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,I. INTRODUCTION AND SUMMARY

It is the main purpose of this report to give a simple,
general solution to the problem of homing with a point mass in a
vacuum, |

This report is associateﬁ closely with Report No. UMM 18

on the sub ject of homing with minimum fﬁel consumption. The

background of the problem is given there in somé detail and we
shall not go into it here., By homing is meant the epplication
of thrust! torthe first pasrticle, essentially é rocket, called
thg'gzgif, in such a Wéy that»its position will at a later time
colrcide with thet of the second pérticle, the terget. The tar-
get is assumed to be in free flight or, in the lster sections,
following any prescribed course,

The method of this report also gives the method for
determining the paths of minimum fuel consumption and their exis-

tence. It has important applications for the designer 1n

clThe thrust is a force gained by the emission of part of the
mass of the craft. The everage velocity of these particles
over any time interval is assumed to be constant, designated-
by ¢, the effective gas velocity.
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‘determining‘craft specifications for homing. ~The’method also
gives the engineer an‘gpproximate answer to meny other problems
that arise in rocket work. Some of these apprdxiﬁations are
given and the sources of errors due fo the approximations are

pointed out.

A. Points Particularly Important to the Homing Problem

The method can be ﬁsed whenever the thrusﬁ is a spec-
ified function‘of time and when the target course can be pre-

- dicted. This includes the'casé in which the acceleration due to
thrust is a specified function of time.

The key to the method is this: a single grid can be
drawn up which,'except\for perameters of the particular rocket
chosen, completely describes the motion of all rockets which
have a simiiar thrustl."As an example, oll rockets whose thrust
is constant have Similar thrust. Because of its importence the
work‘is carried through for this case -with supblementary explan-
ations of the direct generalizétions. ~The grid is drewn up in
dimensionless form. The initial conditions, that is, the ini-
tial relative velocity end position of the terget with respect

to the creft, are expressed in terms of the parameters of the

rocket., This determines a curve which is .superimposed on the

grid.

'Bxplained in detail in the text.
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The following quantities can be‘read'diréctly from

the graphs. :

1. The times when homing can be effected.

2, The burning time (the durstion of thrust)
and fuel consumption éorresponding to any
chosen homing time.

3. The existence (or non-exisfenéé)kof a
miﬁimum'pathl. | | |

4, The homing time, burning'time, and fuel con-

k'sumption corresponding tb the minimum path.

The method eppears to be well adapfed to use 1n the
field. The importent reason is this: the charscteristics of
the craft do not need to be Specified beforehand; they need
only to be spécified at the instant homing starts. This seems
important if we consider thet homing ‘will teke plece in a suc-
cession of steps as the informetion becomes more end more accu-
rate. Eech step will begin with en amount of fuel which cennot
be predicted beforehand but which can be'compuﬁed, since.thev
initial weight (at the beginning of the first step) and the
amount of fuel burned in each step will be known as sod@ as the

step is ower, -

\lLet us refer to paths of minimum fuel consumption as minimum

,Qaths.
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As showﬁ in UMM-18 the problem of homing 1s entirely
a problem in relative motion. In the early stages of the hom-
ing problem‘it may be necessary to use informetion from earth-
based equipment, In this case there are at least fifteen para-
meters in the problemfl the_initial posifion of the craft (three
coordihates), its initialvvélocity'(thfee more paremeters), the
position and velocity of the target, the thrust of the creft,
.the effective velocity ofmthe jet, ana the initial weight of
the craft.® |

The second‘important‘feature‘is this. It is shown
that the fifteen peremeters above can be COmbihed to vield
three significant perameters; these three persmeters completely
specify the problem.2 |

This simplifiés the over-211 problem greatly. Of
course any solution’ in terms of initial values must be reduced
to this form eventually, either explicitly or implicitly in
that the'computations'cérried out are entirely equivalent.

Immediate reduction to this form removes the mysticism from

the solution.

IThese can be expressed in numerous other equivelent weys.

2There is s fourth parsmeter (a sixteenth perameter in the
fiprst set) which corresponds to the maximum allowsble burning
“time, or to the total smount of fuel which the rocket has.
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B, Points Particularly Important»in-the Design of a Homing

Craft

The method can be:used to find the following infor?
mation of particulesr interest to a person designing a homing
crafts | -

For given target cOnditions and known jet veldcity_
one can determine the following:

1. The times when hdming can be effected by

burning all the way.l

2, For a chosen homing time, the fuel consumption

corresponding to burning all the wey (if it
is possible). |

By virtue of properties (1) énd (2) we can draw

a graph which will show the lowest burning rate

which can effect homing (and ﬁhevhoming time

corresponding to this bufning rate). There may
not be s lowest burning rate; the burning rate

may decrease steadily as homing time increases.

3. For a chosen homing time, the fuel consump-

tion corresponding to thrust applied as an

impulse.

IWe will see thet if the everage velocity during homing exceeds
¢, the jet velocity, then homing cannot be effected by burning
all the way at a constant rate.
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Femiliarity with the method will revealvother impor-
tant properties to those who uée it. Many of the properties of
minimum peths can be shown directly from the graphs.

