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Abstract

This paper describes the design and implementation of an adaptive
motion controller for a differential-drive mobile robot. The controller
uses absolute position information to modify the control parameters
in real time and, in turn, to compensate for the motion errors. Robot
motion errors are classified into internal and external errors. The
cross-coupling control method is used to compensate for the internal
errors that can be detected by the wheel encoders. The adaptive
controller provides compensation for the external errors. The adaptive
controller is analyzed, and its stability and convergence are discussed.
Both computer simulation and experiments are conducted to evaluate
the control system. The results show significant improvements over
conventional controllers. '
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1 Introduction

Mobile robotics is a fast advancing field that has found many new appli-
cations in nuclear power plant’s maintenance, waste management, disabled
person assistance, material handling, security and household service [1]. Cur-
rently most of the mobile robot research has concentrated on the application
of mobile platforms to perform intelligent tasks, rather than on the develop-
ment of methodologies for analyzing, designing, and controlling the mobile
system. However, improved motion control systems will enable the appli-
cation of mobile robots to tasks requiring accurate trajectory tracking even
in unstructured environments [2]. Accordingly, this paper suggests a new
motion control method.-

As shown in Fig. 1, a typical motion control system is based on a static
kinematic model whose accuracy depends on the operation of the robot and
the structure of the control loop. In this paper, we introduce an adaptive con-
troller with the following two improvements over the conventional controller
of Fig. 1:

1. Adaptation to the change of robot parameters and the chang-
ing environment [3].

Some robot parameters change with the operation of the robot, e.g., the
drive wheel diameters change with the load and load distribution. In order to
navigate and control the robot motion precisely, a kinematic model is needed,
whose parameters are adjusted according to changes in robot operating con-
ditions.

2. Direct control of the most significant error [4].



In this paper, we introduce the term most significant error. This term is
used to refer to the error that has the largest impact on the motion accuracy.
In this study, we choose the orientation error as the most important error.
The selection of the most significant error depends on the application and
the kinematics of the robot.

Adaptive control has been used to solve similar problems in the area of
robotics. particularly in the adaptive control of robot manipulators. The
basic idea of adaptive control is to eliminate the effects of variations in the
controlled system parameters by estimating the parameters in real time and
using the estimates in the control process, or by generating correction signals
to compensate for the errors. Adaptive control has been used to accurately
control the motion of robot manipulators in the case where the parameters
of the arm are not precisely known or change with the operation of the
robot (e.g., flexible arm and changing load) [5, 6, 7). Application of adaptive
control in mobile robot control has not been widely studied. A self-tuning
navigation algorithm has been suggested by Banta [3]. Ths algorithm is
aimed at correcting motion errors caused by steering miscalibration, uneven
tire wear and wheel misalignment. Banta’s algorithm employs a least-square
method for the parameter estimation and the estimates are used to adjust
the control of the robot.

We have identified three reasons for the fact that adaptive control has
not found wide application in mobile robotics:

A. It is difficult to apply the methodologies for modeling and
controlling stationary manipulators to mobile robots, because of

the inherent differences between the two. For examples: (1) A mobile



robot contains multiple closed-link chains, whereas a stationary manipulator
forms a closed-link chain only when in contact with a stationary object; and
(2) The contact between a wheel and a planar surface is a high-pair joint,
whereas stationary manipulators contain only low-pair joints;

B. There has been very little study on the robot-environment
system modeling [1]. The effects of some of the external factors, e. g., slip-
page, are very hard to model accurately. The relations between the motion
errors and the error of each drive loop are not well known.

C. The absolute motion information of a mobile robot is not
readily available [8]. It is more difficult to obtain accurate motion in-
formation. Typicaly this information is very expensive, infrequent, and less
accurate compared with the absolute motion information of robot manipu-
lators.

This paper will concentrate on the problem of adaptive motion control
of a mobile robot in the case where the physical model that describes the
motion of the mobile robot is not well known or changes with the operation
of the robot. The proposed controller dynamically adjusts its parameters
according to the robot’s operating and the environmental conditions. In ad-
dition, Cross-coupling control [4] (explained in Section 5.2) is used to control
the orientation error by coordinating the motion of the two drive loops.

