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Abstract

In mobile system navigation, there are two kinds of position mea-
suring methods: absolute and incremental. Each of the two position
measuring methods has its advantages and its deficiencies. In this re-
port, the sources of position measuring errors for each method have
been analyzed. Four algorithms based on statistical analysis have been
developed to fuse the absolute and incremental position measurements
information to increase the positioning accuracy and reliability. The
algorithms have also been evaluated by both computer simulation and
experiments.



1 Introduction

The navigation of mobile systems relies on the accurate position mea-
surements. There are basically two types of position measuring methods,
incremental and absolute. The incremental methods (e.g., encoders) are
simple to use, and the position information is always available. However
the positioning accuracy is affected by the terrain (slippage, uneven surface,
etc.), and by the vehicle (difference in wheel diameter, wheel misalignment,
and unbalanced load on the vehicle). The errors also accumulate over dis-
tance [1, 2]. On the other hand, the absolute position measuring method is
not affected by the terrain and vehicle. A landmark based absolute position
measuring system is simple to implement and operates fast, but the position
information is not always available, the accuracy is limited by the resolutions
of the devices and the relative position between the mobile system and the
landmark [3-5]. We need both incremental and absolute position measuring

systems in order to navigate the robot accurately and reliably.

A effective way to increase the measurement accuracy and reliability is
to weighted average multiple measurements for the same quantity [6, 7], in
our case, the position coordinates. In this report, we will introduce several
algorithms to fuse the absolute position measurement and the incremental
measurement to get more accurate and reliable position estimate. In the
next section, we will analyze the positioning errors for each method. In
Section 3, we will develop the fusion algorithms. In Section 4, we will provide
computer simulation and experimental results. The final conclusions are

given in Section 5.



2 Error Analysis

In this section, we will analyze the error sources associated with both
absolute and incremental positioning methods. The precision of landmark-
based absolute position measurement depends on errors caused by the mea-
surement system and the relative position between the mobile system and
the landmark. The accuracy of the encoder-based incremental position mea-
surement accuracy is affected by imperfectioné of the mechanical system, as

well as environmental factors.

2.1 Absolute Position Measurement Errors

In our study, we used circular landmarks. A camera mounted on the mo-
bile system take a picture of the landmark, the differences in both shape and
size between the image and the real landmark will provide enough informa-
tion to determine the relative position of th;e mobile system to the landmark.
In this study, we only discuss the two-dimension case in which the axis of
the camera lens lies in a plane perpendicular to the plane of the landmark
and the center of the camera lens is at the same height as the center of the
landmark, as shown in Fig. 1. In this case, we need only two coordinates to
determine the relative position of the mobile system with respect to the land-
mark. The relative coordinates of the mobile sysfem to a circular landmark

(see Fig. 2) are determined by
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where r and a are the polar coordinates of the mobile system with respect
to the landmark, A, and A, are the axes of the ellipse in the image plane,
R is the radius of the circular landmark, and f is the focal length of the TV

camera lens. The derivation of Eq.( 1) is given in Appendix A.

The measurement error is mainly determined by the digitization error,
which occurs due to the limited resolution of the TV camera and other de-
vices. It is dominated by the lowest resolution of these devices. The minimum
measurement error due to digitization can be determined from the size of the
detected image and the detector resolution. For example, for a TV camera
that permits the resolution images the size of 512x512 pixels, this error is on
the order of 1/512 = 0.002. But if the image does not occupy the full TV

frame, the measurement error is larger.

The measurement error is also affected by a sensitivity function, that is
defined as the ratio of the change in the image parameters to the change in
the position of the mobile system. The sensitivity is not fixed, and it depends
on the relative location of the mobile system with respect to the landmark,
namely, the distance r and the angle of view a. In general, r and « are
functions of A, and A, (see Eq.( 1)); therefore, the positioning error of the

distance Ar and the orientation Aa can be expressed by
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where AA,; and AA, are the measurement errors of the two axes of the

ellipse and are determined by the digitization error. In real situations, the

digitization error is a function of the relative position and the resolution of
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the devices. The coefficients , and

sensitivities, which, in turn, are functions of the relative position of the mobile
system to the landmark. From Eq.( 2), we observe that the measurement
error increases with an increase in the digitization error and a decrease in

sensitivities.

