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ANCALECETUS SIMONSI, A NEW DORUDONTINE ARCHAEOCETE 
(MAMMALIA, CETACEA) FROM THE EARLY LATE EOCENE 

OF WADI HITAN, EGYPT 

by 

PHILIP D. GINGERICH and MARK D. UHEN 

Abstract-A new advanced archaeocete, Ancalecetus simonsi, is described from 
the Birket Qarun Formation (earliest Priabonian, late Eocene) of Wadi Hitan 
in western Fayum Province, Egypt. A. simonsi is similar to Dorudon atrox 
in many ways but differs conspicuously in having fused elbows, other 
distinctive features of forelimb structure, and a more curved malleus within 
the middle ear. Ancalecetus appears to have been a viable if highly-special- 
ized evolutionary experiment, an experiment that may have contributed 
nothing to subsequent evolution of cetaceans, but an experiment nevertheless 
broadening our understanding of the morphological diversity of archaeocetes. 

INTRODUCTION 

Wadi Hitan (Valley of Whales or Zeuglodon Valley) is a broad, flat valley in the western 
desert of Egypt (Fig. 1) located in Fayum Province at the western edge of the Fayum 
topographic depression. The geology here was first surveyed by Hugh J. L. Beadnell in the 
winter of 1902-1903 as part of an investigation of the suitability of the Fayum Depression for 
diversion and storage of Nile River water. This area was further surveyed in the winter of 
1903-1904, and Charles W. Andrews (1906) described a new genus and species of archaeocete 
whale, Prozeuglodon atrox (now Dorudon atrox), based on the cranium and dentary of a 
juvenile individual from "a valley about 12 kilometers W.S.W. of the hill called Gar-el- 
Gehamem." This valley is Wadi Hitan, and Andrews, writing of P. anox (1906, p. 244), 
mentioned that remains of this genus and species are found in abundance in Wadi Hitan. 

Publication of monographs on or including archaeocete whales by Stromer (1903, 1908), 
Fraas (1904), and Andrews (1906) seemingly satisfied interest in Egyptian archaeocetes for 
much of the rest of the century. Henry Fairfield Osborn visited Wadi Hitan or Zeuglodon 
Valley briefly in 1907 (Osborn, 1907). A field party from the University of California visited 
Wadi Hitan for three days in 1947 (when UCMP 93169, a good cranium of Basilosaurus isis 
was collected), and Yale and Duke University field parties visited Wadi Hitan on several 
occasions in the 1960s through early 1980s (when YPM 24851, a nice dentary of the sirenian 
Eotheroides was collected (see Domning et al., 1982). Kellogg (1936) and Barnes and Mitchell 
(1978) reviewed Egyptian archaeocetes, including the few specimens then known from Wadi 
Hitan. 
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TABLE 1-Anatomical abbreviations employed in text and figures. Abbreviations of names of bones begin 
with a capital letter; other features are abbreviated in lower case type. 

ac acromion process 
ang angular process 
app anterior process of the periotic 
BO basioccipital 
BS basisphenoid 
C1 cervical vertebra 

canine (upper or lower) 
Cal caudal vertebra 
cd mandibular condyle 
cfh capitular fovea of humerus 
cm head of malleus 
cnpd coronoid process of the dentary 
com column of malleus 
cp coracoid process 
crh cranial hiatus 
Cun cuneiform 
dpc deltopectoral crest of humerus 
eam external auditory meatus 
EO exoccipital 
fee fenestra cochleae (round window) 
fev fenestra vestibuli (oval window) 
fm foramen magnum 
fo foramen ovale 
fpr falcate process (basioccipital and exoccipital) 
gc glenoid cavity of scapula 
gf glenoid fossa of squamosal 
gt greater tuberosity of humerus 
h head of the humerus 
H humerus 
hpa humeral process of the acromion 
111 incisor (upper or lower) 
inv involucrum of the auditory bulla 
isf infraspinous fossa 
J jugal 
jn jugular notch 
L1 lumbar vertebra 
U lacrimal surface of jugal 

lpt lateral lamina of the pterygoid 

It 
Lun 
~ ' 1  
Mag 
mdf 
m f 
mm 
mpt 
Mx 
ncr 
OC 

pll 
Pa 
Pal 
Pap'- 
Per 
PgP 
Pi 
P P ~  
PPP 
PPt 
F't 
Ptsn 
R 
S 

Sc 
Sca 
SO 
SP 
sq 
ss f 
sYm 
Trd 
Tzm 
u 
Unc 
v 
z 

lesser tuberosity of humerus 
lunar 
molar (upper or lower) 
magnum 
mandibular foramen 
mental foramen 
manubrium of malleus 
medial lamina of the pterygoid 
maxilla 
nuchal crest 
occipital condyle 
premolar (upper or lower) 
parietal 
palatine 
paroccipital process 
periotic 
postglenoid process 
pisiform 
posterior palatine foramen 
posterior process of periotic 
posterior process of the tympanic 
pterygoid 
pterygoid sinus 
radius 
spine of the scapula 
scapula 
scaphoid 
supraoccipital 
sigmoid process of the auditory bulla 
squamosal 
supraspinous fossa 
mandibular symphysis 
trapezoid 
trapezium 
ulna 
unciform 
vomer 
zygomatic process of the squamosal 

University of Michigan field work in Wadi Hitan was initiated in 1983 when the opportunity 
arose to cooperate with Elwyn Simons of Duke University and join his Duke University - Cairo 
Geological Museum research program in Fayum. Our initial interest was acquisition of good 
anatomical specimens for comparison with more primitive archaoecetes known from Pakistan, 
but Wadi Hitan contains such an extraordinary concentration of cetacean and sirenian specimens 
that we soon became interested in the diversity of marine mammals preserved in the Egyptian 
locality. 

The specimen described here, Cairo Geological Museum [CGM] specimen 42290, was found 
in 1985. It was originally catalogued as University of Michigan [UM] specimen 93230, but 
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ocation of study area 
Ica. 2S018' N lat., 3O02' E long.) 

FIG. 1-Map of Wadi Hitan (Zeuglodon Valley), Egypt, showing locality of the partial skeleton of 
Ancalecetus simonsi, new genus and species, described here (CGM 42290, labeled; field designation 
ZV-81). Location is shown in the context of other dorundontine remains (closed squares) found in 
Wadi Hitan by University of Michigan expeditions. Cetaceans mapped here come from the latest 
Bartonian through earliest Priabonian Gehannam and Birket Qarun formations of late middle and early 
late Eocene age. Strata strike NE-SW and dip gently to the northwest. Shaded areas are tablelands 
(as shown in distance at left in Fig. 2) rising above cetacean-bearing strata and capped by indurated 
and erosion-resistant beds of the Umm Rig1 Member of the late Eocene Qasr el-Sagha Formation. 
Map is 7 km X 7 km, with specimens located by reference to their positions on a triangulated field 
map, fit to Universal Transverse Mercator coordinates (grid zone 36R) of prominent landmarks. 

renumbered when it was made a type and returned to the Cairo Geological Museum. Selected 
elements of CGM 42290 have been duplicated as casts and these now bear the original number 
UM 93230. CGM 42290 is similar to Dorudon atrox in many ways but differs markedly in 
having fused elbows and other distinctive features of forelimb structure. Description was 
delayed through the 1987, 1989, 1991, and 1993 field seasons because we hoped that a second 
specimen might be discovered. No additional remains of the fused-elbow whale have been 



3 62 P. D. GINGERICH AND M. D. UHEN 

found, but we are now convinced that its distinctive features are not due to injury nor to 
pathology or developmental anomaly. The fused-elbow whale described here appears to have 
been a viable if highly-specialized evolutionary experiment, an experiment that may have 
contributed nothing to subsequent diversification of archaeocetes, but an experiment 
nevertheless broadening our understanding of the morphological range of archaeocetes. 

ABBREVIATIONS 

Institutional abbreviations used here are as follows: 

CGM - Cairo Geological Museum, Cairo (Egypt) 
UCMP - Museum of Paleontology, University of California, Berkeley (U.S.A.) 
UM - Museum of Paleontology, University of Michigan, AM Arbor (U.S.A.) 
YPM - Yale Peabody Museum, Yale University, New Haven, Connecticut (U.S.A.) 

Anatomical abbreviations are listed in Table 1. 

STRATIGRAPHY AND AGE 

Wadi Hitan, as noted in the introduction, is an uninhabited broad, flat, dry desert valley in 
a remote part of western Fayum Province in north central Egypt (Fig. 1). Bedrock strata, 
where exposed, are eroded continuously by wind and blowing sand. Three marine Eocene 
formations are exposed in Wadi Hitan. The lowest, the Gehannam Formation, is predominantly 
brown shale with gypsum and fine white and yellow sandstones deposited on a shallow shelf. 
This is Bartonian (late middle Eocene) to Priabonian (late Eocene) in age. The middle 
formation, the Birket Qarun Formation, is a massive yellow sandstone that is lenticular in 
cross-section and interpreted as an offshore barrier sandbar complex buried by a rapidly rising 
sea during earliest Priabonian marine transgression. The highest formation, the Qasr el-Sagha 
Formation, is a lagunal complex including abundant oysters and other bivalves that is 
Priabonian (late Eocene) in age (Gingerich, 1992). 

Much of the floor of Wadi Hitan has been excavated by erosion of soft shales of the 
Gehannam Formation. In some areas the Gehannam Formation is overlain by indurated 
sandstones of the Birket Qarun Formation, while in other areas, like the type locality of the 
fused-elbow whale described here, the Gehannam Formation is overlain by soft sands attributed 
to the Birket Qarun Formation. In some areas the Gehannam Formation is overlain directly 
by Qasr el-Sagha Formation. Induration of bivalve-rich hard beds in the lowest Umm Rig1 
member of the Qasr el-Sagha Formation makes these resistant to erosion, and the Qasr el-Sagha 
Formation generally stands exposed as a tableland (stippled in Fig. 1) separated from eroded 
valleys by 20-50 m escarpments. Where the Birket Qarun Formation is thickest and most 
indurated, as on the southern face of Minqar el-Hut, it is eroded into spectacular sandstone 
cliffs standing more than 100 m above the valley floor. Much of the surface of valley floors 
and high tablelands is covered with a desert pavement or serir of siliceous gravel. 