In UMM-18 certain principles of minimiﬁing’fuol con-
sumption were given. These could equelly well heve been called
principles for_maximum performance; thet is, how to achieve max-
imum oerformance'with a given craft snd a given emount of fuel.

The two most important principles were thet

1. thrust must be fixed in direction (the first
fundomental principle for minimizing fuel
conéumﬁtion),.9nd |

2; thrust mﬁst bo high duriﬂé the eéfly moments

of the homing, then it mmust be cut off (the
.second fundsmental pfinciple for minimizing
fuel consumption). | |

The homing peths detefmined ﬁore are found ﬁnder the
assumption thet these principies are observed. 'Fortﬁnstely
these prinoiples, perticularly the second, seeﬁ to be quite
natural ones tovfollow when the initiai Velooity end initlal
position ére knowo; | |

For a detailed anélysis of avperticulér craft it is
often simoler notvto change to the dimensionless form, thet 1is,

to leave distences expressed in feet, times in seconds, etc,

‘Page 6 ' . -
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GC. ObVious Generaligations and: Limitations of the Method

‘The method can be used any time that the vector of
relative position can be broken down in?o two components, one
independenﬁréf the thrust and the other due entirely to thrust.
Simple extensions of the methods are given to solve the follow-
ing problems, |

1. 'The problem where the target follows a known

dodging course,

2. The problem of sending a rocket to a fixed

point in space.

One can read directly from-the graph all the'quanti-
ties mentioned previously such as the time when the craft can
home (or‘arrive), fuel consumption, the fuel consumption corre-
sponding to burning all the way and corresponding to an impulse,
the determination of paths of minimum fuel consumption, if they
exist, etc. | | |

The engineer and the designer are frequently called
“upon to make‘quick estimetes and epproximations. One aim of
this report 1s to provide them With g method for getting these.
Therefore we point out the limitations and the places where
approximations are made, so that they can evaluate their results.

In the first piace wertreat the point mass problem.
Thié is a good epproximation so iong as the times required to

rotate the craft can be neglected and the displecements resulting
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from the rdtatioﬁs.can be negleéted in comparison to the other
times and displacements. |

In the second place it is assumed thet the action takes
place in a vacﬁum. This approximatien is‘good\as long.as the ac~-
celerationldue to interaction with the air can be neglected. In
many cases the‘méthod givesxa”first approximation, Using this,
we can compute fhe serodynamic forces and superimpose them as a
perturbation upon the first approximation to yield two results,
one above the true vélue for distaﬁce'and velocity and the second
below fhe true value. |

“Part of the performénce analysis in Project WIZARD

Phase One Report WaS'éarried out in a similar way. Some detailed

computation should be cafried out to give a measure of the valid-
ity of the answers.

‘The third approximétion is this.,ﬁIt is assumed that
the target and the craft are:close enough'togethér that the ac-'
celerstion due to gravity 1s the same on each. This introduces
an error in the‘écceleration of approximétely,one foot per sec.
per sec. for each three huhdred thousahd feet distance between
ﬁhem when they'gre nesr the earth's surface. When we have accel-
erations from thrust of the order ofbthree to ten times the ac-
celeration of graﬁity, this seems negligible. For a long period.

of free flight'this may introduce an appreciable error.
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II. FORMULAS AND EQUATIONS

A. General Formulas

The equation of motion of a rocket in linear motion in

a field-free space can be written

(2.1) W o=

where
w 1s the velocity,

is the effective velocity of the emitted gas,
usually assumed constant,

lo

I

1s the burnt fuel ratio = ﬁ% ,

is the mass of the fuel consumed at any tlme,

I8

My is the initial mass of the rocket complete
— with fuel,

M is the mass at any time. (Mo = M + m)

Let us use dots over variables to indicate the derivative with

respect to the time t. the thrust force is given (in magnitude)

by -

(2,.2) T = me = - Mc .
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Te can integrate equation (2.1) to get the well-known formule

for velocity,

(2.3) | w = =-c¢1ln (1 - r)

»

if the rocket sterts at rest. If thrust is chstant we can

inte :rete equation (2.3) to set distance

(2.4) s(b) = et [L+(2-1)1n (1 -r)]
) r

during burning if the craft sterts at rest.

We define the burning time t; by the relation

r o= Ty, a constant, for t < tg
(2.5) .
r = O fOI‘ t > tlo
We have the second formula for distence
(2.6) s(t,ty) = =-ct1ln (1 - ry) + cty [i 1 in (1 - nLﬂ

ry
for t 2 t,. This equation includes equation (2.4) if we define

t, .= t during burning.

B. Dimensionless Form of the Equetions of WMotion

Let us define the dimensionless quentities

t% = ot
(2.7) g o= N
c
SR — S ;
C/i’o
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the equations above become

(2.8) wk = - 1n (1 - t¥) ,

(2.9) si(t¥) = % 4+ (1 - %) In (L - t%) ,

and

(2.10)  s¥(t¥,5y%) = = t% In (1 = ty%) + t1% + In (1 - t,%) .