The sensitivities can be determined from Eq.( 1) which may be rewritten

in the following form:
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The sensitivity functions of the relative position of the mobile system with

respect to the landmark are derived from Eq.( 3):
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From Eq.( 4), we can observe that all the sensitivity functions decrease with
an increase in r. Moreover, when r > R, i.e., the distance between the mobile
system and the landmark is much greater than the radius of the circular
landmark (this is usually the practical situation), the first two functions

become
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We can see that if r is kept constant, the sensitivity with respect to a increases
with an increase in @, and the sensitivity with respect to r decreases with
an increase in a. Substituting Eq.( 5) into Eq.( 2) yields the approximated

positioning error:

2 2

r r
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Assuming we have constant digitization errors AA, and AA,, we see that for
a mobile system moving away from the landmark under a certain orientation,
the measurement errors Ar and Ac increase due to the increase in r. If we
keep a fixed distance between the mobile system and the landmark, but
change the angle of view a, the measurement error Ar increases with an

increase in a, and Aa decreases with the increase in a. At a = 0°, there is
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no information on «; therefore, an error in a tends to infinity, i.e., Aa — oo.

Similarly, at a = 90°, Ar — oco.

To improve the measurement accuracy, we will introduce a statistical
model for the digitization error by assuming the image parameters are ran-
dom variables that possess a normal distribution. The probability model
will provide a reliability measure for the measurements and will allow us to

employ statistical techniques to improve the navigation of the mobile system.

2.2 Measurement Reliability

The reliability measure is a function of the digitization error and the
sensitivity. The errors in determining the coordinates of the mobile system
depend on the digitization error and the sensitivity, according to Eq.( 2).
By assuming that A, and A, are normally distributed independent random
variables, we then know the linear combination of Gaﬁssia.n variables is also
a Gaussian random variable, and the variances of the coordinates are related

to the variances of A, and A, by [6]
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where 0% and o} are the variances of the two axes of the ellipse, and o7

and o2 are the variances of the coordinates of the mobile system. The values

of the coordinate variances o2 and o2 can be used as measures of reliability.



2.3 Incremental Position Measurement Errors

The positioning accuracy of incremental positioning is affected by factors
of the mobile system and the environment. For wheeled mobile systems
equipped with incremental incremental encoders, position errors exist due
to the different diameters of the wheels, misaligned wheels and asymmetric
vehicle loads. The effect of these factors is that the mobile system moves on
a curved path when it is instructed to move along a straight line path. In
addition, the floor conditions may be different for different wheels, slippage
may occur for one or more wheels. The positioning errors caused by these
factors can not be detected by the encoders, and the errors accumulate over
distance. Thus an absolute position measuring method becomes essential for
accurate and reliable navigation. The effect of these errors will be included

in the computer simulation.

3 Algorithms for Improved Performance

In this section, we will show how to take advantages of both absolute
and incremental positioning information to fulfill the two basic requirements
for navigation, accﬁracy and reliability. As mentioned earlier, these two re-
quirements can be achieved by averaging multiple measurements of the same
quantity. However navigation is a real-time process, the absolute position
measurements need processing time. It is not practical to have several ab-
solute position measurements at the same spot without stopping the mobile
system unless the mobile system has sevéra,l measuring devices. However

the incremental position measurements are rather accurate over short dis-



tance, we can use this information to project the previous absolute position
measurements to the current position. In the following, we will develop al-
gorithms that use the present and previous absolute position measurements
using landmarks as well as the incremental position measurements from the

encoders to improve the accuracy and reliability of navigation.