The ages of Wadi Hitan strata are constrained by the succession of microfossil, invertebrate, 
and vertebrate fossils studied in Fayum and elsewhere in northern Egypt, and by evidence of 
a low sea stand in Wadi Hitan itself (reviewed in Gingerich, 1992). This low sea stand 
corresponds to a major marine regression bringing sea level low enough to accommodate 
mangrove at the end of Bartonian time (end of the middle Eocene), and the Birket Qarun 
barrier bar complex was evidently buried by rapid sea level rise just after the low stand. These 
events refine correlation based on other evidence, and mean that most of the Gehannam 
Formation is late Bartonian, while the uppermost Gehannam, laterally equivalent Birket Qarun, 
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FIG. 2-Photograph of excavation of Ancalecetus simonsi new genus and species, CGM 42290 (holotype, 
ZV-81), in the context of surrounding landmarks. Desert surface here is approximately the top of the 
Gehannam Formation, with remnants of overlying Birket Qarun Formation represented by sandstone 
inselbergs in the foreground and cliffs in the left distance (on the sides of the west end of the table-like 
highland Minqar el-Hut shown on the map in Fig. 1). Excavation is some 2 m in diameter, just to 
the right of the car, in a dry wash that flooded during the winter after the specimen was collected 
(when remnants of plaster and burlap were buried under some 10-20 cm of waterborne sediment). 
View is to the south. 

and overlying Qasr el-Sagha formations are Priabonian (Gingerich, 1992). Wadi Hitan is best 
known paleontologically for its abundant fossil cetaceans and sirenians. These come from both 
latest Bartonian and earliest Priabonian strata. There is no indication of significant faunal 
change in the Wadi Hitan stratigraphic section, and it is not possible to tell the late Bartonian 
and early Priabonian apart locally using macroinvertebrates or vertebrate fossils. 

The type specimen of Ancalecetus simnsi described here, CGM 42290, is considered to be 
earliest Priabonian in age because it comes from the Birket Qarun Formation some 5-10 m 
above the base of the Minqar Abyad stratigraphic section measured in Wadi Hitan (fig. 41  in 
Gingerich, 1992), which places it just above the base of the Birket Qarun bamer bar complex 
and just above the beginning of Priabonian transgression (see also figs. 43 and 44 in Gingerich, 
1 992). 

SYSTEMATIC PALEONTOLOGY 

Order CETACEA Brisson, 1762 
Suborder ARCHAEOCETI Flower, 1883 
Family BASILOSAURIDAE Cope, 1868 

Subfamily DORUDONTINAE (Miller, 1924) 

Ancalecetus simonsi, new genus and species 
Figs. 3-7, 8A, 9-22, 23A, 24-25,27A 

Ho1otype.-CGM 42290, including a partial cranium, left and right dentaries, vertebrae, 
parts of ribs, sternal elements, and much of both forelimbs. 
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FIG. 3-Known remains (shaded) of the type and only specimen of Ancalecetus sirnomi, CGM 42290 
(holotype), superimposed on a reconstruction of the skeleton. Front and top of skull were removed 
by wind erosion with deflation of desert surface. Skeleton is shown in lateral view. Skull, as 
reconstructed, is approximately 85 cm long, and entire skeleton is approximately 5 m long. 

Type locality.-Wadi Hitan locality ZV-81 (see map in Fig. 1 and photograph in Fig. 2). 
Stratigraphic position of the type locality in the Birket Qarun Formation is at approximately the 
5-10 m level in the Minqar Abyad stratigraphic section published by Gingerich (1992, fig. 41; 
see discussion above). 

Referred specimens. -None. 
Age and distribution.-Early Priabonian, early late Eocene. 
Diagnosis.-Ancalecetus simonsi differs conspicuously from all other known archaeocetes 

and from modem whales in having anteroposteriorly-narrow scapulae, very limited mobility 
of the humerus relative to the scapula at the shoulder joint, and fusion of the humerus, ulna, 
and radius at the elbow joint. Carpal bones of the wrist are small like those of Zygorhiza, but 
Ancalecetus differs from Zygorhiza in having the magnum-trapezoid conjoined as a single bone. 

Etymology.-Ankale, Gr., bent arm, and ketos, whale (masc.). Species is named for Dr. 
Elwyn L. Simons, who discovered the type specimen in 1985, in recognition of his interest in 
early cetaceans and his willingness to promote this research in Egypt. 

Description.-Known elements of Ancalecetus simonsi are shown in Figure 3. The cranium, 
dentaries, dentition, thyrohyal, partial vertebral column, partial rib cage, and forelimbs are 
described in sequence here. Abbreviations of anatomical terms are listed in Table 1. 
Comparative references for the osteology of archaeocetes and modern mammals include Flower 
(1885), Kellogg (1936), and Miller, Christensen, and Evans (1964). Measurements are in mm 
unless stated otherwise. The pattern for presentation of measurements is as follows: L = 
length; W = width; H = height. Long bones are measured as L; MLW (= mesiolateral 
width); and APH, DPH, or DVH (= anteroposterior, dorsoplantar, or dorsoventral height), 
respectively; with multiple MLW widths and APH, DPH, or DVH heights for long bones given 
in the sequence p : m : d = proximal : mesial : distal. 

Cranium 

The cranium of Ancalecetus simonsi, CGM 42290, is illustrated in Figures 4-6. All of the 
top of the skull was destroyed by erosion before the specimen was found, and nothing remains 
of the nasal or frontal portions of the skull. Nothing can be observed of the endocranium. 
However, the posteroventral part of the skull is in good condition, and preserved elements here 
are similar to those of Zygorhiza (Kellogg, 1936) and Dorudon (Uhen, 1996). Cranial 
measurements are given in Table 2. 
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Palate 

Maxilla.-Premaxillae are not preserved, and most of both maxillae are missing as well. 
The only remnants of maxillae (Mx in Figs. 4-5) are fragmentary extensions of the palate 
sutured to the palatines. Posterior palatine foramina (ppf) that carried nerves and blood vessels 
supplying the palate are present in or near the maxillopalatine suture (the course of this suture 
is uncertain in places). 

Palatine.--The palatines (Pal in Figs. 4-5) are paired elements forming the posterior portion 
of the palate, extending from the maxillae in front to the pterygoids posteriorly. The two 
palatines join at the midline and their ventral surface forms a keel that narrows posteriorly. 
This is part of the posterionnost extension of the hard palate. The palatines rise dorsally and 
laterally along a surface that is folded inward to form a concave surface for muscle attachment. 
Internal surfaces of the palatines form the ventral and lateral walls of the narial passage. 

Pterygoid-The remaining portion of the palate is formed by pterygoids (Pt in Figs. 4-5). 
These too are paired elements. They articulate anteriorly with the posterior parts of the 
palatines. The pterygoids meet along the midline ventrally to form ventral and lateral walls of 
the posteriormost extension of the narial passages. The pterygoids have several extensions and 
surfaces that project in different directions. One of these is continuous with the ventral palatine 
keel described above. Another is the lateral lamina of the pterygoid (lpt), which angles away 
from the midline posteriorly. The lateral surface of the lateral lamina forms the side of the 
skull and the medial surface forms the anterior portion of the lateral wall of the pterygoid sinus. 
Posteriorly, the lateral lamina joins the squamosal, which forms the remaining portion of the 
lateral wall of the pterygoid sinus. The pterygoid-squamosal suture can be traced dorsally to 
a point where it turns sharply anteriorly (where the squamosal meets the alisphenoid), and the 
pterygoid makes a short contact with the alisphenoid here. The suture can be traced anteriorly 
and ventrally where the pterygoid meets the posterior palatine. The pterygoid-palatine suture 
then angles farther anteriorly and ventrally to reach the midline. 

The medial lamina of the pterygoid (mpt) forms the medial wall of the pterygoid sinus. The 
medial lamina is roughly parallel to the midline and projects out from under the lateral lamina 
of the pterygoid on each side. The medial lamina is nearly vertical at its anterior end, and it 
flares posteriorly to join the anterior border of the falcate process of the basioccipital just 
posterior to the basioccipital-basisphenoid suture. 

The medial border of the medial lamina of the pterygoid contacts the lateral edge of the 
vomer, but little of this contact is preserved in CGM 42290. As stated above, the lateral and 
medial laminae of the pterygoid together enclose a large space known as the pterygoid sinus 
(ptsn). This sinus is confluent with the tympanic cavity posteriorly and it is open ventrally. 

Vomer.-The vomer (V in Figs. 4-5) covers most of the ventral surface of the presphenoid, 
as it does in other basilosaurids, but little of it is exposed. It contacts the medial border of the 
medial lamina of the pterygoid. 

Mesocranium 

Very little of the mesocranium is preserved in CGM 42290. The fronhis and frontai shieii: 
were completely destroyed by erosion, and much of each parietal has been removed by erosion 
as well. 

Parietal.-Left and right parietals (Pa in Fig. 6A) make up the lateral sides of the posterior 
portion of the skull. Only the posterior parts of each parietal are preserved here, where they 
are sutured to the squamosal. The parietal-squamosal suture runs diagonally dorsally and 
caudally across the lateral wall of the braincase to a point where it turns sharply posteriorly and 
intersects the nuchal crest (ncr). The posterior face of the dorsal parietal is covered by the 
supraoccipital, but much of this contact has been destroyed by erosion. 
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FIG. &Cranium of Ancalecetus simonsi, CGM 42290 (holotype), in ventral view. Scale is in cm. See 
Fig. 5 on facing page for labelling. 

Abbreviations from Table 1 are: BO, basioccipital; BS, basisphenoid; crh, cranial hiatus; earn, 
external auditory meatus; EO, exoccipital; fm, foramen magnum; fo, foramen ovale; fpr, falcate 
process (of basioccipital and exoccipital); gf, glenoid fossa; J, jugal (continued on facing page ...) 
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FIG. 5-Outline of cranium of Ancalecetus simonn', CGM 42290 (holotype), in ventral view. Scale is 
given in Fig. 4. 

Abbreviations continued from facing page: jn, jugular notch; lpt, lateral lamina of the pterygoid; 
mpt, medial lamina of the pterygoid; Mx, maxilla; oc, occipital condyle; Pal, palatine; papr, 
paroccipital process; Per, periotic; pgp, postglenoid process; ppf, posterior palatine foramen; ppp, 
posterior process of periotic; ppt, posterior process of the tympanic (attached to left ppp); Pt, 
pterygoid; ptsn, pterygoid sinus; Sq, squamosal; V, vomer; z, zygomatic process of the squamosal. 
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Orbit 

All that remains of the orbital region in CGM 42290 is the ventrolateral base of each orbit 
in the form of left and right jugals. 

Juga1.-Both jugals in CGM 42290 are preserved as isolated elements. Part of the left jugal 
(J in Figs. 4-5) adheres to the jugal process of the squamosal. The right jugal is the more 
complete (Fig. 13H). This is broadest at its anterior end where it inserted into a V-shaped 
notch in the maxilla. Both medial and lateral surfaces articulating with the maxilla are smooth. 
The dorsal surface of the jugal is triangular at the anterior end and this triangular surface (lj 
in Fig. 13H) is coarsely-textured where it was sutured to the lacrimal. Just posterior to this 
textured area, the dorsal surface curves smoothly downward and backward where it floored the 
orbit. Posterior to the orbit, the dorsal surface of the jugal narrows and becomes thin and 
bladelike where it articulated with the zygomatic process of the squamosal. The ventral surface 
that is V-shaped anteriorly becomes broadly rounded beneath the orbit and narrowly bladelike 
posterior to the orbit. The left jugal (Fig. 13G) is similar to the right jugal but lacks the 
anterior end; both lack posterior ends. 