In the next Section, we will discuss the kinematics of the differential-
drive mobile robots. In Section 3, error sources in robot motion will be
discussed. In Section 4, we will introduce a model for the vehicle-environment
system. In Section 5, we will briefly review the principles of adaptive control,

different control structures and different design methods, and we will discuss



the adaptive motion control for mobile robot. In Section 6, the performances
of the proposed controller will be evaluated by both computer simulation and

experiments. Finally, conclusions are drawn in the Section 7.

2 Kinematics of Differential-Drive Mobile Robots

Sensed forward kinematics is the relationship between the motion of the
robot ard the sensed motion of the robot wheels. For a differential-drive

mobile robot as shown in Fig. 2, the velocity forward kinematics is given by
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where 7. y and § are the linear and angular velocity of the robot, v* and ¢
are the velocities of the left and right drive wheels, 8 is the orientation of
the roboz. b, is the distance between the two drive wheels (i.e., wheel base).
respectively.

Inverse kinematics determines the motions of the drive wheels that are
needed to obtain a desired robot motion. Since there are only two degrees of
freedom. we can specify two parameters, say, the velocity in the x direction
(z) and the rate of change in orientation (). Then we solve v® and v from

Egs. (1) and (3), and we obtain
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When € = 0° or § = 180°, the above equations are not defined, and the
drive wheel speeds can be determined from Eqgs. (2) and (3). The above
inverse kinematic analysis is based on the assumption that the two drive
wheels are exactly parallel and every parameter needed is precisely known
and no: changing. For accurate trajectory control these assumptions are not
adequate. Even frequent calibration of the robot is not very useful since some
parameters are changing with the operation of the robot and the change in

the environment.

3 Motion Error Sources for Mobile Robots

We can largely classify error sources into two categories: internal errors
and exiernal errors. The internal errors are the errors that can be detected
by the wheel motion information. The external errors are the errors that only
become apparent when the robot wheels interact with the environment and
can onlv be detected by absolute robot motion measurements. The external
errors can be further divided into systematic errors and non-systematic er-
rors. The systematic errors are the errors that exist over a long period of time
without changing their characteristics. The non-systematic errors happen in

a random fashion and can only be described in a statistical sense.

3.1 Internal Errors

The main internal error sources are:



1. Different drive loop parameters. For a differential-drive robot,
when the two drive loops have different parameters (e.g., time constants and
loop gains), the responses of the two loops will be different, and the result is
an error in the path.

2. Different disturbances acting on the different drive loops.
One example is the difference in bearing frictions [9]. The difference of dis-
turbances will affect the transient response and in some case the steady state

response - depending on the type of controllers used in the control loops.

3.2 External Systematic Errors

External errors can be classified as systematic and nonsystematic errors.
The main external systematic error sources are:

1. Different wheel diameters. When the two drive wheels have dif-
ferent diameters and the same angular speed, the robot will follow a circular
instead of a straight line path [10] (Fig. 3). There are several causes for a
difference in the wheel diameters: (1) Load or its distribution changes; (2)
Uneven wear of the wheels; (3) Uneven inflation in case of inflated wheels;
(4) Manufacturing tolerance of the wheels.

The difference in wheel diameters can be modeled as [10]

B wAt(dR - dF)

0
A b

(6)

where w is the angular velocity of the drive wheels, Af is the change in robot
orientation, d¥ and dF are the left and right drive wheel diameters, and At

is the amount of time elapsed.
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We can observe that: (1) Af ;‘:, i.e., the orientation error resulted

from different wheel diameters is inversely proportional to the wheel base. (2)
Af x dR—dL, i.e., the orientation error is proportional to the wheel diameter
difference. (3) Af «x wAt, i.e., the orientation error is also proportional to
the distance traveled.

2. Wheel misalignment. The effect of the misalignment of the drive
wheels is the robot constantly pulling to one side. Causes for this error in-
clude: (1) Manufacturing tolerance, and (2) The distribution and the amount
of load carried by the robot.

3. Contact area. When the wheel contact with the floor, there is a
contact area, rather thap a contact point. This causes an uncertainty about
the effective distance between the drive wheels (i.e., the wheelbase b,,) and
thereby introduces inaccuracy in orientation calculation.