When the mobile system is instructed to move, measurements are taken
at different points along the trajectory. At each point, a new estimate of the
current position is obtained based on new as well as previous measurements.
Each previous measurement is projected to the present vehicle location ac-

cording toe following equation:

. n—l .
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where z;" is the landmark measurement at the i-th point, Az’*!

’ is the in-

crement from the j-th point to the (j+1)-th point, which is obtained from

the readings of the on-board encoders, and :c,(") is the projection to the n-th

point from the measurement at the i-th point.

In developing the navigation algorithms, we will consider two errors, the
absolute landmark measurement error and the incremental position measure-
ment error. The measurement error is caused by the limited resolution of
the devices and is sensitive to the location of the mobile system. In order to
increase the robustness and positioning accuracy of the mobile system, we

will use algorithms based on a weighted average method [7]



E._1 o 9)

where (™ is the new estimate of the current position at the n-th point, x?
is the predicted n-th point obtained from the i-th measurement according to
Eq.( 8), and w; is the weight that gives the optimal estimate (see Sec. 3.1).
The weighted average is used to fuse the information from both the new
measurements and the projections from previous measurements (see Eq.( 8))
to get a better position estimation. Eq.( 9) can be also rewritten in the

recursive form:

(m(n) _ x(") )
2._1 wi

g™ =z, 4 2

(10)
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where Z,”; is the projection from the last estimate, and z? is the new mea-

surement. In our discussion, (™ will include two variables, #® and a&™.

To counteract for the incremental position measurement error, we must
realize that the errors caused by the imperfection of the mobile system itself
and the environmental factors accumulate over distance. In order to avoid
the buildup of large errors, we use a moving window to include only the
most recent measurements into the weighted average process (see Sec. 3.2).
In Sec. 3.3, we will discuss the situation where both absolute and incremental

position measrement errors present.
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3.1 Compensating for the Absolute Position Measure-

ment Error due to Sensitivity

If the incremental positioning errors are small, the major source of error
will be the absolute positioning error. We will develop algorithms based on
the weighted average of Eq.( 9) to compensate for the absolute measurement

error based on different optimization criteria.

3.1.1 Algorithm with Weights Based on Sensitivity

The sensitivity of measuring the landmark parameters depends on the
location of the mobile system, as shown in Eq.( 4). In general, the accuracy of
the measurement increases with an increase in sensitivity, i.e., a measurement
obtained in a high sensitivity region is more reliable and should be assigned
a larger weight. From Eq.( 2), we can see that if we assume a constanf.
digitization error, the measurement error depend only on sensitivities. Thus,
selecting the weights of the weighted average based on sensitivities might
be an appropriate approach under the assumption of a constant digitization

error (an assumption that is hard to justify).

The sensitivities given in Eq.( 4) are used as the weights in Eq.( 9). Since

. e e e Fe)
24y = 0 and 23 > 24z the dominant sensitivity factors become 24z and 24
da or or? da or

accordingly. We take w, = Qg‘: and w, = %Ar"- , and the estimated location

of the mobile system is calculated using the following equations:
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where 7™ and @™ are the estimated distance and the orientation of the
mobile system, respectively; (w,); and (wq); are the sensitivity functions
determined from Eq.( 4) and evaluated at the i-th point, and r? and o are
the projections for the coordinates at the n-th point, which are defined by

equations similar to Eq.( 8).

Eq.( 11) can be expressed in the following recursive form:

(we)a(r§) — 7))

#n) — )
r = 1. y
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where (" and a{") are the new measurements, and Ff,"_)l and &S,"_)l are the
projections from the last estimate. An evaluation of this algorithm and

comparisons to those presented below are given in Section 4.

3.1.2 Minimizing the Variance of the New Estimate

The algorithm described by Eq.( 11) is not based on an optimization

procedure. In contrast, our second algorithm is based on minimizing the

(n)

variance of the new estimate. Assuming that z; " in Eq.( 9) are independent

random variables, we can determine the variance of every new estimate by
[7]
2,52

2 t=1(w" iOr;
7 = o ()P 9
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where 0%, is the variance of the projection of r from the i-th point, and 02
f'- F

is the variance of the new estimate of the distance at the n-th point.