Basicranium 

Basziphenoid.-The basisphenoid (BS in Figs. 4-5) generally has little ventral exposure on 
the basicranium because it is completely or almost completely covered over by vomer and 
pterygoids. The only portion of the basisphenoid that is visible in CGM 42290 is the ventral 
surface at the posterior end, where it has been exposed by breakage of the covering bones. 
This surface is flat and coplanar with the basioccipital. The basisphenoid-basioccipital suture 
is straight and runs across the basicranium perpendicular to the midline. 

A1ziphenoid.-The alisphenoid forms the ventral portion of the lateral wall of the 
mesocranium. It is discussed here as an extension of the basisphenoid. The alisphenoid covers 
the course of the ophthalmic and maxillary divisions of the trigeminal nerve (V, and V2), 
beneath which is the presphenoid. Only a tiny portion of the alisphenoid is preserved in 
CGM 44290. A small piece of the posteroventral alisphenoid is present on each side where 
it contacts the palatine anteroventrally, the pterygoid posteroventrally, and the squamosal 
posteriorly. 

Basioccipita1.-The basioccipital (BO in Figs. 4-5) forms the central base of the posterior 
basicranium. This articulates anteriorly with the basisphenoid and posteriorly with exoccipitals. 
The basioccipital and exoccipitals are generally coossified in older juvenile and adult 
basilosaurids, but these are readily distinguished in young individuals. The caudalmost 
projection of the basioccipital extends between the occipital condyles and forms the ventral 
floor of the foramen magnum (frn). This area is also known as the intercondyloid notch. 
Internally, the basioccipital forms the posterior floor of the braincase. 

The main body of the basioccipital is saddle-shape. Viewed ventrally, there is a broad 
trough along the midline formed by ventrolaterally-projecting lateral edges, which are the 
falcate processes (fpr) of the basioccipital. The posterior portion of each falcate process is 
exoccipital, and the separation of basioccipital and exoccipital is marked by a notch in the 
ventral edge of each falcate process. 

Supraoccipita1.-The supraoccipital (SO in Fig. 6B) is a singular midline bone that forms 
the posterior portion of the braincase and the posterior surface of the skull. Most of the 
supraoccipital in CGM 44290 has been weathered away, but the ventral-most portion remains. 
The supraoccipital articulates ventrolaterally with the exoccipitals, and the suture between these 
elements runs diagonally from the foramen magnum toward the ventral borders of each nuchal 
crest. The ventralmost projection of the supraoccipital forms the dorsal border of the foramen 
magnum. The posterior surface of the supraoccipital is concave, with the lateral edges flaring 



ANCALECETUS, NEW ARCHAEOCETE FROM EGYPT 369 

FIG. 6-Cranium of Ancalecetus simonsi, CGM 42290 (holotype), in (A) left lateral, and (B) posterior 
view. Anterior and dorsal parts of skull were exposed at the desert surface and destroyed by wind 
erosion. Abbreviations from Table 1 are: EO, exoccipital; fo, foramen ovale; fpr, falcate process; 
jn, jugular notch; Mx, maxilla; ncr, nuchal crest; oc, occipital condyle; Pa, parietal; Pal, palatine; 
pnpr, paroccipitalprocess; pgp, postglenoid process; SO, supraoccipital; Sq, squamosal; z, zygomatic 
process of the squamosal. Scale IS in cm. 

out and back to form prominent nuchal crests. In addition, the ventral extension of the 
supraoccipital flares outward from the center of the bone to the edge of the foramen magnum. 

Exoccipita1.-The exoccipitals (EO in Fig. 6B) are paired bones that form the ventral part 
of the posterior surface of the cranium. The exoccipitals articulate dorsally with the 
supraoccipital along the diagonal sutures mentioned above. The anterior surface of the 
exoccipitals articulates medially with the parietals and laterally with the squamosals. The 
occipital condyles (oc) arise from the medial edges of the exoccipitals. They extend ventrally 
to the suture with the basioccipital, forming the intercondylar notch mentioned above. The 
occipital condyles articulate with the vertebral column. Lateral and ventral to the occipital 
condyles, two processes of the exoccipital form the borders of the jugular notch Cjn), which 
lies between them. The more medial process is the posterior (exoccipital) portion of the falcate 
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TABLE ;?--Selected measurements of upper and lower alveoli, diastemata, cranium, and dentary of Ancalecetus 
simnsi based on CGM 42290 (holotype). Abbreviations in the table: D, diastema following tooth; H, 
height; L, length; W, width. Asterisks mark estimated measurements; superscript a indicates an estimate 
is of the length or width of an alveolus (alveoli in the case of teeth with multiple roots). Measurements are 
in blocks of mm and cm, as noted. 

Cranium 
I' L:W:H:D: 

L:W:H:D: 
13 L:W:H:D: 
C' L:W:H:D: 
P' L:W:H:D: 
p2 L:W:H:D: 
p3 L:W:H:D (double-rooted): 
9 L:W:H:D (doublerooted w. 
M1 L:W:H:D (doublerooted): 
M2 L:W:H:D: 

- 
- 

61.4 : 
medial buttress): 46.6 : 

29.0. : 
- 

Skull length (condylobasal): 
Diameter of orbit: 
Diameter of infraorbital foramen: 
Breadth of frontal shield at postorbital process (maximum): 
Breadth across nasals on frontal shield (maximum): 
Breadth of rostrum at c': 
Breadth of rostrum at @: 
Breadth of palate at M ~ :  
Height of skull above palate at M ~ - ~ :  
Breadth of skull across zygomatic arches (maximum): 
Breadth of skull across squamosals: 
Breadth of skull across exoccipitals: 
Foramen magnum W:H: 
Height of nuchal crest above foramen magnum (maximum): 
Tympanic bulla L:W:H: 8.2 : 

Mandible 
I1 L:W:H:D: 
I2 L:W:H:D: 
I3 L:W:H:D:(single-rooted alveolus): 
C1 L:W:H:D (singlerooted alveolus): 
P1 L:W:H:D (double-rooted, confluent roots): 
P2 L:W:H:D (double-rooted): 
P3 L:W:H:D (double-rooted): 
P4 L:W:H:D (double-rooted): 
M1 L:W:H:D (doublerooted): 
Mq L:W:H:D (doublerooted): 
M3 L:W.H (double-rooted): 

Length of left dentary from front of C1 alveolus to back of M3 alveolus: 
Depth of dentary below Cl: 
Depth of dentary below P 3 4  
Depth of dentary below M1: 
Depth of dentary below M3: 
Posterior opening of mandibular canal W:H: 
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process (fpr) described above because it joins part of the basioccipital. The more lateral 
process is the paroccipital process (papr). Just lateral to the paroccipital process is a posterior 
flare of the exoccipital that forms a small arch of bone. Lateral portions of the exoccipital 
form the posterior surface of the skull. These are broadly scalloped and do not extend as far 
laterally as the squamosals, leaving the posterior surfaces of left and right squamosals partially 
exposed. 

Squamosa1.-The squamosal (Sq in Figs. 4-6) forms the posterolateral wall of the side of 
the cranium. The squamosal articulates anteriorly along its dorsal edge with the parietal and 
on its anteroventral edge meets the alisphenoid as described above. There is also a contact with 
the pterygoid, enclosing the foramen ovale (fo in Figs. 4-5 and 6A) that camed the mandibular 
branch of the trigeminal nerve (V3) into the temporal fossa. On the ventral side, the squamosal 
has a complex relationship with the periotic (described below). The posterior surface of the 
squamosal is sutured to the anterior face of the exoccipital. Together these bones form the 
lateral portion of the nuchal crest. The suture between the squamosal and exoccipital lies in 
a groove between these bones that extends up the middle of the nuchal crest. The nuchal crest 
and this suture continue medially and then turn abruptly dorsally where the squamosal meets 
the parietal. The squamosal-parietal suture can be traced anteriorly across the anterolateral face 
of the nuchal crest and it then turns ventrally to meet the alisphenoid. The anterior end of the 
squamosal-parietal suture is visible on the sides of the skull in CGM 44290, but the posterior 
portion of the suture, with much of the nuchal crest, has been destroyed by weathering. The 
anterolateral surface of the squamosal bulges outward laterally to accommodate the parietal lobe 
of the brain on the internal side. 

The squamosal projects laterally from the side of the skull and anteriorly to form the 
zygomatic process of the squamosal (2). Once this zygomatic process turns anteriorly it 
becomes laterally compressed and parallels the dorsal surface of the jugal. The two bones 
evidently remained separate along their entire parallel course. 

The glenoid fossa (go is the articular surface for the dentary.. A large postglenoid process 
(pgp) is present extending ventrally from the zygomatic process, which limits backward 
movement of the mandibular condyle. There is no postglenoid foramen and venous drainage 
from the brain is entirely through though the jugular and other veins passing out of the cranial 
cavity via the cranial hiatus. 

Periotic.-The periotic (Per in Fig. 7) is an unusually dense bone, the central body or 
petrous part of which surrounds the inner ear. This is present on both sides but well preserved 
only on the right side. The anterior process of the periotic (app) extends anteriorly and slightly 
ventrally from the body. It is a broad plate of bone that comes to a rounded apex. There is 
a prominent posterior process (ppp) projecting posteriorly and laterally that is wedged between 
the external auditory meatus (earn) and squamosal in front and the exoccipital in back. The 
ventral surface of this posterior process articulates with a corresponding posterior process of 
the tympanic (ppt, present on the left side attached to the posterior process of the periotic). 
Its ventral surface is covered with a series of fine tongue and groove structures that run parallel 
to the long axis of the process. These tongue and groove structures of varying depth match 
similar structures on the dorsal surface of the posterior process of the tympanic. A third 
process is the superior process of the periotic, which is covered by other bones on both the left 
and right sides in CGM 42290. 