These three errors are the most important biased errors. They exist over
a long period of time and their effect remains the same, so they can be

measured and compensated for.

3.3 External Non-Systematic Errors

External nonsystematic errors include:

1. Wheel slippage. Slippage is a big problem in dead-reckoning, it is
not a biased error and it can happen in a very short time period. However,
the slippage normally happens only when the robot moves on a curved path
(centrifugal force) and when the robot accelerates or decelerates.

2. Floor roughness. When the robot travels over a rough floor, the

wheels move up and down over the bumps. Part of the motion recorded by the
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wheel encoders is the vertical distance required to clear the bumps. Surface

roughness and undulation cause the traveled distance to be overestimated.
The external nonsystematic errors are random in nature and there are no

good ways to qualitaticely predict these errors. Therefore, we can at best

compensate after they occured.

3.4 Error Decomposition

The motion error of the robot can be decomposed as follows (Fig. 4): The
first is the orientation error eg, which is defined as the difference between the
real robot orientation and the desired robot orientation. It is the most sig-
nificant error as far as motion accuracy is concerned because the orientation
error will result in a contour error, which grows with the distance traveled.
The contour error e. is defined as the distance between the actual robot
position to the desired robot position in the direction perpendicular to the
direction of travel. The contour error is the direct result of the orientation
error. We can not control both errors at the same time for a differential-drive
robot. The third error is the tracking error e;, which is the distance between
the actual position to the desired position in the direction of travel. The
tracking error does not have a very significant effect on the motion accuracy
of the robot, and we can control the tracking error by adjusting the input so
that the robot has the desired traveling speed.

The main problem with motion errors of mobile robots is that the errors
can grow without a bound, and that the errors increase nonlinearly with the
distance traveled because of the accumulation of the orientation error. The

key task is therefore to control the growth of the error. The unbounded



growth of error is in most part caused by the systematic external errors.
Therefore we will use biased error information from absolute position mea-

surements for compensation.

4 Robot-Environment System Modeling

A fundamental difference between adaptive motion control and conven-
tional motion control is that in the adaptive control both the robot and its
environment are included in the system, whereas in the conventional control
only the robot system is modeled. Although there is extensive research in
the vehicle field, the problem of accurately modeling conventional vehicles
has not been solved. Typically, only simple parametric vehicle models that
are adjusted with experimental data are used [1].

A dead-reckoning model aimed at improving the path following accuracy
by introducing error terms was introduced by Banta [3]. In Banta’s work,

the robot position (zx.yx) and orientation 6 are given by:
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where Anl and Anf are the measured angular position changes of the left
and right wheels in each sampling period, 3., By, and B, are the errors coefh-
cients, and the errors are assumed to be proportional to the distance traveled
by the robot. Auy is the distance traveled by the robot in each sampling pe-
riod and A#; is the change in robot orientation during the sampling period.

When we instruct the robot to move on a straight line, the resultant path
might be a straight line that is at an angle with the desired line path (if 3;
#0, 8, = 0and By = 0); or a circle (if 3 =0, 8, = 0 and B # 0); or
a circle plus a straight line (if 8, # 0, f, = 0 and 33 # 0). The last two
cases describe the nonlinear characteristic where the contour error increases
with the distance traveled. Although this model is very simple, it is able to
represent some very imI;ortant error sources and it has been experimentally
proved to provide reasonably good results [3, 10]. This model will be used
in our adaptive motion control.

The error model given by Eq. (9) indicates that the orientation error is
a linear function of the distance traveled by the robot. Our experimental
results support this assurnptidn. Fig. 5 shows the orientation error of the
robot when it moves along a straight wall. In Fig. 5, A is the case where
the drive wheels of the robot are not taped and B is the case where the
right drive wheel is taped with masking tape. The orientation of the robot is
calculated by using two sonars measuring the distance to the wall as shown in
Fig. 6. From Fig. 5, we can observe that the orientation error of the robot is
approximately linearly proportional to the distance traveled. The difference
in drive wheel diameters will cause the robot to move on a circular path, i.e.,

the orientation changes as a linear function of the distance traveled. We can
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think of the composite effect of all the error sources as an effective difference

in wheel diameters.