In order to minimize the variance, we must satisfy the relation

dol .,

- =0. 14
d(w,); (14)

Substituting Eq.( 13) into Eq.( 14) and solving the resultant equation, we

obtain the optimum weights [7]:

1
(wr)i X = (15)
0':5,,)
A similar relation can be obtained for the second coordinate (i.e., angle

of view a ): (w,); ;7:—) This result can also be obtained by applying a

n
a
L

Kalman filter to this simple situation [8].

3.1.3 Minimizing the Mean Square Error of the New Estimate

The third algorithm is based on minimizing the mean square error of the

new estimate. The mean square error at the n-th point can be expressed by

J = 3 Py (16)

i=1

where (") is the estimate for the n-th point given by Eq.( 9), and r,(") is the
projection to the n-th point from the i-th point. To minimize the error, we

have to satisfy the following equation:
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where ¢ = 1,...,n — 1. Substituting Eq.( 16) and Eq.( 9) into Eq.( 17), we

obtain

Y wi(r™ —r{My =0 (18)

=1

where j = 1,2,...,k—1,k+1,...,n—1. Assuming a certain value for the k-th

weight, wg, we can rewrite the last equation as

0 rgn) - r%") rg") - r&") cee rim) rﬁ") wy
rg") - rg") 0 r:(,") - rgn) R 0 rg") wy
7{") - rf{‘) rgn) - rﬁ,") r;(;") . 0 Wn
r{n) _ 7.,(‘n)
(n) ()
= Wk T2~ Tk . (19)

TSIn) _ r,(c")

By solving this system of linear equations at each point, we find the
optimal weights for minimizing the mean square error of the new estimate at
this point. To avoid the trivial solution of this homogeneous linear system,
we must first pick one weight. The weight in the highest sensitivity region
i assigned a weight of 1, or wy = 1. The derivation of Eq.( 19) is given in

Appendix B.
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Considering the real-time requirements of the navigation problem, we
adopt the recursive least-squares algorithm for Eq.( 19)[9], which solves the
least-squares problem approximately by using a recursive relation at each

point:

an_a(r{M — FSun—)l)
) Pn-l

A=) 4

2
a;P;,

P =Py -l
! 1+a,-P-_1

(20)

where r{" is the new measurement, FS‘"_)I is the projection from the last

estimate, 7™ is the new estimate, a; is the weight, and P; is a variable
gain, which can start with an arbitrary positive value. Equations similar to

Eqgs.( 19) and ( 20) can be obtained for a.

3.2 Compensating for the Incremental Positioning Er-
rors

In the algorithms discussed in Sec. 3.1, we used the previous absolute
measurements and the encoder readings to estimate the new positions. How-
ever, as discussed in Sec. 2.3, there could be a large accumulation of errors
in the encoder readings due to the mechanical and terrain factors (e.g., dif-
ferent sized tire, slippery floors, or misaligned wheels). To reduce the effect
of incremental error accumulation, we adopted the strategy of introducing a
forgetting factor. With this strategy, the effect of the previous measurements
on the current position estimate diminishes over the distance. In this study,

we use the weighted average of the current measurement and the projected
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estimate from the last measurement:

o _ (D) + (@) (7Y 4 Arn )
(wr)n + (w,),,_

'—.(n-l) — (wl )"—lrs;n—ll) + (u—):-)'l—2(F(n—2) + AT::;) (21)
(@)t + (@)

where 7" is the new estimate at the n-th point, (" is the new measurement
at the n-th point, Ar},_; is the increment of variable r from the (n-1)-th point
to the n-th point, (w;), is the weight for the new measurement and (@'),_,
is the weight for the projection from the last estimate. Similar equations can
be obtained for a. To show the effect of the forgetting factor, we substitute

F=D) F0=2),into 7™, which yields

sm _ _ (w)arlV (@7 )n-1Arp_,

)

@)+ @ T (W + (@
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(@) + (@)at )((W)or + (@)

(0))n-1 ()2 Arp}
(@) + (@)n1)((W))n-1 + (B} )n-2)

+...

