expected to occur, and even more relevantly, it is most unlikely
that the maximum of the likelihood, for any fixed orders na,nb, nc, will be at a point not included
in this form (Hannan, 1976). As a consequence A7 does not represent a real practical limitation for
identification, whereas it significantly simplifies the structure determination problem as only three
structural indices, namely the orders na,nb, and nc, need to be determined, and the complicated
and numerically sensitive procedures required for structure determination within canonical forms
are circumvented.

The main form of the proposed linear multi-stage method is based on the replacement of the
original nonquadratic Prediction Error (PE) estimation problem by an appropriate sequence of
simpler quadratic PE and/or linear subproblems, for which uniquely-determined closed-form solu-

tions may be obtained. More specifically, the estimation procedure is based on the observation that



after separating the estimation of the parameter matrices from that of the innovations covariance,
the original PE problem can be reduced into a quadratic one for a fixed MA polynomial matrix.
An initial estimate of that matrix is then obtained by using a truncated multivariate ARX model
structure, fundamental properties of multivariate ARMAX models, and PE-type estimators. By
using appropriate filtering operations the problem is transformed into a form that is quadratic in
the AR and X matrices, which are subsequently estimated by using a PE-type procedure. The final
MA polynomial matrix and innovations covariance estimates are then obtained by using earlier
derived estimates and ARMAX model properties. )

This estimation method overcomes the severe problems associated with the ML and general
PE approaches, while also circumventing the limitations (algorithmic instabilities and the need
for a possibly large number of iterations) of optimal Instrumental Variable (IV) schemes. Also,
unlike the GLS algorithm, the proposed method does not start with highly inconsistent estimates
that have to be subsequently refined, and, in contrast to the method of Hannan and Kavalieris
(1984), it does not depend on innovations sequence estimates. The main advantages of the pro-
posed method may be thus summarized as: (a) the use of exclusively linear techniques and the
resulting low computational complexity, (b) uniquely-determined estimates and the elimination of
the local extrema/wrong convergence problems, and (c) no need for initial guess parameter val-
ues. Furthermore, a guaranteed-stability form that enables the method to also overcome the severe
instability problems of alternative techniques and estimate all types of processes, including those
characterized by MA roots close to the unit circle, is also introduced in Section 4 of the paper.

The main form of the linear multi-stage parameter estimation method consists of the following
four stages:

Stage 1: Estimation of a truncated ARX representation.
Based on the invertibility assumption A5, and by introducing the impulse response matrices

{H3(5)}20 and {H3(5)}22;, the system representation S of Eq.(1) can be put into the following

form:
§: H(B) - y[t] = Hy(B) - x[t] + wt] (6)
with:
HY(B) £ [C°(B)™-A°(B)= ZH(]) B [s X 3] (7)
]=O
HY(B) £ [C°(B) ZH(:) B’ [s x m] ®)

and H(0) = I,, with the middle expressions in (7) and (8) providing Matrix Fraction Descriptions
of Hj(B) and H}(B), respectively. The algorithm then starts by estimating the matrix H; €

10



Rexp(s+m) defined as:

H1 & [ H,(1) By By(p) HL() Ha(2) -+ Halp) ©)
within the following ARX model structure:
P P
My: > Hy () - ylt = 1= Y Ha() - [t - 5]+ €t/ Ha] (10)
7=0 =1

which is a truncated version of the system equation (6) of finite order p. In this model structure
H,(0) = I,, and €[t/Hq] represents the associated on&-step-ahead prediction error. By manipulat-

ing equation (10) the following alternative expression may be derived:

Mz yl= [Loufl] ki +elt/Ha) s x 1] (11)
in which:
A . T
wf] & [0 -yTh-2 -y - - T -al 02
A . o
hy 2 col[ [Hy(l)---Hy(p):H,,.(l)---Hz(p)] ]
2 [nf@) nf@ - nfe) | (13)

where uy € RP(+m)X1 h; ¢ Ropl(s+m)x1 and @ denotes Kronecker product (Magnus and Neudecker,
1988), the superscript T transpose, and the p(s + m)-dimensional vector h'lr(i) represents the i-th
row of the matrix H;. The model structure M; of Eq.(11) consists of a number of scalar forms
that have a common regression vector uj[t], and except for the vector hj, the prediction error
covariance matrix is also unknown. The estimation of this type of models within the framework of
the Conditional Maximum Likelihood method (or the Prediction Error method in the non-Gaussian
case) is known to have an interesting solution according to which the estimator of the parameter
vector hq may be decomposed into a set of closed-form estimators of the form [Theorem 6.a.1 of
Kashyap and Rao (1976)]:

N -1 N
hy (i) = [ Y uft] - ui[f] ] [ Y waft]- wilt] ] (i=1,2,-++,8) (14)
=1 t=1

where y;[t] represents the i-th element of the output vector yft] =[y1[t]~--y,-[t]~-y,[t]] T. The
collection of the above linear least-squares (LLS) estimators thus forms the desired estimator of the
matrix Hy. o
Stage 2: Initial estimation of the MA polynomial matrix C°(B).

Based on the definition of the impulse response sequence {Hy(j)} [Eq.(7)], the following ex-
‘pression is derived:

min(i,nc)
Yo Co(y) - HY(i - j) = A°(3) i=0,1,2,- (15)
j=0

11



in which A°(7) 20 for i > na. By collecting together these matrix expressions for ¢ = r — nc +
1,-++,r [r > max(na,nc)+ ne], and substituting the theoretical values of the impulse response sam-
ples H3(j) by their corresponding estimates obtained in Stage 1, the following estimator expression

can be derived for the MA matrices:

HI(r—nc) HI(r-nc-1) ..« HI(r—2nc+1) CT(1) —Iilg'('r —nc+1)
HI(r—nc+1) HI(r—-nc) .- HI(r—2nc+2) C7(2) ~-H](r—nc+2) (16)
HI(r-1) AI(r-2) co HI(r-nc) CT(nc) -HT(r)
(W]

Stage 3: Estimation of the AR and X matrices.

The estimation of the AR and X matrices is based on the observation that a PE criterion is
quadratic in them for known MA matrices. Indeed, for a given estimate C(B) of the MA matrix
polynomial, the following model structure may be constructed by replacing C(B,8) by C(B) in
the original model structure of Eq.(5):

nb na
My:  C7Y(B)ylt]= CY(B)-Y_ B(j,02)-x[t—j]-C'(B)-)_ A(j,02)-y[t—5]+¢€[t/82] (17)
J=1 j=1

In this structure 05 represents the AR and X parameter vector defined as:
02 col[A(1) A(2) - A(na) B1) --- B(nb)]  [(s®*-na+m-s-nb)x1]  (18)

and €'[t/02)] the associated one-step-ahead prediction error.
By using Theorem 2 of Chapter 2 of Magnus and Neudecker (1988), the following expressions

may be obtained:

C'(B)-ylt] = [y [(1®C(B)]collL] (19)
C7'(B)-AGG)-ylt-4] = [y'[t-71®C7'(B)]-collA(5)] (20)
C-'(B)-B(j)-x[t-j] = [x"[t-37]1®C(B)] collB()] (21)

and by defining the following vector and matrix forms of the filtered observations:

yel] £ [YT®C(B)]-colll]  [sx1] (22)
Ye[t-j] £ yT[t-710C(B) [s x s%) (23)
Xplt-j] & *"[t-j10 CY(B) [s x m 5] (24)

the model structure M, of Eq.(17) may be rewritten as:

nb na
My:  yrlt] = 3 Xplt-4]-col[B(,02)] - 3. Yrlt - ] coll AGG,02)] + €[t/62] =
=1 J=1
= yrlt] = Uyplt] 82 + €[t/02) (25)