5 Adaptive Motion Control

In this section, we will discuss adaptive mobile robot motion control. In
Section 5.1, we will review the basics of adaptive control and the adaptation
mechanisms and in Section 5.2, we introduce the corcept of cross-coupling
control. In Section 5.3, we discuss the error decomposition and its effects
on the controller design and the detailed design and analysis of the adaptive

robot motion controller is presented in Section 5.4.

5.1 Adaptive Control

There are two main kinds of adaptive control scaemes, the self-tuning
adaptive control (STAC), and the model-reference adaptive control (MRAC).
A STAC system (Fig. 7) first uses an estimator to determine on-line the pa-
rameters of the process, and then employs these estimated parameter values
in a controller design block to tune the adjustable controller [11]. Recursive
least-square is the most widely used estimation method. It provides only a
suboptimal solution but is simple and robust [12]. Kalman filter based tech-
niques have also been widely used and modified to tzke application-specific
problems into account [12]. A STAC system for robots has been studied by
Koivo [13]. Koive's system uses recursive least-square to estimate the param-
eters and the regulator is designed based on the extended minimum variance.

However, on-line estimation of all system parameters and the control design

12



make STAC computationally intensive [14]. The numerical estimation tech-
niques tend to be numerically unstable as the number of parameters increases
in the system model [15] and the convergence rate decreases with the increase
in the number of parameters to be estimated. Prior knowledge of the plant
model is needed, such as, the order and the form of the model. This knowl-
edge may not be readily available for complex models.

In MRAC (Fig. 8), there are four main components: (1) the reference
model that specifies the desired performances; (2) the adjustable system
whose performances should be as close as possible to that of the reference
model; {3) the subtractor that forms the error between the states or the
outputs of the reference model and of the adjustable system (generalized
error); (4) the adaptatioh mechanism that processes the generalized error in
order to modify accordingly the control or the parameters of the adjustable
system.

The first implementation of MRAC in robotics was done by Dwbowsky et.
al [16], where a parametric optimization technique was used and stability was
investigated for the uncoupled, linearized system model. Most of the recent
research efforts have been focused on stability based methods, particularly,
the hyperstability theory [6]. Stoten conducted experimental studies on the
MRAC of manipulators [7] and Craig included nonlinearity compensation
along with a feedback portion and parameter identification features [5]. In
Craig’s approach, the plant model does not have to be the same as the
real plant and only performance convergence is needed instead of parameter
convergence.

The model-reference adaptive control scheme was chosen for our system

13



for the following reasons:

1. It requires performance convergence rather than parame-
ter convergence. The objective is to achieve the desired performance.
Normally parameter convergence can only be realized when some additional
conditions are satisfied [17].

2. The reference model is used to specify the desired perfor-
mance and to monitor the state of the robot. The reference model
itself can be adjusted according to the operating conditions of the robot and
the environment it is working in. Furthermore, when the difference between
the model and the real system is small, the adaptation process will be fast
and accurate.

3. Small computaéional load. The on-line identification and design
procedures of a STAC system can be computational intensive and stabil-
ity problems often occur when the number of the variables to be estimated

becomes large [17]. This is not the case with the MRAC system.

5.2 Cross-Coupling Control

The objective of cross-coupling control is to reduce the orientation error
by coordinating the control of both drive loops [18]. It is best suited for
the applications where the motion of several axes must be coordinated to
achieve an accurate trajectory [4]. For example, if a differential-drive mobile
robot must follow a straight-line path, then the speed of the two drive wheels
should be identical (assuming there are no external errors). This is done by
the proposed cross-coupling control scheme, which is shown in Fig. 9. In

this control scheme, in addition to the two conventional proportional control
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loops for controling the error in each drive loop, there is a proportional and
integral controller that is used to control the error e that is proportional to
the orientation error of the robot and is calculated in real time. If there
exists orientation error, a correction signal will be generated in addition to
the corrections in each drive loop. A thorough analysis of the cross-coupling
method was presented in [18] and the conclusions are summarized below:

1. Cross-coupling control directly reduces (or eliminates) the
orientation error by coordinating the velocities of the two control
loops.