+

()1 (Bh)nca - . (@) p(0!) "3

@D+ @) (] Jam1 4 (@)n-2) - (W))nok + (B (i)

(W7 )n-1(D7 )z - - - (D] ) x(0; )n—(k+1)A7‘n-(k+1)

((wp)n + (wr)n-l)((w')n-l +(@7)n-2) -+ (W)t + (D) )nir1))

+...
We can observe from Eq.( 22) that the new estimate, obtained from the

16



weighted average, contains information from all the previous measurements,
and the effect of the increment that contains the ‘mobile system error is
multiplied by a number smaller than one, so its effect diminishes with each

step.

3.3 Compensating for both Absolute and Incremen-

tal Positioning Errors

In this section, we will treat the general problem with both measurement
and mobile system errors. We will use a weighted average for two successive
measurements and select the weights such that the resultant new estimate
will have the minimum variance. If we assume that the random variables r
and Ar are independent, we have

(wi)nrfl") + (0})n-1 (F(n—l) +Arp_,)

) —
(@ + (@0 (23)

_ (wy)n |
= (@ + @

2 2_2
Uf( n) ) al,.s.")

(“_’:)n—l

@D+ @

) (%m0 + Tarm ) (24)

where a'g(,,) is the variance of the new estimate, arz(,,) is the variance of the
n

new measurement, 03(,.__1) is the variance of the estimate at the previous

position, and 0% . . is the variance of the incrementAr?_,. To minimize the
"

variance of the new estimate, we compute the derivative of %, with respect

to (1] )n—1 using Eq.( 24):
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We solve Eq.( 25) for (]),—1 and obtain

(w})n 0
(@)1 = - (26)
U:("-l) + O'Zr,’:_l
By substituting Eq.( 26) into Eq.( 24) and Eq.( 23), we obtain
) (0%n-ny + Uﬁr:_l)af(n)
T(m) 2 2 2 (27)
T (n-1) + UA’:;'-l + Urs.")
o2 o +oi . )r®™ o2 (71 4 Arn
f(n) _ ( F(n=1) Ar"_l) n ,,.g.)( n—l). (28)

2 2 2
Opn-t) T Oarn_ + 0 (n)

We can see from Eq.( 28) that the weights are still inversely proportional to
the variance. When the new absolute measurement is more accurate (i.e.,

O%my < Ofa-1) + OAm_ ), a larger weight is put on the new absolute mea-
surement. Otherwise, a larger weight is put on the projection from the last
estimate.
In the ideal situation, i.e., azr:‘._l =0, (k=0,1,...,n), all the measure-
ments are of the same accuracy, af(k), (k=0,1,...,n), and the best estimate
k

should be the arithmetic average. We can show that under these assump-
tions, Eq.( 28) indeed will reduce to the simple arithmetic average, as detailed

in Appendix C.
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4 Simulations and Experimental Results

We have performed computer simulations and experimental evaluations
of the proposed hybrid opto-electronic navigation system using the different

algorithms introduced in Sec. 3. The results are summarized below.

4.1 Computer Simulations

The objective of this computer simulation is to verify the effectiveness of
the algorithm developed in Section 3.3 when both measurement and mobile
system errors are present. In the simulation, the mobile system moves along
a straight path starting from (500, 2000) with incremental steps of 200. Mea-
surements are taken at each step. At the target point, a new estimate of the
current position is obtained using the new as well as the previous measure-
ments with the weighting factors of the different algorithms. The data from
the encoders of the mobile system are also used. The final correction is then

made toward the target based on the new position estimation.