12



in which the matrix UlF € Rex(s?natmesnb) jo defined as:
Uirl] = [-Yrlt-1] - Yrlt-2]-- - Yrlt - na] Xplt—1]--Xplt - nb]] ~ (26)

Since the model structure M; is linear in @,, minimization of the PE criterion:

N
j 8 trace(%;d[t/e,]-e’T[t/O,]) (27)

»

leads to the following LLS estimator:

) N -1 N
by = [zU{Fm-Umm] -[ZUfF[t] -ypm] 8)

t=1 t=1
In implementing, however, this estimator, the filtering operations that define the vector and
matrix sequences {yr[t]}X,, {Yr[t]}X,, and {XF[t]}}¥,, have to be performed. Towards this end
consider the matrix Yr[t] first:

np

Yel] 2 y7[] © CTU(B) =[nl]- CB) il -€7I(B): - inl]- CN(B)

RSV CURERER AUl (29)

]2

In this expression the i-th block element Y;[t] of Y[t] is defined as:
A A
Yilt] = ult]- C(B) [s x o] (30)

from which the following recursive equation may be obtained:
Y Yilt - 4] () = wilt] - L, (31)
s

with €(0) = I,. Based on this, and by assuming Y;[t] = 0 for ¢ < 0, the sequence {Y;[t]} may
be obtained. {yr[t]})V, thus becomes also available, whereas the sequence {Xr[t]}Y, is similarly
obtained by assuming that Xp[t] = 0 for t < 0. | o
Stage 4: Estimation of the MA matrices and the innovations covariance.

After the AR and X matrices have been obtained, the MA matrix estimates are updated by using
an estimator expression that is derived from (15) for ¢ = 1,:--,nc, after replacing the theoretical

impulse response samples by their corresponding estimates:

5 €6)- B, (i - ) = AG) 20,12, e 3
J=0

in which A(3) £ 0 for i > na.
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After the VAR, MA, and X matrices have been all obtained, the prediction error sequence
{e[t/6.]} with:
61 £ col| A1) A(2) -+ A(na) B(1) -+ B(nb) C(1) ... C(nc) | (33)
is estimated by using the model expression (5) in which the estimates A(B), B(B) and C(B)
have replaced A(B,6),B(B,8), and C(B,8), respectively, and the innovations covariance is finally
estimated as:
. 1 X .
B=§ Leld]- <10 (34)
o

Remarks:

(a). The order p of the ARX model of Eq.(10) needs to be selected such that:
r < p << N

An appropriate value of p may be selected based on statistical order selection criteria, such as
the BIC. As it has been however observed, the specific value of p is not of critical importance
as long as a value that is sufficiently higher than the model order is used (also see Section 3
of Part II).

(b). Stages 3 and 4 of the estimation algorithm may be iterated until convergence in the param-
eter vector @, is achieved. Although the improvement thus obtained is typically not very
significant, this iterative procedure may be used as a means of refining the ARMAX process

parameter estimates (also see Section 3 of Part II).

4. THE GUARANTEED-STABILITY FORM

A very significant problem that is inherent in most ARMAX parameter estimation methods is
that of algorithmic instability. Algorithmic instability may occur in connection with all types of
processes, but it almost always occurs in cases where ARMAX processes with MA roots close to
the unit circle are to be modeled, and this inevitably prevents the completion of the estimation
procedure. Although, in principle, the estimator stability can be monitored and (typically ad
hoc) stabilization procedures applied, the implementation of “continuous” stability monitoring
(for instance in every iteration of the Maximum Likelihood method) and stabilization procedures
is cumbersome, and very significantly increases the method’s computational complexity. In the
multivariate case, in particular, the estimation methods are known to be much more prone to
instability occurence problems, while stability monitoring and stabilization procedures become

much more complicated and computationally expensive.
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As a consequence, estimation methods characterized by mathematically guaranteed stability,
that completely overcome the problem and eliminate the need for stability monitoring and stabi-
lization, are highly desirable. In the present section this problem is addressed, and a guaranteed-
stability form of the proposed linear multi-stage method introduced.