The most important advantage of cross-coupling control is that it directly
controls the most significant error (here the orientation error), while conven-
tional controllers attemét to reduce the individual errors in each drive loop.
The other advantage of cross-coupling is that the corrections occur in both
control loops simultaneously, and, as a result, it has short settling time as
well as excellent disturbance rejection capability.

2. Combined cross-coupling and encoder compensation gain.

Dual compensation gain uses the product of two gains, cFcl and cfcf to
travel on curved paths and to compensate for known external errors. The
cross-coupling gains cF and cR, allows the robot to follow curved paths. For
mobile robots, complicated curved paths can often be constructed from linear
and circular segments. When the robot follows a circular path, the speed ratio
of the two wheels should satisfy v?/vl = (R + b,/2)/(R — b,/2) = cF/c!
[8], where R is the radius of the circle. Obviously, in order to follow different
circular paths, different speed ratios are required.

The encoder compensation gains c; and cX, are used to compensate for
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known external errors. For example, the robot may have different drive
wheel diameters. Then the encoder compensation gains can be adjusted to
compensate for this error. For example, if the left drive wheel diameter, dr
is larger than that of the right drive wheel, d® and we give the same speed
commands to both control loops, then the result is a circular path. However
if we set c& =1 and cff = dL/dR, the error is compensated for.

The encoder compensation gains are used as the adjustable parameters
in the adaptive controller. Since there are many factors affecting the path
errors and many of them are changing with the operation of the robot and
the environment, a fixed set of encoder compensation gains can not provide
satisfactory performance over a wide range of operating conditions. An adap-
tive controller is needed to adjust the compensation gains to compensate for
the motion errors. The final dual compensation gain values are the product
of the cross-coupling and encoder compensation gains.

3. At steady state, vX/vf = cf/ct.

4. The steady state orientation error caused by the continuous

disturbances is eliminated.

5.3 Compensating for Robot Motion Errors

In Section 4, we introduced a decomposition model for the motion er-
rors. As shown in Fig. 4, motion errors can be decomposed into three major
components, orientation error, contour error and tracking error. This de-
composition allows to decompose a complicated problem into several simpler
problems. Among these three errors, the orientation error is the most signif-

icant one since it will result in contour error that will rapidly grow with the
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distance traveled.

The contour error is the direct result of the orientation error. The orien-
tation error can be accurately modeled as a linear function of the distance
traveled. The key factor in determining the orientation error is the ratio of
the speeds of the two drive wheels in linear motion. In our motion controller,
cross-coupling control is employed to compensate for the internal errors, while
one adaptive loop is used to compensate for the external errors by adjusting
encoder compensation gains.

Once accurate control of the speed ratio of the two drive-wheels is achieved,
we may want to accurately control the absolute speed values. Let us assume
for a moment that the right drive-wheel has a larger diameter than the left
wheel, but we do not know the exact value of the diameters. The distur-
bances in the drive loops also affect the speed values. If we can measure the
real linear speeds instead of the wheel speeds, we can add another adaptive
loop to compensate for the speed value in the presence of both internal and
external errors.

After the first two steps, we can accurately control both the speed ratio
and speed values. However, there is still an important factor that must be
considered. When the robot makes a turn, a fixed value for the wheel base
b, is used in the dead-reckoning and in the inverse kinematics computations.
However. the value of b, is usually not precisely known, or it can change
because of the load and the contact area of the wheels. An adaptation
can be dedicated to the estimation of this parameter, or simple calibration
calculation can be used.

From the above discussion, it is easy to see that the first and third steps
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allow us to compensate for the orientation error, while the second step allows
us to compensate for the tracking error. The contour error needs to be
corrected separately because of the kinematic constrainté of the differential-
drive robot. The contour error can be corrected by making a turn toward the
desired path, then turn back to the appropriate orientation after the robot
comes back on the desired path.