We introduced a slippage error of 10% for two simulation cases: (A) a
mobile system error occurs only at the second step; and (B) a mobile system
error occurs only at the 10th step, where the total number of steps is 12. We
have chosen these two cases to demonstrate the effectiveness of the algorithm
in controlling errors that occur at the beginning of the route and at its end.
The results of the computer simulation for the two cases are summarized
in Figs. 3A and 3B, respectively. In each case, errors at the target point
are compared for three navigation strategies: (a) motion based on the new

absolute measurement; (b) motion based on the algorithm that minimizes the
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variance of the new estimate without using the forgetting factor ( Sec.3.3);

and (c) motion based on the algorithm in (b) but using the forgetting factor.

From the results in Fig. 3, we observe that (1) the algorithm based on
minimizing the variance of the new estimate with forgetting factor gives the
best performance; (2) the mobile system error has a significant effect on
the position estimation; and (3) the forgetting factor is an effective way of

compensating for error accumulation.

4.2 Experimental Evaluation

We have also conducted experiments to evaluate the different position es-
timation algorithms developed in Sec. 4.1. In our experiments, a mobile TV
camera (with a resolution of 256x256 and a lens focal length of f = 16mm)
was used at each measurement point on a desired trajectory to acquire an
image of a circular landmark of radius R = 107mm. The camera usually
recorded an image of an ellipse. The parameters of the ellipse were deter-
mined from the image. The parameters of the ellipse were then used to
determine the real position of the mobile system by employing the different

algorithms without introducing any incremental positioning errors.

There are several error sources involved in our experiments: camera po-
sitioning errors (e.g., the positioning accuracy of the mobile TV camera is
on the order of 1 mm), parameter measuring errors (e.g., digitization error),

and calibration errors.

The path taken in our experiment is a straight line path from (990, 2196)



to (1705, 1475). We have plotted the position estimation error of two points
on the trajectory to compare the three algorithms. The results from com-
puter simulation and experiment are represented in Figs. 4A and 4B, respec-
tively, along with the results of the absolute measurement. From Fig. 4, we
can observe that (1) the algorithm based on minimizing the variance of the
new estimate gives the best i)erformance, and (2) all algorithms give a more

accurate estimate of position than the absolute measurement.

4.3 Discussion of the Results

The computer simulation and the experimental results were found to be
consistent. In the case of selecting the weights by minimizing the variance of
the new estimate, we have considered both the sensitivity and the digitization
errors by assuming a certain statistical error model. In most cases, it gives
the best result. In the case of weighted average based on the sensitivity, we
select weights based on sensitivity without éxplicitly using the digitization
error model. A forgetting factor is introduced to compensate for the mobile

system errors.
From the results in Figs. 3 and 4, we can conclude the following:

1) Each of the three navigation aigorithms improve the navigation perfor-
mance of the mobile system. This improvement will be even further enhanced
when the distance traveled is increased.

2) The algorithm based on minimizing the variance of the new estimate
with the forgetting factor performs the best in the presence of both absolute

and incremental positioning errors.



3) The algorithm based on minimizing the variance of the new estimate
is the most efficient in compensating for absolute positioning errors.

4) The experimental results are consistent with the computer simulation,
considering the degree of randomness of the position estimation process.

5) The computer simulation and the experimental results show that the
performances of the mobile system depend on the particular region passed
by the mobile system as well as the locations where the measurements are

made.

5 Conclusions

In this report, we analyzed different error sources that affect the nav-
igation of the mobile system. To assure robust and accurate operation of
the mobile system, we developed several algorithms based on different op-
timization criteria. Computer simulations and experiments were conducted
to evaluate the performance of different algorithms. The results of the com-
puter simulation and the experiments are consistent. The best navigation
performance of the mobile system is obtained with the algorithm based on

minimizing the variance of the new estimate with a forgetting factor.
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A The Relationship Between Circular Land-
mark Image Parameters (4;, 4,) and Rel-

ative Positions (r, a) in 2-D Case.