The body of the periotic contains the inner ear and all foramina of the periotic. It is convex 
ventrally, forming a broad ventral promontorium. There is a lateral eminence that is the pars 
cochlearis of the periotic. Lateral to this lateral eminence is a groove running roughly 
anteroposteriorly, anterior to the fenestra vestibuli (fev) or oval window and medial to the fossa 
for the head of the malleus. Kellogg (1936) identified this groove as the place of origin of the 
tensor tympani muscle in Zygorhiza kochii. The body has some additional accessory structures 
associated with it. The largest of these is the fossa for the head of the malleus, located on the 
lateral side of the body. This is an almost circular concavity that faces ventrally and slightly 
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FIG. 7-Right temporal region of Ancalecetus simonsi, CGM 42290 (holotype), in ventral view. 
Abbreviations from Table 1 are: app, anterior process of the periotic; crh, cranial hiatus; earn, 
external auditory meatus; fec, fenestra cochleae (round window); fev, fenestra vestibuli (oval window, 
visible but not labeled); fm, foramen magnum; fo, foramen ovale; fpr, falcate process; gf, glenoid 
fossa; jn, jugular notch; oc, occipital condyle; papr, paroccipital process; Per, periotic; pgp, 
postglenoid process; ppp, posterior process of periotic. Scale is in cm. 

posteriorly. It projects from the main portion of the periotic body just anterior to the fenestra 
vestibuli. The fenestra vestibuli or oval window is present on the lateral side of the body of 
the periotic. This accommodates the footplate of the stapes and opens into the vestibule of the 
inner ear, which communicates with the basal turn of the cochlea. The fenestra cochleae (fec) 
or round window is located on the posteroventral face of the body of the periotic. This was 
covered in life by a secondary tympanic membrane, equalizing pressure between the inner and 
middle ears. The lateral face of the body of the periotic also contains the lateral opening of 
the canal for the facial nerve. The internal auditory meatus is the most prominent structure on 
the medial (endocranial) side of the periotic in Ancalecetus, as in other mammals, but this is 
not visible in CGM 42290. 

Rommel (1990) showed a foramen lacerum anterior to be located between the basisphenoid 
and presphenoid in Tursiops, but no foramen could be located in this position in A. simonsi, 
which is not surprising since the position of the brain relative to the basisphenoid-presphenoid 
suture is very different in archaeocetes compared to odontocetes. The foramen lacerum 
medium also appears to be absent. This cames the internal carotid artery into the braincase 
in modem cetaceans (Rommel, 1990), but it is possible that the carotid artery travels through 
the cranial hiatus rather than having a separate foramen. A foramen lacerum posterius is ill 
defined in basilosaurid cetaceans and the large fissure in its place has been called the cranial 
hiatus (crh) in modem cetaceans (Rommel, 1990). The cranial hiatus takes the form of a large 
fissure between the basioccipital medially and the periotic laterally. The anterior border of the 
cranial hiatus is formed by the squamosal, while the posterior border is formed by the exoccipi- 
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tal. Thus, the cranial hiatus extends from the posterior edge of the pterygoid sinus (at the 
posterior border of the basicranial surface of the squamosal) to the posterior edge of the 
basicranium at the jugular notch of the exoccipital. In life the cranial hiatus was partially 
covered by the auditory bulla. 

Ectotympanic.-The tympanic (ectotympanic) auditory bulla of Ancalecetus simonsi 
(Fig. 13F) is a large ovate structure like that of other advanced archaeocetes (Kellogg, 1936), 
including Zygorhiza kochii (Lancaster, 1990) and Dorudon atrox (Uhen, 1996). It is composed 
of unusually dense compact bone. The left bulla is well preserved in CGM 42290 (measure- 
ments are given in Table 2). It has a convex ventral surface and a deeply excavated dorsal 
surface (tympanic cavity). The tympanic cavity is an anteroposteriorly elongated space opening 
into the middle ear above. The tympanic cavity is widest anteriorly and narrows posteriorly. 
There is a shallow depression on the posteroventral part of the external surface of the bulla that 
separates the involucrum (inv in Fig. 13F) on the medial side from the outer lip. The latter 
bears a raised circular eminence curving smoothly into the sigmoid process (sp). The sigmoid 
process curves posteriorly where it rises as a distinct process and normally would project 
dorsally above the rest of the bulla, however most of the sigmoid process is broken and 
missing. The posterior edge of the sigmoid process normally curls backward, enclosing a space 
between itself and the body of the auditory bulla, and a natural cast of this space is preserved 
in CGM 42290. Much of the malleus is present, attached to the gracile or gonial process. 
There is a distinct sulcus for the chorda tympani anterior to the gracile process. The posterior 
pedicle and the conical process are both broken and missing in CGM 42290, as is the posterior 
process of the tympanic (ppt in Figs. 4-5) by which it articulated with the posterior process of 
the periotic. 

Malleus.-Much of the left malleus is present, firmly attached to the gracile process of the 
tympanic bulla (Fig. 8). There is just a trace of a suture but the two bones appear to be solidly 
fused. The dorsal surface of the head (cm) that articulated with the petrosal is missing, as are 
both surfaces for articulation with the incus. The column (com) and manubrium (mm) are well 
preserved. The column is a little longer relative to the head than in Dorudon afrox 
(UM 101222; Uhen, 1996), and the manubrium is more extended and consequently more 
pointed. However, the greatest difference is one of curvature. The column and manubrium 
of the malleus in Ancalecetus simonsi curve downward, medially, and anteriorly into the 
tympanic cavity of the bulla. This contrasts with a straighter and more horizontally-medial 
orientation of the column and manubrium in Saghacetus osiris (Pompeckj, 1922), Zygorhiza 
kochii (Lancaster, 1990, fig. 3B), and Dorudon atrox (Uhen, 1996). The malleus in 
CGM 42290 is approximately the size of that of D. atrox, but it has not been measured because 
it has not been removed from the bulla. 

Mandible 

Dentary.-Left and right mandibles in Ancalecetus simonsi are each composed of a single 
bone, the dentary (Figs. 9-11). In CGM 42290 the left dentary is complete from the alveolus 
for I-, to the mandibular condyle (cd), and the right dentary is complete from the aiveoius for 
P1 to the mandibular condyle. The mandibular symphysis (sym) between these extends 
posteriorly to a point below the posterior edges of the alveoli for P2. This symphysis is 
unfused. Rami of left and right dentaries parallel each other along the symphysis and then 
diverge posteriorly as far as the end of the molar series. Posterior to the molar series the rami 
are again more parallel. Much of the medial surface of the dentary is gently concave, while 
the lateral surface is slightly convex. The lateral surface bears a series of small mental 
foramina (mf). At the anterior end of the dentary these are close to the ventral border of the 
ramus, but successive foramina are higher on the ramus so that the last, just below the anterior 
root of MI, is very near the dorsal border of the ramus. There are some seven or eight mental 
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FIG. 8-Malleus of Ancalecetus simonsi compared to that of Dorudon atrox. A, malleus of A. simonsi, 
CGM 42290 (holotype), in position within the tympanic bulla; B, freestanding malleus of D. arrox, 
UM 101222). Both are shown in posterior view. Malleus of A. simonsi lacks part of head. 
Abbreviations from Table 1 are: cm, head of malleus; com, column of malleus; mm, manubrium of 
malleus. Ossified surfaces for articulation with the incus (stippled) are preserved in UM 101222 but 
not in CGM 42290. Note the distinctly downturned column and manubrium of the malleus in A. 
simonsz', which differs from the straighter and more medially directed column and manubrium of 
Dorudon shown here, Saghacetus (Pompeckj, 1922), and Zygorhiza (Lancaster, 1990). 

foramina in total. These transmit fibers of the mandibular branch of the mandibular branch of 
the trigeminal nerve and also supply blood to the lower lip. 

The horizontal ramus of the dentary is shallow in depth from the front to the end of the 
premolar series. The dentary then increases in depth as the dorsal surface of the dentary 
sweeps upward toward the apex of the coronoid process (cnpd). Lower molars are rooted in 
this ascending portion. The angular process (ang), where the lateral surface of the dentary is 
inflected to form the floor of the mandibular foramen, is well preserved on both sides. The 
mandibular foramen (mdf) and its extension within the dentary as a mandibular canal are both 
large and exceptionally well preserved in Ancalecetus simonsi. The lateral wall of the dentary 
is uniformly about 4 mm thick over an oval area of the acoustic window posterior to the 
mandibular foramen (Norris, 1980). The mandibular canal houses a large fat pad in modem 
whales that is believed to play a role in sound transmission to the middle ear. Measurements 
of the dentary and mandibular foramen are given in Table 2. 

Dentition 

The dental formula of Ancalecetus simonsi is almost certainly 3.1.4.213.1.4.3, with M~ 
having been lost, as in Dorudon afrox and other advanced archaeocetes. Neither maxilla is 
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FIG. 9-Left and right dentaries o f  Ancalecetus simonsi, CGM 42290 (holotype), in occlusal view. 
Anterior portions o f  both dentaries are damaged. Scale is in cm. Note extension o f  the mandibular 
symphysis (sym) posteriorly as far as the posterior margin o f  P2, and inflected angular process o f  left 
and right dentaries (ang) below and anteromedial to the mandibular condyles (cd). 

preserved adequately to show whether M~ was present or not, but the absence of lateral wear 
on M3 makes loss of M~ likely. 

A single anterior tooth (not figured) is preserved in CGM 42290. It is difficult to determine 
which tooth this is because anterior teeth are generally very similar in archaeocetes. The tooth 
has a bulbous root, but the crown is damaged making it impossible to determine whether it is 
an upper or lower tooth, or whether it is from the left or right side. By chance alone it is 
probably a lower tooth, since the entire anterior portion of the cranium was destroyed by wind 
erosion. 

Upper dentiition.-Most of the upper dentition was destroyed by erosion. What remains is 
shown in Figure 13A-D. The upper premolars are represented by left and right @-4. These 
are double-rooted with a crown that is roughly triangular in lateral view. Posterior roots of 
fl each have a strong lingual projection that is covered by a lingual extension of the crown, 
but this does not appear to be the case on the one reasonably complete crown of @. Premolars 
e4 have a strongly developed central cusp, and the anterior and posterior edges of the crown 
are lined with accessory cusps. Anterior accessory cusps are conspicuously smaller than 
posterior accessory cusps. These teeth are both worn in life and damaged by erosion, making 
counts of cusps and precise measurements impossible. 

The only upper molar preserved is right M . This tooth is heavily worn on the lingual side. 
It has two roots, with the posterior root being slightly more expanded lingually than the 
anterior root. The central cusp and all accessory cusps were removed by masticatory wear 
during life. 