Note that these formulas, which are the same for all rockets
whose thrust is constent, completely describe the motion of thé
craft except for the paremeters ¢ and éQ' |

Figure I is o greph of s¥(t#,t,%) versus t¥ with t% gs
a parameter. We see the following interesting property: 1if it
were possible to burn the cr9ff up with the lest perticles deliv-
ering the same momehtum, the creft would, in 1ts lest momehts,

i reach an infinite velocity, but it would tresvel only e finite

distence, |

It has & second interesting end useful property. By

direct substitution we get the reletion
(2.11) s¥(1,5,%) = to% .

This is used in the following way. We shell went to find the
point of tengency to the curve for s¥(t¥*)., By noting the inter-
cept of the tangent with the line t¥ =1 we get the velue of t%
at the-point of tangency much morelaccurstely then we could by

examining the intersection of the tangent with the curve.

Page 11
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Intuitively we define 1/}Q as the burnup time, thet 1is,

the time it would teke the creft to burn up entirely if it con-

tinued at the initial rete. We defihe EZEQ aé the burnup diétance,»
the distence the creft would travelsif the same equation of motion
(2.1) held until the creft burned up. The dimensionless terms
above then express times in terms of the burnup time, velocities
in terms of the jet velocity, end distences in terms of the burn-
up distanég. | -

| if thrust 1s coﬁétant thenkr = t¥% during burning eﬁd

ry = ti¥.

C. Similarity Considerations

The prévious work iSJa simple application of‘similerity
oonsidérations. These ere f;eéuently uséa tg reduce ﬁsny-partic-
uler problems to a smell numbsr of zZenerel problemsl.

Let us consider the motion of two creft. Let us denote
quantiﬁies associsted with the second creft Uy Greek letters.

Let the burned fuel ratios be r and P rés;ectiveiy.

Definition. If the unit fuélxconsumptions r end £-

setisfy the reletion

(2.12) p(t) = r(kt) ;

lThese are particulerly importent in problems in compressible
flow. See, for exemple, Dodge end Thompson, Fluid Mechanics,
New York: McGraw Hill, 1937, pp 420 ff..
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then the thrust of the two rockets 1s similer; the two rockets

are said to burn in a similer menner.
The curves for r end P vs. t are similar in the usual
: »
sense of the definition of similar curves in dynamics.

For linear motion we see thet the veloclties w end w

satisfy the relation

(2.13) w(t) = =-71In (1 =P(t))

= - 71n (1 - r(kt))

o =R

w(kt)

where ¢ and ¥ are the respective effective ges velocities. If

7 = ¢ then
(2.13") w(t) = w(kt) .

If we differentiate in equatioﬁ (2.12) we see thet
(2.14) p(t) = k r(kt),

and thet the accelerstions 2 and o satisfy the relation

R v ple) ik (k)
(2.15) ot = TTpRT T o1 - ek
= TE g(xt) .
¢

Paze 13
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VIf ¢ = 7, then
(2.156') q(t)‘ = k a(kt) .
If we integrate in equetiomn (2.13) we find thet
. ck

(2.16)" o (t) = — s(kt)

where s and ¢ ere the distances for the two creft. The craft

are assumed to stert from rest et the orizin. If ¥ = c¢, then

(2.16") ; o*'(t)' = = s(kt) .

bl

It is cleer that the curves for accelerstion, velocity,
distance and fuel coﬁsumptLon as fupctﬂans of time for all rockets
thet have 51m119r thrust differ only in the scele used clon@ the
axes and thet points on one of these curves fof eny rocket of the
set cen be obteined from the corresponding curve for eny other
rocket df the set by the proper use of the factors k end EZE.
Hence o single curve dan be drewn up in dimensionless form ob-
tained by dividing t by some ﬁarameter corresponding to }Z%Q of
paragraph B end dividing 8 by the corfesponding quantity ihvolv—
ing ¢c. A curve of the dimensionless quantities s¥* as a function

- of t¥ with psrameter t % 1s obtained correspgnding tqvthe curves

of Figure I. 1In general a second curve is needed to convert §;¥

to r.

Page 14
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III. THE METHOD OF SOLUTION OF THE HOMING PROBLEM

- We shall choosge our ooordinate set so that the craft is
.originally gt the origin with zero velocity end 1its motibn is due
entirely tQ the thrust-applied.  ﬁe choose thé coordinate éet El

that the terget is initially ot (Xg,Y¥p) with its velocify‘(gag)
1

parallel to the x-axis as in Figure II. This cen slways be done-.

The coordinates of the target position in this systémk

are
X = X, +Ut = Ut -t'),
(3.1) | |
: Y = Y;o‘.',_ :
where t’ = - §9; £ is the time when the target is nearest to

‘the origin. In poler form the terget position becomes

S = Xz + Y?

(0]
] ct .
arctal X5 + Ut

I

-

1See UMM-18, the appendilx.
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We canbwrite the first of these es
(3.3). §? - UR(t - t1)% = Y,B,

the equation of a hyperbole in the tS-plene.