E
d
B R R
/ i °
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r/F R
C
. f 0 R
Bi Fig. 5a H

Fig. 5b
From Fig. 5a, since triangles AODE and AOC;D; are similar, we obtain

CiD; — RCOSG C:B; _ Rcoso .
A = o Reina) AOQOFB is similar to AOC;B;, thus, A = e Since

A= C'D'zc'B', we obtain

__frRcosa
Az = r2 — R?sin’a’ (A1)
AOGH and AOgtH; of Fig. 5b are similar, so that -%1 "’r—R, or
A= L]_f_ (A.2)

From Egs. (A.1) and (A.2), we get Eq.( 1).
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B Mathematical Development of the Algo-
rithm Based on the Least- Squares Error

The mean square error can be expressed as

n n n 2_(n)
J =S (7 py2 2 3 iz (W )iTi™
2 )\ =20 - =)

To determine the minimum, we should set the derivative of J with respect
to wy to zero:
aJ
— =0

Owy.

that is

530 — ) =0,

=1

What we have is a homogeneous linear system of equations; to avoid a
trivial solution, we have to pick one weight first. Here we take the measure-
ment in the highest sensitivity region as having a weight of 1. In order to
achieve real-time operation, we can also use the recursive method to solve

the equations approximately.

C Special Case of Eq.( 28)

If we assume that there is no error in the encoder or no error in the

increment azr: =0 (k=0,1,...,n), and all the absolute measurements are
-1

26



of the same accuracy, i.e., 0%,, = 02 (k= 0,1,...,n), then from Eq.( 27), we
rk .

have
2 2 2
ol — (Ur(n-n‘*‘%r:_l)o',g‘n) _ 0% n_1yo?
#n) = 73 2 ) 2
Ten-1) T Oarn_ T 0 ) Opnry +0
or
2 "2:( 1)
n—
Oin) _ P

2 a? *
g (n—1)
1 + _Laz__

At the beginning, we take 0,0 = o%; then, we have

2
Iro) _
o =1
U?(l) _ 1
o2 ~ 1+41xl1
0'3(2) — 1
o? 1+2x1
a.,?(n—l) . 1
02  14+(n-1)x1
0'?(,.) _ 1
o2  14nx1’

From Eq.( 26), we know

2 2
(Wr)n _ Orn- ¥ Oarn, ok, _ . .
(ﬂ’r)'n—l 0"2_(,.) o? 1 + (n - 1) x 1
n
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(wr)n —_

In general, Wy = 1+(n11)x1, t=1,2,...,n. From Eq.( 23), we get

() (w)ar® + (@})aa (F*-D + Arn_))
(w))n + (“—’;)n—l

7-(n)_(.(wt'u)r“!nl s ("_1)+A1"n )
1+ (!Wr!n !wr!n

u-l:-)n—l (w' )"-1

r(m + r("‘l) +Ar®_,
T+n ' 14 ok

(’”' Jn-1

w! [ (n-1) o’ ne F(n-2) n-1
If we substitute 7#(*~1) = (“n=1Tn_1 +(2)n-2( +Arn 7))

(WD) n1+(BL)n—2 , we will have

) —

L R T R S G

14n 1+n 14+n L

We can indeed see that under special assumptions Eq.( 28) gives the sim-
ple arithmetic average, which is an optimal estimation under the assumptions

we made.
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Fig. 1 A mobile system and a landmark
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/ landmark

. TV-camera with lens
—"of focal length f
plane \ Mobile system

Fig. 2 Description of the relative spatial position of a mobile system
circular landmark.
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Fig. 3 Comparisons of computer simulation of the navigation errors for
different error correcting criteria: (A) mobile system gives an error only at
the second step; (B) mobile system gives an error only at the 10th step,
where the total number of steps is 12. In each plot, from left to right,
motion is based (a) only on the absolute measurement; (b) on minimizing
the variance of the new estimate without using the forgetting factor; and
(c) on minimizing the variance of the new estimate using the forgetting
factor.

computer simulation result experimental results
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Fig.4 Comparisons of error from the real position for different position
estimation algorithms: (A) computer simulation; (B) experiment. At each
point, from left to right, the algorithms are based on (a) absolute
measurement; (b) weighted average based on sensitivity; (c) least-squares
method; and (d) minimizing the variance of the new estimate.
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