Lower denfittion.-CGM 42290 preserves the root of a single-rooted I3 and the alveolus for 
a single-rooted C1 on the left side. Roots of are preserved on the left side, and both of 
these teeth appear to have been double-rooted (roots of P, are confluent). The third lower 
premolar has some of the crown preserved in both dentaries, and the fourth lower premolar is 
well-preserved on both sides. Both P3 and P4 are roughly triangular in lateral view, with a 
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FIG. 10-Left dentary o f  Ancalecetussimonsi, CGM 42290 (holotype) in medial (A) and lateral view (B). 
Abbreviations from Table 1 are: ang, angular process; cd, mandibular condyle; cnpd, coronoid 
process o f  the dentary; mdf, mandibular foramen; mf, mental foramen; sym, mandibular symphysis. 
Scale is in cm. Note large mandibular foramen (mdf) leading to a large mandibular canal like that 
found in other advanced archaeocetes and later whales. 

strong central cusp. There are accessory cusps along the anterior and posterior edges of the 
teeth, with again anterior cusps being smaller than posterior cusps. P3 is a little larger than 
P4 (measurements are given in Table 2). 

Tooth wear.-Two modes of wear are evident on posterior premolars and molars of 
Ancalecetus simonsi. The apical and accessory cusps show evidence of wear on their tips. 
Figure 12 shows that the apical cusp and anterior accessory cusps closest to the apical cusp 
have been worn off on P4. In addition the apical cusp of MI is worn off, and the apical cusp 
of Mz is heavily worn. This type of wear is almost certainly due to tooth-on-food contact since 
it is so rounded. Tooth-on-tooth wear is evident in the lateral wear facets shown in Figure 12. 
There are areas where enamel is worn off of the lateral faces of the lower teeth in well-defined 
grooves produced when medial sides of the upper teeth sheared past lateral sides of the lower 
teeth. This grooved wear is patterned so that grooves correspond to individual cusps on lower 
molars. There are no wear facets evident on the talonid of M3 because there was evidently no 
corresponding M ~ .  

Heavy tooth wear in Ancalecetus s i m i  is significant in showing that the type individual 
fed as a normal basilosaurid, feeding on prey (presumably fish) that were large enough to re- 
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FIG. 11-Right dentary of Ancalecetus simonsi, CGM 42290 (holotype) in medial (A) and lateral view 
(B). Abbreviations from Table 1 are: ang, angular process; cd, mandibular condyle; cnpd, coronoid 
process of the dentary; mdf, mandibular foramen; mf, mental foramen; sym, mandibular symphysis. 
Scale is in cm. Note large mandibular foramen (m#) leading to a large mandibular canal like that 
found in other advanced archaeocetes and later whales. 

quire reduction through mastication before swallowing. Heavy tooth wear is also significant 
in showing that the type specimen was an individual that survived to adulthood. 

Hyoides 

7hyrohyal.-The only element of the hyoid apparatus preserved in CGM 42290 is the right 
thyrohyal (Fig. 13E). The thyrohyal is robust and greatly expanded on its proximal end where 
it was connected to the basihyal. The body is roughly triangular in cross section near the 
proximal articular surface but flattens and then expands slightly toward the distal end. The 
distal end of the thyrohyal is broken, so its morphology remains unknown. 

Vertebral column 

Twenty vertebrae of CGM 42290 are sufficiently well preserved to be measured and 
described. Measurements are given in Table 3. A length-of-vertebrae profile is shown in 
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FIG. 12-Right lower premolars and molars o f  Ancalecetus sirmnsi, CGM 42290 (holotype), in lateral 
view. Scale is in cm. Note apical wear on the anterodorsal surfaces o f  all teeth (heaviest on 
and distinct lateral wear on the lateral surfaces of P4-M2 (there is no lateral wear on M3). Heavy wear 
indicates that this individual lived to maturity. Heavy wear also indicates that Ancalecetus, like other 
basilosaurids, used its complex cheek teeth for mastication and not simply for manipulating food or 
straining plankton. 

Figure 14, constructed on the assumption that Ancalecetus simonsi had 65 vertebrae similar in 
form to those of Dorudon afrox. This is possible, but it is also possible that A. simonsi had 
fewer vertebrae, in which case inferred positions in the column may be overestimated and the 
length-of-vertebrae profile in Figure 14 and our reconstructions in Figures 3 and 27A may be 
erroneously similar to those of D. atrox. 

Cervix 

There are seven cervical vertebrae in Dorudon atrox and we assume the same number to 
have been present in Ancalecetus simonsi although some were not recovered when the type was 
collected. 

Atlas (CI).-The first cervical C1 (atlas; Fig. 1SA) is the largest of the cervical vertebrae. 
It lacks a centrum and has the form of an oval ring surrounding the foramen magnum and 
articulating with the occipital condyles of the cranium. The neural arch is robust and about 
equal in craniocaudal length to the inferior arch. The inferior arch is dorsoventrally thicker 
than the neural arch and it supports both the cranial condylar articulations and the caudal 
articular surface. The ventral surface of the inferior arch is smooth, with a prominent 
backwardly-projecting hypapophysis. The neural canal is heart-shaped. There is a broad 
transverse process projecting laterally and caudally on both sides. The transverse process is 
narrow on its ventral surface and forms a broader, convex shelf on its dorsal surface. 
Transverse processes on each side are perforated by a small 4-5 mm foramen running 
craniocaudally that is seemingly too small to have carried a vertebral artery. Left and right 
vertebral arteries evidently went over rather than through the transverse processes. This 
course, or a course with a single penetration of the transverse process, is characteristic of 
basilosaurids, whereas vertebral arteries in protocetids penetrated a transverse process twice 
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FIG. 13-Upper premolars, molars, thyrohyal, auditory bulla, jugals, and metacarpal of Ancalecetzu 
sirnonsi, CGM 42290 (holotype). A, left p3 in lateral view. B, left in lateral view. C, right M' 
and P" in lateral view. D, right P) in lateral view. E, right thyrohyal in lateral view. F, left auditory 
bulla in ventral view (anterior is at top, sigmoid process, sp, is opposite the involucrum, inv). G, left 
jugal in medial view (anterior is at left, dorsal edge is at bottom). H, right jugal in medial view 
(anterior is at left, dorsal edge is at top, and dorsal surface for articulation with lacrimal, lj, is at top 
left, followed by concave curvature of right orbit). I, phalangeal fragment? J, phalangeal fragment? 
K, right second metacarpal (Mc II) lacking distal epiphysis (dorsal view, base is at right). Scale is 
in cm. Note heavy wear on upper cheek teeth, and long lightly-built jugals like those of other 
advanced archaeocetes. 
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TABLE 3-Sizes of  vertebrae of  Ancalecetus simonsi in CGM 42290 (holotype; Figs. 14-16). Vertebral 
number given in parentheses, starting with C1 = 1, corresponds to that in Figure 14. Centrum length is 
measured ventrally. Centrum width and height are measured on the cranial face of the centrum. Asterisks 
mark estimates. Measurements are in mm. 

Centrum Neural canal 

Vertebra Length Width Height Width Height 

before passing through a foramen in the neural arch to enter the foramen magnum and the 
braincase. 

The cranial condylar articular surfaces are concave and kidney shaped. Their inferior edges 
are well separated by a narrdw space on the inferior arch of the vertebra, while dorsal margins 
of the articular surfaces are well separated and connected to the neural arch by bony bridges 
that enclose lateral vertebral foramina some 8 X 10 mm in diameter for vertebral arteries. 
Caudal articular surfaces are flat, with dorsal edges being rounded. The functional length of 
the atlas, the minimum distance separating cranial condylar articular surfaces from caudal 
articular surfaces is 30 mm, which differs slightly from the measurement in Table 3 separating 
the middle parts of these articulations. The two caudal articular surfaces are confluent across 
the inferior arch, forming a notch for the dens of C2 (axis). In articulation, the neural arch 
of the atlas and pedicles of the axis form intervertebral foramina or openings that camed the 
first spinal nerve. 

Axis (C2).-The axis (C2 in Fig. 15B) has the longest centrum of any of the cervical 
vertebrae. In addition, the dens or odontoid process projects anteriorly some 25 mm from the 
centrum to articulate with the inferior arch of the atlas. The dens is large and roughly conical, 
with a rounded apex. The caudal epiphysis is roughly oval in shape when viewed caudally, it 
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FIG. 14-length-of-vertebrae profile for Ancalecetus simnsi (solid circles) from Wadi Hitan, based on 
vertebrae preserved in CGM 42290 (holotype; measurements in Table 3). This is superimposed on 
profiles for five specimens of late Bartonian to early Priabonian Dorudon atrox from Wadi Hitan (open 
circles). Measurements of D. afrox are from Uhen (1996, appendix D), and include CGM 42183 and 
UM 97512, 100146, 101215, and 101222. Note similarity of A. simonsi to D. atrox in thorax size 
(thoracic vertebrae in positions 8 through 24 are marked by vertical lines symbolizing ribs). Length- 
of-vertebrae profiles of A. simonsi and D. atrox appear similar, but identifications of lumbar and 
caudal vertebrae of A. simonn' are based on cornp&ison to vertebrae of D. atrox-thus while it is 
possible both have similar profiles, there is no way to demonstrate this convincingly. 

is deeply concave, and it bears two small ventral prominences separated by a central pit. The 
pedicles are large and angled relative to the midline of the vertebral column, but these are not 
as robust as the neural arch of the atlas. The neural spine is long craniocaudally at its base, 
and the base projects dorsally and cranially from the neural arch. The backward-projecting 
neural spine is broken just above this base. Postzygapophyses are high on the laminae and 
project caudally to articulate with prezygapophyses of C3. The postzygapophyses are angled 
such that their articular surfaces face somewhat laterally, caudally, and ventrally. Transverse 
processes enclose nutrient foramina some 4-5 mm in diameter. The transverse processes are 
divided distally, possibly reflecting the position of the vertebral arteries. 

C3?.-A cervical vertebra is identified as the third or possibly fourth cervical by comparison 
with those of other basilosaurids. The centrum of this vertebra (Fig. 15C) is craniocaudally 
compressed and concave on both cranial and caudal ends. The cranial epiphysis is roughly oval 
in sha-pe, but flattened along the dorsal and ventral margins. There is no hypapophysis present 
on the ventral surface of the centrum. The pedicles and neural arch are broken and not 
preserved. Transverse processes are broad, flattened craniocaudally, and perforated by large 
1.6 X 0.8 mm vertebrarterial foramina just lateral to the centrum. Another fragment of a 
neural arch from C3, C4, or C5 (illustrated in Fig. 15C) is also present in CGM 42290. 

C7.-The seventh cervical vertebra (C7 in Fig. 15D) is somewhat different from the other 
cervicals. The centrum is concave on both ends and it is the longest of all cervicals other than 
C2. Cranial and caudal epiphyses are shaped like flattened ovals. Pedicles are the most 
laterally expanded of all the cervical vertebrae. They are at a considerable angle to the midline 
of the body and confluent with the transverse processes, which project anteriorly as well as 
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FIG. 15-Cervical (A-D) and anterior thoracic (E-H) vertebrae of Ancalecetus simonsi, CGM 42290 
(holotype). A, C 1 (atlas). B, C2 (axis). C, C3?. D, C7. E,' TI. F, T2. G, T3. H, T4. All are 
shown in anterior view. Scale is in cm. 

laterally. Transverse processes are perforated by a foramen 6 mm in diameter, which seems 
too small to carry a vertebral artery but is in the position of the vertebrarterial canal. The 
pedicles join craniocaudally-thin laminae to form the neural arch enclosing the neural canal. 
Prezygapophyses are angled dorsally and slightly medially, while postzygapophyses are angled 
ventrally and slightly laterally. 