In our work, we used sequential procedures for error compensation instead
of a one-step process as in the case of contour error control for machine tools.
There are three reasons: (1) In the case of a mobile robot, accurate absolute
motion measurements are not available most of the time, while in machine
tool control, accurate table motion information is obtained through encoders
at all times. (2) In the case of machine tool control, the trajectory error is the
contour error that is well defined by the error of each axis, while in the case
of a mobile robot, the two axes are parallel and their motions are coupled.
There are no accurate relations between the motion error of the robot and
the error of each axis except for the orientation error. The position of the
robot is estimated through dead-reckoning, which is not reliable for a long
period of time. (3) A differential-drive mobile robot has only two degrees of
freedom. It is impossible to control the position and orientation of the robot
simultaneously.

In the next section, we will discuss the compensation of orientation error
through encoder gain compensation. The other error compensations will not

be discussed in this paper.
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5.4 Encoder Gain Adaptation by the Hyperstability
Method

There are three basic designs for a model reference adaptive control sys-
tem [11 . The first one is based on local parametric optimization theory, the
second one is based on Lyapunov Functions, and the third one is based on
the hyperstability approach. Stability problems are inherent in MRAC de-
sign du= to their time-varying nonlinear character. Therefore, a satisfactory
MRAC system must first be shown to provide stability for the whole system.
The adzptive control design based on the use of hyperstability and positivity
concep:s. is the most successful approach in the design of model reference
adaptiv= systems [17]. In our design, the adjustable parameters are the en-
coder compensation gains and the basic assumptions are: (1) the adaptation
takes p.ace only when the robot moves on a straight line path with constant
speed i~ puts; (2) the adaptation occurs at a much lower frequency compared
to the sampling rate of the cross-coupling control; (3) the two drive loops
have th= same parameters and there is no disturbance.

In o=der to apply the hyperstability approach, one must first analyze the
stabilitv of the system, and then choose the best adaptation gains from all
the stakle systems. The design procedures consist of the following steps [17):
(1) Traasform the MRAC system into the form of an equivalent feedback
system composed of two blocks, one in the forward path and one in the
feedback path as shown in Fig. 10; (2) Find solutions for the part of the
adaptation laws which appears in the feedback path of the equivalent system
such that the Popov integral inequality is satisfied [17]; (3) Find solutions for

the rerraining part of the adaptation law which appears in the forward path
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of the equivalent system such that the forward path is a hyperstable block
[17]; (4) Specify the adaptation law explicitly for the original MRAC system.
The adaptive motion control system for a differential-drive mobile robot is
shown in Fig. 11.

In this approach, we concentrate on the orientation error of the robot.
Based on the orientation error model given in Eq. (9), the reference model
1s chosen as

Aul — Aul

(k) = Ok = 1) + ==

(12)

Since the adaptation occurs at a much lower frequency, we can assume that
at each adaptation step, the cross-coupling loop has reached its steady state

(8], i.e.,

L _hkak(R + RF)
© (1 + hkgky)(cE + cR)

(13)

L, pR
oR hkokyck(RE + RR) ’ (14)
(1 + hkgky)(ck + cR)

where Rl and R® are the input velocity commands, k, is the proportional
loop gain, ks is the motor gain and h is the encoder gain. Since

Aul — Auf B vRAt — vl AL

b by

R hkk
=TT AT hkk)p, T R)AL

The reference model can be written as
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Om(k +1) = Om(K) + pmua(K), (15)

where
hkyk,

L R
Tr ki B+ RYAT,

Uy =

AT is the sampling period of the adaptive loop, and p,, = (c¥—c®)/(cF+cR).
If we let & = oRR and c® = aRL, then p, = (R® - RE)/(R® + RY). If
following straight line is the goal, then the reference model is simple, namely,
Ppm = 0.

The controlled system can be modeled as

R_,L oR 4 oL

v —w
+ By

b=— — (16)

Since we are only interested in the ratio of the two speeds vl and vR. The
effects of By can be absorbed into the encoder compensation gains. The above

equation can be rewritten as
Bk +1)=0(k)+ p(k + 1)us(k), (17)

where p(k+1) = (cE(k+1) = Rk +1))/(cE(k+ 1)+ c*(k+1)). To simplify
the implementation, we can set ¢/ = 1 and only changes ¢®. Then we will
have ptk + 1) = (1 — c®(k + 1))/(1 + c®(k + 1)) and c* can be found by
HFk+1)=(1-plk+1))/(1 +p(k+1)).