The creft ?osition can be expressed in polar form (s,8)
and we nofe thet s i1s given by the formules of Section II; We
can chenge s to ité'diménéionleSSvform‘s*'end then the grid of
Figure I is the greph of s¥(t¥,t %), ‘Only o limited amount of
fuel will be sveilable end this will place e limit on ty end Hi¥.
Thié determines the heevy' tengent curve of Figﬁre III, celled the

curve of maximum performance, which g% cennot exceed. In Figure

" III this meximum velue of t % wes taken erbitrerily es .5 corres-
| bbhding to o fuel weight of one helf the initiel gross weight. |
Now let us change the quentities 3, X, ¥, U, end t to
a dimensionless form in the seme menner es in the preceding sec-
tion, bj'multiplying times by rg, dividing velocities by ¢ and
distances by EZ%Q' We denote the cqrrespdnding'dimensionless
terms by % as before.

g

Equetion (3.3) becomes
w2 ";v 2 L L 2 — ‘.\'.
( ,_'7) . 4 ) ' ’ s’-\' - U'l\‘ (t':\ - t 1% ) = Yo « .

In the t*S*—plane'this is the equetion of a hyperbole with center

et (£'%,0) with esymptotes of slope T U% end semi-trensverse

Paze 16 - : .
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axis Y %, Let us draw the graﬁh of equation (3.4) on the same
set of coordinetes as those for equations (2.9) and (2.10) (see
Figure III); Since S¥ is essentlally a distence we shell éonSider
only the upper branch of the curve.

fow all points of the S¥#-curve which lie belbw‘the
curve of meximum performence represent possible‘thing times and
homing points.

Forﬂa Qhosen ts* in this renge we find t,% es follows
(see Figure IV where we chose Lg% arbitrerily es 0.7). Drew the
tangent to the §i—curVe from the point on the S¥-curve., The
point of tangéncy determineé E;f.. As remerked in Section IT, it
is difficult to determine the exect point of tengency directly

but we can use the relation
(2‘11) - S*(l,tl*) = btl*

to find Elf'quite accurately. For tg¥# = .7 we see from Figure III
that ti% = ,338b.

We see thet there is a peth of minimum fuel consumption.
The correspondins values of tg¥* end Eli-ere .93 and .225 respec-
tively..

We see that for this example homing 1is possible for
.65 < to¥ < 2.25. For the extreme values, t,% = .5, and 1t 1s

less for the points in between. .

" Paze 17
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We have satisfied the first condition of homing, that’
s.= S. The second condition 1is

(3.7) o = O(tz) R
‘t Yo ( . Yo )
= grctan —————m—m—o = arctan .
Xo + Uty Xo¥ + Usetg®

If it is simpler to epply thrust at some perticuler
angle then at any other, this condition can be satisfied, the
corrésﬁonding/homing times be determined (from equetion 3.7) and
the burning time be determined from the greph as in Figure IV.

If we choose our éxes differently, equation (3.3)

will have ths form

2
min ?

S® - Wi (t -t")* = 8
where W 1s the magnitude of the initial relative velocity, Spi,
is the distance from the origin to the terget when the terget is

nearest, and t' is the time corresponding to S = Spijn. For our

1 1 - [»] = T = .
choice of axes we segvthct U =Wand Y, = Spipe

Page 18
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IV, DISCUSSION OF POSSIBLE TIMES OF INTERCEPTION AND OF
THE PATHS OF MINIMUM FUEL CONSUMPTION.

The curve of.Figure I is the seme for all rookéts which
have similar thrust, except for the meximum fuel consumption (or
burning time). The conditions of homing then dépend only upon
the hyperbola; |

We have ‘just seen that we could deterﬁine at e glence

~ whether homing could be effected or not: homing wes possible at
9ll times when the curve of meximum performence was above or .
touching the hyperbola.

It is equally easy to determine whether or not & path
of minimum fuel consumption exists: the necessery and sufficient

condition is thet the curve of s¥(t#%) and the hyperbole have a

common tangent such thet t;% < tg*, The burning time t; corre-
sponds to the point of tengency to the curve of s¥(t¥*), end in
this case the homing time tp corresponds to the point of ten-
gency to the hyperbole (see Fisure V.a). '
 For example, if the aesymptote of positive.slope does

not cut the curve of s¥(t¥*), then there is e peth of minimum fuel

Page '19



AERONAUTICAL RESEARCH. CENTER ~ UNIVERSITY OF MICHIGAN
Report No UMM 19

consumption, This condition is not necessery for e peth of“mini-
murn fuel‘cbnsumptibn, as 1s shown in Figure V.b.

There may elso be isdlated points of interception such
that t % = tg¥ and such th?t the twé curves have o common tangent

es in Figure V.c. These ere not peths of minimum fuel consumption

since homing is not possible for any neighboring points (times).

Tn this cese the two curves for s¥ and S% may or may not have a
common ‘tangent leter, correspondinz to e reletive minimum, If
they have, the reletive minimum requires more fuel then the path

for the isoleted homing time. It cen.also heppen thet the curve .

ats

for S¥% may cross thé curve for s¥% (during burning) three times
and thet the ssymptote does not cut the s¥-curve. In.this cese
there éré two relrtive minimg,fthe lower one being elso en abso-
lute minimum to fuel consumption. These ere the caeses referred
to in UMM-18, p 1Z2.