Thorax 

Thoracic vertebrae are rib-bearing. These number seventeen in Dorudon atrox and the same 
number may have been present in Ancalecetus simonsi although we cannot demonstrate this. 

TI, 72, T3, and T4.-The first through fourth thoracic vertebrae (TI-T4 in Fig. 15E-H) are 
the shortest of the thoracic vertebrae. Centra increase in length and height from T1 to T4, but 
remain relatively constant in breadth. The centrum of T1 is especially wide relative to its 
height. Centrum surfaces become more nearly equant (height equaling width) as one proceeds 
down the column. All centra are moderately waisted (bearing ventrolateral depressions). T1 
and T2 are complete, T3 is missing much of the neural spine, and T4 is missing the entire 
neural arch. The lateral edge of each caudal epiphysis turns cranially onto the lateral face of 
the centrum to form the anterior edge of a prominent fovea for the head of each rib. These 
foveae are much more prominent than those associated with cranial epiphyses. 

Pedicles of T1 to T4 are very long and robust, and these undergo some reorientation, 
moving from T1 to T4, as a more mediolateral alignment gives way to a more craniocaudal 
orientation. Dorsal edges of the pedicles are connected to laminae, which together form the 
neural arch. Neural canals are large, and each has a relatively flat ventral border along the 
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FIG. 16--Thoracic, lumbar, and caudal vertebrae of Ancalecetus simonsi, CGM 42290 (holotype). A, 
T5. B, T6. C, T7. D, T11. E, T12 q14, not shown, is similar). F, TlS. G, T16. H, T17?. 
I, L12? J, unidentified lumbar. K, unidentified lumbar. L, Ca8. M, Ca14. All are shown in 
anterior view. Scale is in cm. 

dorsal surface of each centrum. The dorsal border of the neural canal rises to a rounded apex 
where laminae join along the midline of each vertebra. Adjacent vertebrae enclose an 
intervertebral foramen or space. 

The neural spine on T1 is relatively short and gracile, but that on T2 is both longer and 
more robust. Prezygapophyses are oval in shape and inclined slightly medially and slightly 
anteriorly. Postzygapophyses extend posteriorly from the laminae and are flat, oval, and 
inclined slightly laterally and slightly posteriorly. Transverse processes of T l  to T3 arise from 
the tops of pedicles and bear circular foveae for rib tubercula. There is a slight ventral keel 
on T1 that is entirely absent on T2-T4. 
T5, T6, and 77.-Thoracic vertebrae T5 to T7 (Fig. 16A-C) are larger than T1 to T4 and 

also similar to each other. T5 is virtually complete. T6 is a complete centrum with part of a 
neural arch, while TI is part of a damaged centrum lacking the neural arch altogether. The 
centra are about as high as they are long, while the width is greater than either of these 
measurements. The centra again are waisted, with their narrowest constriction at approximately 
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mid-length. Cranial epiphyses are roughly heart-shaped, reaching their greatest width just 
below the site for articulation with rib capitula. A small protuberance is present on the 
dorsolateral edge of the centrum, just lateral to the widest point of the cranial epiphysis on each 
vertebra that forms the posterior edge of the fovea for the rib capitula. This protuberance is 
not covered by the cranial epiphysis. Caudal epiphyses of T5 to T7 are slightly wider than 
their cranial counterparts, but similar in shape. The caudal epiphyses extend onto the lateral 
faces of the centra, covering a caudolaterally-facing depression on each vertebra. These foveae 
accept the heads of ribs that correspond in number to the vertebra behind them. 

Pedicles rise from the centra just dorsal to the rib articular surfaces and angle slightly 
cranially. The dorsalmost extensions of the pedicles meet with the laminae to form the neural 
arches. Laminae of T5 angle dorsally toward the midline, where they meet and form the base 
of the neural spine. The neural canal passing through the neural arch is broader than it is high. 
The bases of the neural canals of T5 to T7 are rather flat when compared to the dorsal border 
of the neural canal of T5, which is more rounded. Caudal intervertebral notches of T5, 
forming the anterior border of the intervertebral foramen or space, are deeply excavated into 
the caudal borders of the pedicles. 

The neural spine of T5 is broader, higher, and less inclined than those of T1 or T2. The 
dorsal tip of the neural spine of T5 comes to an abraded rounded point. The anterior face of 
the base of the neural spine is roughly triangular in shape. The base of the triangular surface 
is formed by the dorsal edge of the neural arch. Paired low ridges originate at the base of the 
triangular space and angle medially to meet at a point. These ridges delimit three fossae. One 
is triangular along the midline, the others are a pair of broad grooves that meet along the 
midline. Dorsal to this complex area, the cranial border of the neural spine is a simple sharp 
ridge. The caudal border of the neural spine is divided into three parts: a caudally projecting 
midline ridge, and two lateral ridges. All of these ridges are pronounced, but the midline ridge 
projects farther caudally than do the lateral ridges. These ridges define a pair of fossae on each 
vertebra on either side of the midline for attachment of epaxial muscles. 

Prezygapophyses of T5 arise from the neural arch where the pedicles and laminae meet. 
They are large and project anteriorly. Articular surfaces on the prezygapophyses are somewhat 
damaged on T5. Prominent metapophyses are positioned lateral to and above the prezygapoph- 
yses on the dorsal part of each transverse process, forming attachment surfaces for epaxial 
muscles. Postzygapophyses extend caudally from the laminae of T5. These are flat and almost 
horizontal. The transverse processes of T5 project cranially and dorsally from the junctions 
of the pedicles and laminae. These are very short and thick, and support foveae for rib 
tubercula on their lateral surfaces. Thoracic vertebrae five to seven lack ventral keels. 

TI1 and Tl2.-Thoracic vertebrae TI1 and T12 (Fig. 16D-E) are similar in size. Centra 
are approximately as long as they are high, but they are much wider than high or long. These 
are somewhat waisted, but less so than more anterior thoracics. The fovea for the rib 
capitulum projects from the lateral side of the centrum at its widest point. Cranial epiphyses 
are broadly oval in outline and much wider than the cranial epiphyses of more anterior thoracic 
vertebrae. Caudal epiphyses too are broadly oval. 

Pedicles rise nearly vertically from the centra. Laminae angle dorsally from their junction 
with the pedicles toward the midline of the neural arch and the base of the neural spine. The 
neural arches of TI1 and T12 are broadest at their bases. The caudal borders of pedicles are 
not deeply incised like more anterior vertebrae, but the pedicles do not extend to the caudal end 
of the centrum, thus allowing space between adjacent pedicles for passage of spinal nerves. 

The neural spine of TI1 is intact but that of T12 is damaged. The anterior face of the base 
of the neural spine on TI1 is triangular in shape, coming to a point dorsally. The base of the 
triangular surface is formed by the dorsal edge of the neural arch. A pair of low ridges 
originate at the base of the triangular space and angle medially to meet at a point. These ridges 
delimit three fossae. One is triangular along the midline, the others are a pair of broad grooves 
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that meet along the midline. Viewed dorsally, the spines are wedge-shaped in cross section, 
with a sharp anterior border flaring laterally along the caudal border of each vertebra. 

Prezygapophyses arise from the neural arch at the junction between the pedicles and laminae 
on each vertebra and are angled inward at about 45". Metapophyses are high and project both 
laterally and cranially. Postzygapophyses project caudally from the ventral edge of the caudal 
border of the neural spines. The articular surfaces of the postzygapophyses angle ventrolateral- 
ly and are convex rather than flat. Transverse processes of T11 rise from the bases of the 
pedicles and from the centrum itself. The two rib articular surfaces are close to each other, 
but have not merged into a single fovea. T12 on the other hand appears to have a single rib 
facet, but it is also damaged. 
T14, T15, TI 6, TI 7?.-Thoracic vertebrae T14 to T17? (Fig. 16F-H; T14 is not illustrated) 

are the final vertebrae in the thoracic series. All are damaged. T14 includes the centrum, 
transverse process, and neural arch, but it is missing much of the neural spine, prezygapoph- 
yses, and metapophyses. TI5 and T16 are missing the entire neural arch and T17? is only a 
centrum. This vertebra is the right size to articulate with T16, but it may be an anterior 
lumbar. The centra are about as long as they are high, but they are wider than they are high 
or long. Cranial epiphyses are generally oval in outline, but these are slightly flattened on their 
dorsal margins. Cranial epiphyses become progressively more circular from T14 to T17?. The 
caudal epiphyses are similar in shape to their cranial counterparts. They too become more 
circular from TI4 to T17?. 

Pedicles rise almost vertically from the lateral edges of the dorsum of each centrum. They 
are somewhat shorter than the vertebral centra, and their cranial margins are closer to the 
cranial end of each vertebrae than their caudal margins are to the caudal end of each vertebra. 
The pedicles meet the laminae to form the neural arches. Laminae of T14 are rather short, and 
angle dorsally from the top of the pedicles to the midline of the neural arch at the base of the 
neural spine on each vertebra. The floor of the neural canal is generally flat, but there is a 
longitudinal ridge running down the midline, flanked by nutrient foramina on each side. The 
top of the neural canal comes to a broadly rounded point where the laminae meet along the 
midline. Caudal intervertebral notches are not deeply incised into the caudal borders of the 
pedicles, but the pedicles are some distance from the caudal end of each centrum, leaving space 
for passage of spinal nerves. There is a variably distinct groove developed in the centrum of 
each vertebra between the caudal border of the pedicle and the caudal epiphysis. 

Neural spines and prezygapophyses are poorly preserved or missing on T14 through T17?. 
Transverse processes increase dramatically in length from T14 to T16. Transverse processes 
are short and stout on T14, but as they lengthen they also become thinner. The transverse 
processes of T14 and TI5 are approximately horiz.onta1, but the longer processes of T16 angle 
ventrally. None of the transverse processes angle significantly cranially or caudally. These 
vertebrae all have a single articular surface for rib articulation on the ends of the transverse 
processes (this cannot be seen on T17? due to breakage). 

The ventral side of the centrum of each vertebra includes a distinct ventral keel on the 
midline, flanked by a pair of nutrient foramina, one on each side of the keel. These foramina 
are variably developed, with one foramen often much better developed than the other, or with 
one missing altogether. There is also a pair of accessory ridges lateral to the nutrient foramen 
that parallel the ventral keel. These accessory ridges are always smaller than the midline keel, 
but are similar in form. 