The error is defined as

e(k) = O(k) — O (k) . (18)

The adaptation algorithm is chosen to be the integral algorithm, which

is given as
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p(k +1) = p(k) + ve(k + 1)ui(k) (19)
where e(k + 1) can be found from the following equations:

e(k+1) = On(k+1)—0(k+1)
Om(k) — pmur(k) — 0(k) — p(k + Dus (k) . (20)

Substituting the expression of p(k + 1) into the above equation, we can find

e(k+1) as

Oun(k) = O(K) + (= p(R)s (k)|

1+ ui(k) 1)

e(k+1) =

In order to show the stability and convergence of the system, we first
decompose the system into a linear time-invariant system plus a non-linear

time-variant feedback system. The system can be rewritten as

e(k+1) = Op(k+1)—0(k+1)
= e(k) + pmur(k) — p(k + 1)u (k)
= e(k)+m(k+1), (22)

where m(k+1) = pnui(k) — p(k+1)us(k). The decomposed system is shown
in Fig. 12. In order to prove the stability of the system, the two blocks can
be examined separately.

The hyperstability theorem states that[17): If the feedforward block
is such that the feedback system is globally (asymptotically) stable for all
feedback blocks satisfying the Popov integral inequality, one then says that the
feedback system is (asymptotically) hyperstable and that feedforward block 1s
a hyperstable block.
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First let us show that the linear forward loop have a positive real transfer

function. The transfer function of the linear block can be written as

G(z) = . (23)

This transfer function satisfies the following conditions:

1). It has a simple pole at z = I;

2). G(e™) + G(e7¥) =1> 0.

From the definition of a positive real system, we can determine that the
linear block is positive real. Next we need to examine if the non-linear block

satisfies the Popov integral inequality [17],
N n
n(N) = Z v (Byw(k) > =rd, N>=0 (24)
k=0

where v is the input vector, w is the output vector of the feedback block, and
rZ is a finite positive constant.
Now we begin to show that the feedback block satisfies the Popov integral

inequality.

mk+1) = (p(k+1) = pm)us(h)
k
= () + 7Y eli+ Dur(i) —paua(k).  (25)

1=0

e(k+ Dw(k+1) = e(k+1)(~m(k+1))

k
= (v e(i+ Dui(i) + p(0) — pm)e(k + 1)ur (k)

1=0

(26)
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The inequality is obtained from the following known inequality [17):

N k 1
E f(k)(az f(i)+¢) 2 —%02,0 = constant . (27)
k=0 4]

From the above analysis, we can observe that the system is always sta-
ble no matter what the adaptation gain is. However, this result is obtained
by assuming that there is no measurement noise and other disturbances. In
practice, a useful adaptation gain will be limited by the accuracy of the mea-
surements and the disturbances. This approach gives a system that is always
stable, and a large adaptation gain can be used to speed up the convergence.
We can see that the encoder compensation gain adaptation offers a very sim-
ple controller structure and very simple adaptation algorithms. In general
it can be used to compensate for the circular path error when the robot is
required to move on a straight line. We know, however, that there are more
error sburces and we generally can not have perfect path following using the
above algorithm although it can effectively compensate for a major portion

of the errors.

6 Computer Simulation and Experimental

Investigation

In this section, we will present a computer simulation and an experimental

evaluation of the above MRAC motion controller.
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6.1 Computer Simulation Evaluations of the Adap-

tive Motion Controller

To evaluate the adaptive motion controller we simulated a wall following
situatior where the robot was instructed to follow a straight wall. In this
simulation we assume that measurements of the orientation of the robot rela-
tive to the wall were available. The orientation error was modeled as a second
order function of Au and Auf, ie., AG = oy Aul + B AR + aAulAul +
BoAuR Ayl In this particular simulation, we chose a; = 2 X 107, a; =
2x107%. B = 6 x 107° and B, = 4 x 1078, Random noise was added to
the oriertation measurements. Fig. 13(a) shows the orientation error of the
robot wizhout (A) and with (B) the adaptive controller. Fig. 13(b) shows the
convergence of the encoder adaptation gain and Fig. 13(c) shows the resul-
tant pat= of the robot trajectory without (A) and with {B) adaptive control.
From tk= simulation results, we can observe that the proposed adaptive con-
troller czn effectively compensate for the systematic external errors and it

exhibits good convergence characteristics.