If there is no common tangent to the two curves, then

there is no path of minimum fuel consumption. There 1s a criti-

cal fuel consumption

ol=

which can be approached erbitrarily close. In this cese fuel
consumption goes up es homing time. decresses end, vice versa, as
homing time becomes infinite the unit fuel consumption r epproaches

gﬂ. On the greph this is represented by the curves of g% end of
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8% being asymptotically persllel, Thet is, the curve for s¥ is

’perallel to end lies on or under the esymptote of the!curve for

X

s

It is not difficult to show thet the peths found ebove
are peths of minimum fuel éonsumptiqn, for the curves describe
21l paths for whioh'thrust is fixed in direction rnd for which
thrust is:- hizh et first, then zqrol.,;Hence we need only conslder
these paths and.find the one for wiich r = t1% is lowest,

In the case where 1t is not possible to throttle‘the
burning, the curve of meximum performence is the onlr curve
allowed.v This is tﬁe case'for the solid fuel rockets aveillsble
today.

Severel other prépérties done of considering hyper-
bolas. For example, as pointed out ebove, there mey be no inter-
section of the two curves or there mey be es many es tiree, ell

representing possible homing situations.

lThese principles were expressed and proved in UuM-18 to be
necessary if fuel consumption was to be minimized.

" o Pag‘.e.‘zl ' . . : ; _
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V. EXAMPLE OF A HOMING PROBLEM

As a specific example, consider a rocket with an ini-

tial weipght of 1500 pounds, thrust 15,000 pounds, specific im-

pulse 250, (and -dW/df 60 pounds/sec). Then

¢ = Ig = 8000 (ft/sec)
Y -dW 60

| - ¥
o 7t/ 0 1500
e - 8990" _ p00,000 (£t) .
ro .04

Consider an incoming terget initislly 100,000 feet
distent, relative'velocity 10,000 ft/sec, the velocity vector
109 (170°) from the_position vector. Chenge to dimensionless
form., Then the initial renge becomes, in the dimensionless form,

4 - 100,000 _
" — ————————————— — . ,

SO
200,000

veloclty becomes

pe = 120000 - g 05

8,000

Page 22
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and

Now one way to solve the problem woula’be to obtéin the equation
of the hyperbols end plot it. However, e simpler wey is to take
the greph of the terset position versus_“time" in the dimension-
less form, Figﬁre VI and lay off the terget position as e functlon
of t¥, say in intervels of .1 for t¥, Then the dlstance from the
orizin to the point is the ordinete of ﬁhe hyperbola as a functlon
-of "time". Transfer these,poiﬁts onto the curve of rocket per-
formance with e pair ofvdivideys, Figure VII., This is e ruler
and compass construction of the hyperbola thet cen be done
quickly. The asymptoteé are also known from the time when the
terget is nesrest to the origin and its velocity., Figure VII
shows the hyperboia sketched in. As meny points as ere wented
maj be found. |
In this particular cése homing could teke place for
39 € £ % £ .5, and a burning time .3 € ty% < .5, Since ¥
- corresponds to r, the minimum fuel éonsumption would be 450
pounds to cause interception. The corresponding angles mey be
found from Figure VI as 6y i, = 86° =0 £ 147° = 6, ,x since hom-
ing time would be knoﬁn. The method may bé mede as'aocurate as
desired. o
It seems probable fhat the perameters could all be

fed into a machine that would construct the hyperbola at once
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and solve the equation. Either thisvmachiné would heve to be 1n
the creft (this seems unlikely) or the informestion would heve to
be converted to informetion for the creft in space. Thet is, a

ground-based com uter would have to obtein position and velocity

from some source, end convert this to rngle end burning time.

o Page 24
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VI. THE SOLUTION OF A HOWING PROBLEM IN SPACE

The solufion.of the homiﬁg problém in Section‘V wes
ziven for the problem after it had been reduced to the two-dimen-
sional‘form. For practical purposes, the solution cen\be carried
out alyost as.simply for the three-dimensional fofﬁ. Let us work
out a second example to show the metiod, The computstions in-
volved are simple. The hyperb&la is drewn, a homing time 1is
selected from the greph, the burning time is then reéd f'rom the

graph, and then three equetions give

the direction cosines for

the thrust.

Consider the problem_in the three—dimensiongl form,

The reletive position of the terg:t is given by

X = X5 + Ut
(6.1) Y = Yo + V&
Z_ = Zo + Wt

in our coordinate system.

Nl T Paze 25
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Its distence from the origin is

(6.2) s = Vx®oeyRo+ozR

= kao + Ut) o+ (Y + Ve)® + (Zo + we)® .

We shall consider only thrust fixed in direction.

Hence the posltion of the craft is given by

x = s
zZ = V8

where A, M, ¥ are the direction cosines of the tﬁruSt, and
t
s = a dt® .
For the cese of constent thrust spplied for a time t1, with a
specific fuel consumpﬁion ry, 8 1is given by

(2.6) s(t,t1) = =-ct 1n(l -‘r;) + ‘c.tl [1 +;l- 1n (1 - rl)]
1

fortitl.