Evidently, within the context of the proposed linear multi-stage method, instabilities may occur
only in cases where the initial MA polynomial matrix estimate obtained in Stage 2 is characterized
by roots inside or on the unit circle, so that the recursive filtering operations (22)-(24) become
unstable. In order to overcome this difficulty Stage 2 of the algorithm needs to be appropriately
modified, and an estimator that is bound to yield strictly minimum phase (i.e. Hurwitz) initial MA
polynomial matrix estimates constructed.

Towards this end consider the following expression that may be derived from (7) by using the

causality property of the multivariate ARMAX process S:

H(3) + §C°(j) -H;(i’— =20 i ¢ [0, max(na,nc)] (35)

in which C°(0) = I,. By approximating the impulse response samples Hj (i) by zero outside the
interval [ maz(na,nb),p], that is:

Approzimation 1 : Hy(é) ~ 0 for i <! = max(na,nc)+1and i > p

or, alternatively, by approximating Hj(i) by zero for i > p and neglecting the values of the AR
matrices, that is:

Approzimation 2 : H3(i) ~ 0 for i > p and A°(j) ~ 0 for j =0,1,--+,na.

the range of validity of (35) can be extended to all values of i. Furthermore, by premultiplying the
transpose of (35) by H (i — k) and taking summation over —oo < i < 00, the following expression

is obtained:

o (k,0) + 3 Rk, ) CT() & 0 (36)

Jj=1
in which R$(k,j) represents the theoretical autocorrelation of the impulse response sequence
{H; (i)} defined as: . |
Ry(k,) £ Y Hyi- k) HT( - ) (37)
i=—00
In light of Approximation 1 or 2 and the definition of R (k, ), the error involved in (36) is
a decreasing function of p — maz(na,nc), and the approximation reasonable for a relatively large
value of p. By replacing the theoretical autocorrelation R (k, ) by its biased estimate Ry(k,j)

defined as follows for each type of approximation:
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Approzimation 1I:

>

D G) BTG+ k—g) 2 Rpk—4)  (k2J)
Ru(k,j) = (38)

R R G+i-k)-BIG) 2 Ru(k-7) (k<))

1=l

Approzimation 2:

[]>2

S Gy BT+ k-j) 2 Ru(k-7) (k29
Ru(k,j) = . (39)
rUREG+j-k)-BIG) 2 Ru(k-7) (k<9

where {ﬁy(z)} represents the impulse response estimates obtained in Stage 1 of the algorithm, and
collecting the nc expressions (corresponding to k = 1,2, -+, nc) from (36), the following estimator

expression may be formulated for the MA matrices:

Ry(0) Ry(-1) - Rp(l-nc) ][ CT(1) Ry (1)
Ry(1) Ryg(0) -+ Rpy(2-ne) CT(2) Ry (2)

: : : . = - : (40)
Ry(nc-1) Ryg(ne-2) ---  Rpg(0) CT(ne) Rpy(nc)

in which the leftmost matrix is block Toeplitz and Hermitian [since Ry(~k) = R} (k)). This
estimator expression is characterized by a special structure that closely resembles that of the Yule-
Walker equations associated with a multivariate AR model (Kay, 1988), and therefore yields a
positive definite, and hence invertible, block system of equations, and an estimated polynomial
matrix that is strictly minimum phase. As a consequence the MA polynomial matrix CT(B) thus
estimated will always be strictly minimum phase, and since det|C| = det|CT|, the initial estimate
C(B) of the MA polynomial matrix obtained from (40) will be strictly minimum phase in both
approximation cases.

This form of the estimator completely overcomes the algorithmic instability problem, and hence
eliminates the need for stability checks and subsequent stabilization procedures, while making the
proposed method capable of estimating all types of multivariate ARMAX processes, including those

characterized by MA roots close to the unit circle.