6.2 Experimental Evaluations of the Adaptive Mo-

tion Controller

We tested the performance of our adaptive control method on the com-
merciali+ available LabMate platform (Fig. 14). The LabMate has a square
shape o° 75 cm by 75 cm, and has a maximum speed of 1 m/sec. The ab-
solute robot motion information is provided by ultrasonic sensors since they

can provide positional information at very high frequency and with relatively
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high accuracy. The robot is equipped with three ultrasonic sensors (Fig. 6).
In the experiments, the robot moved along a straight wall, while the ultra-
_ sonic sensors measured the distance between the sensor and the wall to allow
compensation of the orientation of the robot.

The two sonars on the side can be used to measure the orientation of
the robot relative to the wall. Each sonar is fired at least once every 80
ms. Sonar measurements were valid if they were within a certain range.
To further improve the measurement accuracy, 10 readings from each sensor
were gathered, then sorted in ascent order. Next the largest and smallest
readings were compared. If the difference was larger than a certain threshold,
these two readings were discarded. This procedure was repeated with the
remainic.g readings, until the difference falls in the acceptable range or there
were toc few readings left. If there are too few readings left, the measurement
will be ciscarded. Otherwise, the measurement is obtained by averaging the
remaininig acceptable readings. Experimental results show that the accuracy
of our orientation measurement was about 1 degree, while the repeatability
of the ar.gle measurement was within +0.2°. It took about 0.7 s to get a valid
orientation measurement. The controller hardware configuration is shown in
Fig. 15.

In the experiments, the right drive wheel of the robot was covered with
three lavers of masking tapes to make the wheel diameters different. The
experiment is composed of two stages: first calibration of the adaptation
gain and then its usage in regular travel. In the first experiment, the robot
was instructed to follow a straight wall, and ultrasonic sensors were used

to measure the angle between the robot and the wall. This information was
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used for adaptation. Proportional and integral adaptation rule was used. The
result of one experiment is shown in Fig. 16. Fig. 16(a) shows the orientation
error without (A) and with (B) the adaptive controller. Clearly, when the
cross-coupling control is used alone, it can not compensate for the external
errors since no external sensory information is used in the cross-coupling
controller. However, the adaptive motion controller successfully compensated
for the external errors by adjusting encoder compensation gains based on the
absolute orientation measurements. Fig. 16(b) shows the convergence of the
adaptation gain. The final value is stored. From the figures, we can observe
that the adaptive controller works well under the experimental conditions,
and effectively compensate for the motion errors.

In the next stage of "the experiment, the converged value of the encoder
compensation gain was used to compensate for the motion error. The robot
was instructed to follow a 2mx2m square path clockwisely with and without
the compensation. The result is shown in Fig. 17. We can observe from Fig.
17 that the compensation is very effective and the motion accuracy improved
significantly. We can also observe that the absolute motion accuracy is also
improved significantly if we compare the result of the adaptive control with
the result of cross-coupling control with untapped wheels. The reason is
that there are systematic errors even when the wheel is not taped, and the

adaptive controller compensates for them as well.

27



7 Conclusions

We described the design and implementation of an adaptive motion con-
troller on a differential-drive mobile robot. The adaptive controller is used
to compensate systematic motion errors through “learning,” i.e., it detects
the errors from absolute position measurements and attempts to correct for
these errors. In order to apply the adaptation process, we used one section
of a straight wall. The adaptation algorithm is based on the hyperstability
theory to provide good convergence characteristics and stability, and it was

found to improve the motion accuracy of the robot significantly.
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Fig. 17. Comparison of Repeatability for a 2mx2m Square Path under
the Adaptive Controller and the Cross-Coupling controller
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Fig.3 The effect of unequal wheel diameters
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Fig.7 A self-tuning adaptive control system
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Fig.10 An equivalent feedback system
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Fig.13 Computer simulation of the proposed adaptive motion controller
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Fig.17 Comparison of motion control accuracy. The robot was
preprogrammed to travel on a 2mx2m square path, starting at (0,0). The
final positions after completing the path are shown.
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