Lumbus 

There are some twenty lumbar vertebrae in Dorudon afrox and the same number may have 
been present in Ancalecetus simonsi. However the lumbus and cauda are poorly preserved and 
we c a ~ o t  demonstrate this. 
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LIZ?.-Several partial centra of lumbar vertebrae are associated with CGM 42290, but a 
single lumbar vertebra, possibly L12, is sufficiently well preserved to warrant description 
(Fig. 161). The centrum is oval in cross-section and it is about as long as it is high. The 
dorsal surface of the centrum has a ridge running down the midline, on the floor of the neural 
canal, with a single nutrient foramen on the right side of the ridge. The ventral surface of the 
centrum is perforated by a pair of nutrient foramina, close to the midline, one on either side 
of a ventral keel. Cranial epiphyses are nearly circular in outline, but the shape is slightly 
flattened on the dorsal edge. The cranial epiphysis is generally flat with a slight indentation 
in the center. The caudal epiphysis is oval in outline, but lacks the distinctly flattened dorsal 
edge of the cranial epiphysis. The caudal epiphysis is also generally flat with a slight 
indentation in the center. 

Pedicles are thin and meet the laminae to form the neural arch. The neural canal is large, 
with an arched profile. The intervertebral foramen or space is formed by the posterior border 
of the pedicle and the anterior border of the pedicle of the following vertebra. At the ventral 
edge of each intervertebral foramen there is a shallow but distinct groove on the centrum 
between the posterior edge of the pedicle and the posterior epiphysis. The neural spine is 
broad at its base, but broken distally. Small metapophyses project anteriorly and dorsally from 
the neural arch. These resemble prezygapophyses superficially, but there is no longer a 
zygapophyseal contact between adjacent vertebrae this far back in the vertebral column. 
Transverse processes are longer than those of thoracic vertebrae, but much less robust. These 
are thick at their bases but thin laterally. The distal ends of the transverse processes are flat 
with a rounded edge. Transverse processes are angled ventrally and slightly cranially. 

Cauda 

There are usually twenty-one caudal vertebrae in Dorudon atrox and the same number may 
have been present in Ancalecetus simonsi, although the tail is poorly preserved and we cannot 
demonstrate this. Anterior caudal vertebrae are separated from posterior lumbars in most 
mammals by a sacrum comprising one or more fused vertebrae that articulate with innominate 
bones of the pelvic girdle. When a sacrum is Izcking, as it is here and io most cehcezns, 
anterior caudals are distinguished from lumbars by the presence of posteroventral facets for 
articulation with hemapophyses (hemal arches or chevron bones). No chevron bones are 
p r e s e ~ e d  in CGM 42290, but Ca8 has chevron facets indicating that it is an anterior caudal. 

Ca8.-Caudal vertebra Ca8 (Fig. 16L) has a centrum that is longer than it is high or wide. 
The centrum is shallowly concave on both ends. The cranial epiphysis is oval in outline, being 
wider than it is high, as is the caudal epiphysis. The pedicles are located well forward on the 
centrum. They are very short anteroposteriorly, while the laminae are thin and relatively long. 
Pedicles and laminae together formed a neural arch enclosing a neural canal of small diameter 
(the right side and middle of the arch are broken). The transverse processes extend laterally 
a short distance from the lower part of the centrum. These are angled caudally and perforated 
on each side by a foramen for a spinal artery. Paired chevron articulations are present on the 
ventral side of the centrum at its caudal end. 

Call.-Caudal vertebra Ca14 (Fig. 16M) is wider than it is high. The centrum is very 
waisted, and constriction of the centrum forms a deep groove around the circumference of the 
body. The cranial epiphysis of Ca14 is nearly circular in outline, being only slightly wider 
than it is high, and the caudal epiphysis is nearly circular as well, but smaller in area than the 
cranial epiphysis. The caudal epiphysis has a slight concavity in the center but its outer edges 
are convexly rounded. There is no trace of a neural arch nor remnant of a neural canal. 
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FIG. 17-Ribs o f  Ancalecetus simonsi, CGM 42290 (holotype), in various views. Scale is in cm. A-C, 
anterior ribs. D-H, posterior ribs. I-K, middle ribs. These ribs are typical o f  those found in 
Dorudon atrox and other basilosaurids of  similar size. 

Ribs and Sternum 

Ribs.-There are parts of at least eleven ribs preserved in CGM 42290 (Fig. 17A-K), out 
of a possible total of 34 (if the vertebral column had 17 thoracic vertebrae). As in other 
basilosaurids, anterior ribs are robust, with the capitulum and tuberculum well separat&l and 
the body tightly curved. Middle ribs are more lightly built, with the capitulum and tuberculum 
closer together and the body straighter. Posterior ribs are slender, have a capitulum but no 
tuberculum, and are generally almost straight. Pieces of ribs from all regions of the thorax'are 
present in CGM 42290. There is no indication of expansion of the distal ends of ribs nor of 
the pachyostosis that is sometimes found in other advanced archaeocetes (Buffdnil et al., 
1990). 

The rib illustrated in Figure 17B, possibly a first rib, has a body measuring 38.8 x 
12.2 mm in diameter. The body of the more posterior rib illustrated in Figure 17F measures 
27.4 x 12.4 : 19.2 x 16.1 : 17.0 x 10.9 mm, respectively, proximally, at the midshaft, and 
distally. 
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FIG. 18-Sternal elements of Ancalecetus simonsi, CGM 42290 (holotype), in dorsal view. Manubrium 
and xiphisternum were not found. Scale is in cm. These mesosternal elements are thick dorsoventral- 
ly and composed of spongy bone like those found in Dorudon atrox and other advanced basilosaurids 
of similar size. 

Sternum.-Three sternal elements are preserved in CGM 42290 (Fig. 18A-C), all part of the 
mesosternum. The manubrium or presternum is not preserved, nor is the xiphisternum. The 
texture of bone is spongy within the one sternal element that is broken, suggesting that these 
could not have contributed significantly to neutralize buoyancy (Buffrgnil et al., 1990). The 
best preserved of the three mesosternal elements measures about 75 mm in anteroposterior 
length, 69 mm in transverse width, and 35 mm in dorsoventral height. 

Brachium 

The forelimb of Ancalecetus simonsi is the most distinctive part of its anatomy, and this is 
very different from the forelimbs of all archaeocetes known previously. A. sirnonsi even lacks 
some features commonly used to characterize Cetacea as a group (e.g., it lacks a broad scapula, 
and an enarthrosis or ball-and-socket shoulder joint permitting broad excursion). The forelimb 
of Ancalecetus has an unusual orientation relative to the rest of the body, as shown in Figures 3 
and 27A, and little ability to alter this, which is the reason we use the terms dorsal and ventral 
rather than posterior and anterior, respectively, in description of many forelimb elements. 

Scapula.-Parts of both scapulae are preserved in CGM 42290. The left scapula (Sc in 
Fig. 19) is the better preserved. The scapular blade is very narrow anteroposteriorly when 
compared that of any other cetacean. As a consequence of this narrowness, the vertebral or 
dorsal border of the scapula is curved on a tight radius rather than being broadly arced as in 
other cetaceans. The scapular blade thins toward the vertebral border, and this border has a 
roughened edge indicative of some cartilaginous extension. Most modem cetaceans have 
cartilage along the entire vertebral border, extending the surface of the scapular blade, and this 
was probably true in Ancalecetus simonsi as well. However, the cranial border of the scapula 
has a smoothly rounded edge that is thicker than the vertebral border, and close to the glenoid 
this thickens even more. The caudal border is similarly rounded, and it too becomes thicker 
near the glenoid. 

There is a scapular spine (s), but this is rather low and rounded. It divides the lateral 
surface of the scapula into a supraspinous fossa (ssf; cranial to the spine) and an infraspinous 
fossa (isf; caudal to the spine). The height of the spine above the lateral surface of the blade 
decreases from the base of the acromion process to the dorsal margin of the scapula where it 
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merges into the surface of the blade. The supraspinous fossa is less than half the area of the 
infraspinous fossa. The latter is relatively much smaller than the infraspinous fossa of other 
cetaceans. In most cetaceans, including other archaeocetes, the caudal border of the scapula 
curves posteriorly, giving the infraspinous fossa and the teres fossa together a large surface of 
attachment. In Ancalecetus simonsi the caudal border is not curved and the scapular blade is 
very narrow. No distinct teres fossa can be identified in CGM 42290. 

The glenoid cavity of the scapula (gc) is oval in outline and very shallow. It faces 
posteriorly rather than ventrally as in other cetaceans. The surface of the concavity is 
somewhat irregular, rather than smooth, and articulation with the humerus shows that there was 
very limited motion possible at this joint. The acromion process (ac) is unusual. This is 
normally directed anteriorly in cetaceans, but in A. simonsi it is folded over to point ventrally 
and posteriorly, so that what would have been the lateral surface of the process in a 
conventional cetacean now faces medially (this is a description of the form of the acromion, 
not an interpretation of how the process came to be oriented this way). The medial side of the 
acromion bears a distinct process (hpa in Fig. 20) projecting toward the glenoid cavity and this 
process appears to have had ligamentous connection to a fovea on the humeral head. The 
acromion itself is separated from the glenoid by a deep groove. The coracoid process (cp) is 
rather short and stout, extending ventrally and anteriorly from its base on the neck of the 
scapula. There are two protuberances on the medial side of the coracoid process that do not 
have known homologs nor obvious functions. 

Measurements of the scapula are L = 276 mm (over coracoid process); MLW = 3.6 : 
11.9 : 43.0 mm (the latter is measured to include the glenoid plus the acromion); APH = 170 
: 33.9 (narrowest point): 77.1 mm (over coracoid plus acromion). 

Humerus.-The humerus (H in Fig. 19) of Ancalecetus simonsi is also very different from 
that of other basilosaurids. The body of the humerus is relatively flat and the head is relatively 
small. The proximal half of the medial wall of both humeri appears to have collapsed when 
it was buried, suggesting that the internal trabecular structure may not have been as strong as 
that of other contemporary basilosaurids. The head (h in Figs. 19-20) has one main articular 
surface. This is oval in outline, slightly convex, and faces dorsolaterally. Its surface is 
smooth, and it clearly articulated with the glenoid fossa of the scapula. There is a second 
surface of note on the anterolateral side of the head. This too is ovate but it bears a distinct 
fovea (the capitular fovea of the humerus, cfh in Fig. 20) that appears to have been connected 
to the humeral process of the scapular acromion (hpn in Fig. 20) by a ligament. 