5. CONCLUSION

In this paper the main and guaranteed-stability forms of a novel linear multi-stage method for
the estimation of parameters in multivariate ARMAX processes represented in the fully-parametrized
pseudo-canonical form were introduced. The main form of the proposed method is based on
the replacement of the original and nonquadratic Prediction Error (PE) problem by an appro-

priate sequence of simpler quadratic PE and/or linear subproblems, for which uniquely-determined
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closed-form solutions may be obtained. This is achieved by using basic ARMAX process proper-
ties, a truncated ARX representation, and appropriate filtering operations. The method is thus
based on exclusively linear techniques, and by offering low computational complexity and uniquely-
determined estimates, circumventing local extrema/wrong convergence problems, and requiring no
initial guess parameter values, it overcomes some of the major drawbacks that render multivariate
identification unrealistic in many practical applications. In addition, a guaranteed-stability form
of the method that overcomes the severe instability problems of alternative approaches and allows
for the identification of all types of ARMAX processes: including those characterized by MA roots
close to the unit circle, was developed.

In the second part of this paper (Fassois and Lee, 1990b) the very important problem of unknown
model structure will be addressed, an effective structure and parameter estimation procedure that
overcomes the enormous computational requirements of alternative approaches developed, and the

performance characteristics of the linear multi-stage method examined via numerical simulations.
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LIST OF SYMBOLS

A(B) [sxs] autoregressive (AR) polynomial matrix

B(B) [sxm] exogenous (X) polynomial matrix

C(B) [sxs] moving average (MA) polynomial matrix

e(t/0] [sx1] one-step-ahead prediction error of the output

h; [(s+m)x1] 1-st column of [-H,(5) Ha(5)]T

hy1(7) [p(s+m)x1] jth column f the matrix HT

ha(5) [p(s+m)x1] j-th column of the matrix H3

h1 [sp(s+m)x1] column vector containing in order the columns of H]
ha [sp(s+m)x1] column vector containing in order the columns of H3
H.(j) [sxm] j-th sample of an impulse response function

H,(j) [sxs] j-th sample of an impulse response function

Hqy [sX p(s+m)] matrix containing the H(j) and Hy(j) sequences
Ho [sxp(s+m)] matrix containing the H,(j) and H,(j) sequences
ri;(k) i,j-th element of the covariance matrix R, (k)

rii(k) [sxs] filtered version of ;;(k)

Iy (k) [(s+m)x1] cross covariance between z[t] and y;[t]

Foy(k) [s(s+m)x1] cross covariance between Zp(t] and yr[t]

Ru(k) [sxs]

Ru(k)  [(s+m)xs]
R..(k) [(s+m)x(s+m)]
Ro(k)  [s(s+m)x o]
R,.(k) [s(s+m)xs(s+m)] filtered autocovariance of z[t]
wi]  [p(s+m)x1]
wl]  [p(s+m)x1]

autocovariance of the impulse response function {H,(j)}
cross covariance between z[t] and y([t]
autocovariance of z[t]

filtered cross covariance between z[t] and y[t]

vector containing samples of the input/output sequences

vector containing samples of the input/output sequences

Uy r[t] [sx s(s-na+m-nb)] matrix containing samples of the filtered input/output sequence
Uqr(t] [sxsn(s+m)] matrix containing samples of the filtered input/output sequence
V; [s(s+m)x1] column vector containing in order the columns of [-A(5) B(j)]
wii] [sx1] innovations sequence

x[t] [mx1] input sequence

XF(t] [sxm-s] matrix containing samples of the filtered

ylt] [sx1] noise-corrupted output sequence

yF(t] [sx1] filtered output sequence
Yr[t] [sxs?]
A [s+m)x1]

Zrlt] [sxs(s+m)]

filtered output matrix sequence
joint input/output vector

filtered version of z[t]
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0
0,
03

[s(s-na+m-nb+s-ne)x 1]
[s(s-na +m-nb) x 1]
[sn(s+ m) x 1]

[sxs]

set of ARMAX process parameters
AR, MA, and X parameter vector
AR and X parameter vector
AR and X parameter vector

innovations covariance
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