The condition of homing is thet there be o time

. ts 2 ty such that
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s(tg,ty) = S(tg) , and
,(6.4)’ N ) n _ v
Xo + Uty Yo + Vtg Zo + Wty

»

Consider now a specific problem. Let the orizin be on
the earth With the E—axis vertiqgl initielly, end the Xx- end y-
axes any direction to form an érthogonel set. Let the sxes be
fixed in orientation iike'the axis of e free gyroscope.

Let the craftkbe originslly et the point Xg, Yo, Zo

with components
400,000, . 100,000, 400,000, (feet),
with velocity components, Ug, Yg;ygg
3,000, -1,000, 2,000 (ft/sec).

Let the terget be initially et the point X', Yo', Zg', with

components
464,000, 160,000, 448,000, (feet),
and Wifhits velocity components Ug, Vg, Wo equel respectively to.
—z,ooo,' -7,200, -3,056, ‘(ff/sec).
Then the relative‘position has components Xg, Yo, Zg,

64,000, _ 60,000, 48,000, (feet),
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and the relative velocity has components U, V, W,
-6,000, -6,200, -5,0566, (ft/sec).

(These perticuler numbers were chosen 'to make the distence between
the two creft 100,000 feet and the'reletive velocityilo,ooo ft/sec.)

Let the creft weigh'leoo'pounds'initipily, let it‘develep'
15,000 pounde thrust,'let it caffy 400 pounds of‘fuel, 1etw£he
specifie impulse lrbe 200. Then tﬁe effective zas velocity 1s

- !

c = 6,400 (ft/sec).

' , . .
Its burning rete ry is

. 15,000 ]
= =2 _ = 0
and the meximum burned fuel retio is
400
r = — = ,2666 ,
max 1500
The maximum burning time is
; '2666 . ’
tq. = 2 = b,33% sec,
tmax .05

Let us reduce to dimensionless form by dividing dis-

tances by
¢/ro = 128,000

and times by 1/%, (= 20).
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The curve of rocket performence is the greph of

Figure I. We plot

VKo 4 UE)R 4 (Yo + VE)P + (B +WE)®

St ,
128,000

es a function of t¥ (= %ot) on the ssme greph (Figure VIII), We

see from the graph thet homing'is possible for

that 1s for

11.7 (sec) .

(00}
©
A
ct
A

- The minimum fuel consumption is given by
t,% = r = ,085
with s homing time of
»‘t = 10 | (sec)

The direction cosines .of thrust, corresponding to

these homing times ere given by equation (11.4)

/ ta : A M V
8.9 .882 .401 - .249
10 776 -.388 -.497

11.7 -.348 -.704 -.626
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The point of homing may be found by the terget position
at the time of homing. If the homing time chosen is 10 sec., the
‘point of‘homing will be

»

X = .Xo' + Uotz

= 434,000
Y = Yo' + Votg = 88,000
— 1 1 a 2 — =
Z = Zo + Wotg_- E %tz- = 410,890

The gravitetional scceleration is 30.81 I .10 ft/sec.® on both
target and creftl. The error by assuming it to be the same on
cach is less than 10 feet displecement dufing hominz. These
distences would be measurod in a non-roteting roforence freme to
avoid the complications of centrifugal forces and Coriolis forces.
The anzuler error in the above proolem'(the supplement
of the sngle between the vectorsiof relative position end reletive
velocity) oan be found by the methods of enalytic geometry, using

i
\

the formula
cos P =“ (Apdg + MaMg t ViVz)

where Ay, M1, V1, are the direction cosines of the first vector,

etc. The en:le B for this problem turns out to be 2.95°.

)

*lThese values are based on the velue 32.16 for the gravitetional
constent et sea level. ' ) .
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VII., BASIC THEORY UNDERLYING THE METHOD OF SOLVING THE HOMING
PROBLEM '

In this section the essentials of this method of solving
- the homing problem will be pointed out.
In general we will heve e rocket creft which we wish
"~ to move from one point to another bj means of its thrust, This
\poiﬁt to which we wish to move it mey be o point fixzed with re-
spect to the earth, i1t may be e point fixed in some lnertial space
or it may be a point which moves sccording to an srbitrery physi-
cel law.
The rocket will usuelly be moving initially and will
be subject to the auceléraiion of gravity snd possibly other spec-
ified accelerstions. Then the displacement of the rocket wilth

‘respect to the point is giliven by
(7.1) € = X-x

where X is the position vector of the point in en erbitrerily
chosen rectanguler coordinate system wiose axes are not roteting
erd X is the position vector of the.craft. Now we cen write this

as
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5 v b
(7.2) € = -|| = at +Zo+§ot+ Gat” || 7 at”,

where & 1s the accelsration due to thrust, is the vector of

ie}
s . g
initiel reletive position, &, 1s the vector of iniviel reletive
valocity, E(t) is the ecceleration to which the creft is subject
end G(t) is the eccelerstion to which the terget point is subject.

The baesic assumption of this method 1s thet the vector

of displacerments due to extraneous forces

| t t |
(7.3) Gat® - || zat®

- does not desend upon the thrust epplied to the craft. We shell

review this assumption in the next section.
Definition. e siell say thet hominy is effected if

there 1s o time tg > O such thet

(7.4) &(ty) = 0.,

If we denote by 5 end S the vectors

F = 7 dt®
t
5 = & +E& v+ (G-7) at®,
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then We.can exXpress
(7.6) £ =S -3.

We have expressed Z:in terms of two vectors, one of which depends
only upon conditions specified by the target point end the other
depends only upon thrust applied to the rocket. The definition

of homing can be written
(7.7) S(te) = S(tz) .

Now for two vectors to be equal the first condition 1s

thet their magnitudes be equal:

(7.8) s = S,
where

s = |5|

s = S| .

But S is a vector known es a function of time. Hence we can
plot S as a function of time. We can elso reduce it to the dimen-
P » rs “ 1 - >
sionless form S% as e function of t¥ where™ S¥ = S/(c/ro),
t% = r_t, as In Section III. | |
Now consider thrust fixed in direction. Then s is

a given function of the burning time bt and of time t. We can

. . ]
1We assume that r~ is not zero; if it is zero, then another
parameter needs E% be chosen.,
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draw a graph of s .as a function of t; and t or of s¥ as a function
of t;% end t¥., Consider the latter.

We will have a set of curves exactly as in Figure III
except that in general S#(t¥) is not a hyperbola. All points
such that §fi§f) lies below the curve of meximum performance for .
the rocket represent posSiblé"homing times, For any‘chosen'hom—
ing time we reéd the burning time, represented by t %, the ebscissa |
et the point of tengency to the curve for s¥(t¥*).

The remaining problem is to determine the direction to

apply thrust. The direction cosines are the direction cosines of

S(t,) where tg 1s the homing time chosen, namely

(7-9) >\(t2) ‘: Sx(tz) s M(tz) = Ez-g- s V(tz) = =2

Sz 32 Sz

where Sx, EX and S, are the components of S.
Paths of minimum fuel consumption can be determined in
the same menner as before., If the S-curve has en oscillafory

character there masy be several relative minima.
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VIII. DISCUSSION AND LIMITATIONS OF THE METHOD

. Let us consider some cases where the method'applies.

First there is the problem of homing againsﬁ a target
in free flight., We assumed thet G = é. So long es G - § is an
accelerstion vector negligible with respect to other accelerations
this i1s g valid essumption.

Second, there 1s the problem of sending the craft to
a specified ﬁoint in spaée. For this case E_:_g is the gravita-
tional a:celeration on the rocket. Within the limits thet we can
estimate this as a function of time, this method is exect, ignor-
inguaérodynamic forces.

‘Third, the problem of homing against o ﬁarget'which
follows e dodging course thet can be prediéted.‘ Again E becomes
é known vector function of time. |

Let us consider some cases where it does not apply.

First, there Is the dodging taréet whose meneuvers are

based on.intelligence about the pursuing craft. The vector E

is no longer a’fuhction'of time only since it depends upon the

maneuvers of the creft.
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Second, if the homing time is large, the displacement
IE
(G - ) dt® may not permit accurate evaluation.

»

Third, the time required for rotation may be appreciable
and require consideretion.

t
The condition that (G - 8) dt® can be computed as

an explicit function of time is important for three reasons. .

First, if it is satisfied, the paths determined as above
are the best paths that can be found from the point of view of
obtaining maximum correction for given fuel consumption, and con-
versely, for obtaining e definite correction with minimum fuel
consumption.

Second, if it is satisfied, the problem of homing is
reduced to a problem in elgebra'and the determination of paths of
minimum fuel consumptién, if they exist, is reduced to & problem
in calculus with a direct graphic solution.

Third, if it is not satisfied, the homing problem is
very difficult to solve.

One feeture which cen herdly be overemphasized 1s the
galn in reducing toydimensionless terms. In that way, a single

~grid covers sll cases‘and the number of significant variebles is

reduced to s minimum,
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Of course, if a detailed analysis of a single craft is
to be made, it may be more satisfactory to work with 8, S, &, etc.
The. graph for s vs. t cen be drewn up exactly as the curve for
s¥% vs. t¥ wass If the curve for s¥ is available, the curve for
s can be obtained directly from it; indeed the seme curve cen be
used by altering the scales on the axes. All operatioﬁs are per-
formed as before except that times, distances, etc., are read in

seconds, feet, etc., and require no conversion,
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IX. SOME APPLICATIONS OF THE METHOD TO PROBLEMS OF DESIGN

The method can be used to get the answer to seversl
design problems,

As an example, assume that a set of target conditions
is chosen and we wish to determine some craft specifications for
homing., Assume that the specific impulse 1s givenl.

Now choose, as a first approximation a2 value of ég -
that seems reasonable. Draw the graph of S%* on the grid of
FPigure I. There are three possibilities. If the value of ég
is well chosen, a figure 1s obtained similar to Figures IX.a,
or IX.b. If ég is chosen too small, the resulting figure will
look like Figure IX.c. If iﬂ is chosen too large, the figure
will look like Figure IX.d; the grid will sppesr dwerfed beside:
the hyperbola (this corresponds to thrust too large). It is

best to choose a new value of EQ in the latter cases so that

fhe resultant figure is similar to IX,e. Otherwise, one of the

1The specific impulse depends principally upon the fuel for a
well-designed craft. ‘
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i, in the proper range i, in_the proper range

Fig. IX ¢ Fig. IX d
i, too small _ i, too large

Fig. IX Grids for Various Values of i, and Fixed Target Conditions
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two figures, the grid or the hjpefbola, is so small compered ‘to
the other that interpretetions are difficult.
Two or three trials will give a reasoneble velue fér

fo. Then one mey refine the cholce of’ry in various ways.

First, let us show thet for e chQéen homing time, we
cen pick the minimum velue of“iQ thet will causé\hﬁming at a
selected homing time. This value ié the value for burning all
the way. Assume thet we have the graph in a form like Figure IX.a,
see Figure X.

Choose any value of tg¥ (or of E&)' Degignate the

point (tg¥,S%(te*)) as Py, Draw the line OPg. Designate the

point where it cuts the curve of s¥(t¥) by Py5. Designate the

abscissa of Pyz by tig%.

'Then the burning rete for homing et time tg* by burning

all the way is

. t,o% T
(9.1) _ Py = v_ii___g

where Eé is the velue for which the curve wes originally drawn.
It is a matter of direbt substitutionvinto the equations
of Section II, Article C to show this. We have from Figure X

£ o

by 0%

(9.2) S#ltgi) = s¥(tpg¥)

since 0Q; P12 and 0QpP; are similer triengles.
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(s ol tg¥ _ _te
S#(te®) , s(tre) =7 s¥(t1e%), end t‘z" = .

Now S(tg ) =

7 )

"~ . t
o r5 12" 12

e o

-

So equation (9.2) becomes

(9.3) | S(téd = EEB s(t1z) .

12
In’ArticiéHIifG. we sew that the burned fuel ratio‘fdr two craft

saﬁisfied*the relation -

(2.12) p(t) = r(kt) .

Hence, letting k = tlg/tz we obtain the desired result,

ty

(9.4) o (ts) = —2 s(big),
t12
= 8(tg)
if
. N tlz* .
(905) : ?O - _t-z_'x: ro °

A rate of burning less than fo.bannot effect interception at the
selected time and any rate of burning greeter then 29 will effect
homing‘at the desired time if El‘is'properly chosen.

From equetion (2.12) above we obtain the reletlon

f(tz) = r(kty)
= r(tiz) ,
QOI'
(906) f(tz) = tig% .
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Hence t,p% 1s the unit fuel cbnsumption for burning all the way.
In the illustration tg* was greater than t;p%. This
was irrelevant to the method and the result.
However 1t 1is seén that certdin points on the hyper-
bola, those for which S#/t¥ > 1, have no corresponding point Pyg
on the s¥-curve. For these points it is simply not possible to

home by burning all the way. We see thet for'i a constant

s¥(t®) < % for t% <1,
lim % = 1im [t% + (1 - t%) 1n (1 - t%)]
. (9.'7) ti] i t3»

as indicated on the graph. This gives the result

(9.8) < ¢ forr <1 ;

8
t
in other words, the averagé velocity durihg burning 1is less
than ¢, the effectlve gas velocity.

Another quantity which may be read directly from the
greph is the fuel consumption corresponding to burning in an
impulse. In Figure X, draw the line (shown dotted) parellel to
0P, and tangent to the s¥*-curve. The ebscissa tio¥ of the
point of tangency gives the velue of r corresponding to en im-

pulse. This cen be shown by considerations on velocity similar
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to those carried out on distance in the previous paragraphs,
using the similarity considerations given in Section 1T,

This value tig%# 1s the greatest lower bound to fuel
consumption1 for the homing time tp.» Fuel consumption is mono-
tonic increasing with burning time for similar burning. Hence
we have bounds to the fuel consumption for homing at the se-

lected time tg

=

t10¥% r = 1% .

If the amount ofﬁfuel is designated, this will show whether or

not homing can be effected.

The method of solution is also applicable to the

problem of homing with minlmum acceleration. A memorandum 1is

being prepared on this.

1This was shown in detail in UMM-18,
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X. TWO THEOREMS ON HOMING

Some interesting results follow from simple consid-

eration of the hyperbolas and the grids.

THEOREM I'. If the burnt fuel ratio r can exceed r" =1 - e °,

then homing can always be effected,

Proof. The asymptote to the hyperbola will have slope
W = % and theAhyperbola approaches it arbitrarily closely as
t% becomes infinite. Since r > r", the curve of meximum per-
_formance has a slope greater than W¥, Hence for t%* sufficiently

great there are points on the hyperbola below those on the curve

of meximum performence and these represent possible homing paths. |

THEOREM II. For an outgoing target the lower bound to the

w
burnt fuel ratio is r" =1 -e C .

Proof. For an outgoing target, the center of the

hyperbola is on the t#-axis either at or to the left of the

1These theorems were stated in UMM-18 ss Corolleries VI.2 and
VI.3 and the reference given is to this proof.
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origin. If r < r" then the curve of maximum performance cennot
touch the hyperbola, hence homing is not effected. By Theorem I,
if r > r" homing can be effected.

‘It is interesting that this A4imit does not depend upon
the menner of burning; thet is, upon the particular thrust func?
tion. We saw that the existénce of pathé of minimum fuel con-

sumption depended upon the rate of burming. .
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