The greater tuberosity (gt) of the humerus is a large surface on the ventral side of the 
proximal humerus separated from the head by a shallow but conspicuous groove. The 
deltopectoral crest (dpc) is a prominent ridge of bone that runs from the greater tuberosity to 
a point about 5 cm from the distal end of the humerus, projecting ventrally from the body. The 
greater tuberosity is similar in position and shape to that of other basilosaurids, but it is not 
nearly as large. The lesser tuberosity (It) is a large surface on the medial side of the humerus. 
It is separated from the humeral head by a shallow sulcus, and from the greater tuberosity by 
a deeper but ill-defined bicipital groove. The distal end of the humerus is unusual, with a 
textured flat posterodistal surface (recall the unusual orientation of the forelimb in life as shown 
in Fig. 3) for articulation with the radius, and a textured flat distal surface for articulation with 
the ulna. The contacts of humerus to radius and ulna, whether fused as these are on the left 
side, or tightly fitting but separate as these are on the right side, permitted no motion between 
bones at the elbow joint. 

Measurements of the humerus are L = 195 mm; MLW = 46.2 (head plus lesser tuberosity): 
20.5 : 26.0 mm; DVH = 34.5 : 67.8 : 36.5 mm. 

Ulna.--The ulna (U in Figs. 19 and 21) of Ancalecetus simonsi is very different from that 
of other basilosaurids in lacking a trochlear notch and in having a reduced olecranon. The part 
of the ulna that is trochlear notch in other basilosaurids is here a textured flat surface that is 
solidly joined with a complementary surface on the distal end of the humerus. Contact with 
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FIG. 19-Left scapula and partial forelimb of Ancalecetus sirnod, CGM 42290 (holotype), in lateral 
view. Scale is in cm. Note the narrow scapular blade, ventrally-projectingacromion process, unusual 
angle of articulation of the scapula and humerus, and fusion of the radius and ulna to the distal 
humerus. Abbreviations are given in the facing caption for Figure 20. 
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FIG. 20--Detail of articulation of the left scapula and humerus of Ancalecetus simonsi, CGM 42290 
(holotype). Both bones are shown in oblique lateral views with the joint opened to show articulating 
surfaces. Abbreviations from Table 1 are: ac, acromion process; cfh, capitular fovea of humerus; 
cp, coracoid process; dpc, deltopectoral crest of humerus; gc, glenoid cavity; gt, greater tuberosity 
of humerus; h, head of the humerus; H, humerus; hpa, humeral process of the acromion; isf, 
infraspinous fossa; It, lesser tuberosity of humerus; R, radius; s, spine of the scapula; Sc, scapula; 
ssf, supraspinous fossa; U, ulna. Scale is in cm. 

the radius is limited to the most-proximal centimeter or less of their parallel course. The 
olecranon process is reduced to a small tubercle that projects dorsally from the dorsal border 
of the ulna. The body of the ulna is mesiolaterally narrow at the proximal end, and it becomes 
broader distally. This is different from the conformation of the ulnar body in other advanced 
basilosaurids, which are usually broad along their entire length. The broad distal end of the 
ulna articulates with the pisiforrn, cuneiform, and lunar along a highly irregular surface, 
meaning that the articulations cannot have been synovial (see below). 

Measurements of the ulna are L = 143 mm; MLW = 26.3 : 21.6 : 27.4 mm; DVH = 
32.3 : 35.1 : 45.1 mm. 

Radius.-The radius (R in Figs. 19 and 21) has a textured flat proximal surface for 
articulation with the complementary posterodistal surface of the humerus. The proximal part 
of the radius is compressed in conformity with the plane of the forelimb. This is different from 
the condition in other basilosaurids, which all have circular proximal radii. The ulnar margin 
of the radius is flattened where it parallels the ulna, while the opposite (ventral) margin of the 
radius is narrower and rounded. The distal radius is more like that of other basilosaurids. It 
has an articular facet on the ulnar side for the lunar, and another for the scaphoid. Neither of 
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FIG. 21-Right forelimb and carpus of  Ancalecetus simonsi, CGM 42290 (holotype), in lateral view. 
Abbreviations from Table 1 are: H, humerus; R, radius; U, ulna. Scale is in cm. Here again the 
radius and ulna are solidly fused to the distal humerus. Note the relatively small size of  carpal bones. 
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FIG. 22-Right carpus of Ancalecetus simonsi, CGM 42290 (holotype) in lateral (A) and medial views 
(B). Abbreviations from Table 1 are: Cun, cuneiform; Lun, lunar; Mag, magnum; Pis, pisiform; 
R, radius; Trd, trapezoid; U, ulna; Unc, unciform. Carpals shown here were all found as shown 
here, fused to the distal radius and ulna. There is a conspicuous space for a scaphoid between the 
radius and hsed magnum-trapezoid, but the scaphoid itself was not found. It is not clear whether a 
trapezium was present in life. Scales are in cm. 

these facets are particularly smooth, although they may have retained some vestige of a 
synovial joint surface. 

Measurements of the radius are L = 137 mm; MLW = 21.4 : 17.1 : 21.8 mm; DVH = 
43.3 : 34.6 : 31.8 mm. 

The hand of Ancalecefm simonsi, as preserved, includes six separate bones and indications 
of at least five others. Four of the preserved bones are block-shaped carpals, and both of the 
indicated missing bones are also carpals. The four that are known are tightly packed and ar- 
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FIG. 23-Radiographic comparison of the left scapula of Ancalecetus simonsi, CGM 42290 (holotype) 
with the left scapula of Dorudon atrox, UM 100222, showing how these differ in shape. Both are 
illustrated at about 113 natural size. Abbreviations from Table 1 are: ac, acromion process; cp, 
coracoid process; s, spine of the scapula. Note the absence of any evident pathology that might 
explain the unusual shape of the scapula or pattern of development and fusion seen in forelimbs of 
Ancalecetus. Bright white in this and other radiographs is barite permineralization that is opaque to 
x-rays. 

ranged in a proximal and a distal row that originally had three bones each. Carpals in the two 
rows are not arranged serially but rather alternate with each other. The fifth preserved bone 
of the hand is the pisiform, a sesamoid, which articulates with the ulna and cuneiform on the 
dorsal side of the manus (recall the unusual orientation of the forelimb in life as shown in 
Fig. 3; dorsal here means toward the pisiform, and medial here means palmar; lateral would 
be dorsal in normal anatomical position if the forelimb could be pronated). The sixth preserved 
bone of the hand is one of at least four metacarpals present in life in the hand of A. simonsi. 

Scaphoid.-The scaphoid is the most ventral carpal in the proximal row. It is not preserved 
in CGM 42290, but was almost certainly present in Ancalecetus sirnmi.  There is an articular 
surface on the ventral edge of the distal radius for a scaphoid. Since the scaphoid itself is 
missing, and the articular surface on the radius is not broken, the scaphoid was probably not 
fused to the radius nor to any of the other known carpals. The trapezium is also missing, so 
it is unclear whether or not the scaphoid might have been fused to it. 

Lunar.-The lunar (Lun in Fig. 22) is the central carpal in the proximal row. It articulates 
with the radius and ulna proximally, the scaphoid ventrally, the cuneiform dorsally, and the 
unciform and magnum part of the magnum-trapezoid distally. It is free from the radius and 
scaphoid, but is fused to some extent to all of the other bones with which it makes contact. 
It is most firmly fused to the unciform and trapezoid, and has small areas of fusion to the ulna 
and cuneiform. Articular surfaces that are not fused are textured rather than smooth. 

The lunar measures about 17.6 mm proximodistally, 31.2 mm dorsoventrally, and 16.5 mm 
mesiolaterally . 
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FIG. 24--Radiographs of forelimb elements of Ancalecetus sirnomi, CGM 42290 (holotype). A, right 
scapula (Sc). B, left humerus, radius, and ulna (H, R, U). All about 113 natural size. Note the fused 
elbow joint in B, and the absence of any evident pathology in these elements. 

Cunefom.-The cuneiform (Cun in Fig. 22) is the most dorsal carpal in the proximal row. 
It articulates proximally with the ulna, dorsally with the pisiform, distally with the unciform, 
and ventrally or radially with the lunar. The cuneiform is fused to all of the elements it 
contacts except the unciform. The articular surface with the ulna is rather irregular, and fusion 
is more pronounced in some areas than in others. 

The cuneiform measures about 15.1 mm proximodistally, 32.4 mm dorsoventrally, and 
13.6 mm mesiolaterally. 

Uncijom.-The unciform (Unc in Fig. 22) is the most dorsal carpal in the distal row. It 
articulates proximally with the cuneiform and lunar, and ventrally with the magnum part of the 
magnum-trapezoid. The unciform is free from the cuneiform, but fused to the lunar and 
magnum-trapezoid. The unciform has distal articular surfaces for metacarpals V, IV, and part 
of I11 (the metacarpals themselves are not preserved). These metacarpal surfaces are smaller 
and more irregular around their edges than homologous surfaces in Doncdon. The unciform 
was not fused to any of the metacarpals. 

The unciform measures about 19.0 mm proximodistally, 24.6 mm dorsoventrally, and 
17.0 mm mesiolaterally. 

Magnum-Trapezoid.-The magnum and trapezoid (Mag and Trd in Fig. 22) in Ancalecetus 
are joined as a single bone, probably as a result of co-ossification early in normal development. 
Fusion of the magnum-trapezoid is also found in Bmilosaurus isis (Gingerich and Smith, 1990) 
and Dorudon afrox (Uhen, 1994, 1996). This composite bone is the central element in the 
distal carpal row. The magnum part of the composite is dorsal and larger, contacts the 
unciform, lunar, and scaphoid (the first two contacts are fused contacts, while the latter carpal 
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FIG. 25-Radiograph of right forearm and carpus of Ancalecetussimonsi, CGM 42290 (holotype), shown 
natural size. Abbreviations from Table 1 are: Cun, cuneiform; Lun, lunar; Mag, magnum; Pis, 
pisiform; R, radius; Trd, trapezoid; U, ulna; Unc, unciform. Note carpal fusion (compare forearm 
of Dorudon atrux in Fig. 26 on facing page), and absence of any evident pathology that might explain 
this. 
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FIG. 26--Radiograph of right forelimb and carpus of  Dorudon @ox, UM 100222, shown natural size. 
Abbreviations from Table 1 are: Cun, cuneiform; Lun, lunar; Mag, magnum; R, radius; Sca, 
scaphoid; Trd, trapezoid; U, ulna; Unc, unciform. Note the lack of fusion of  carpals and lack of  
fusion of distal epiphyses (compare with unusual forelimb of Ancalecetus sirnomi in Fig. 25 on facing 
page) 
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is not preserved and this contact was evidently unfused), and has a distal facet for articulation 
of a small metacarpal I11 (metacarpal I11 is not preserved). The trapezoid part of the composite 
is more ventral and smaller. Contacts with the scaphoid and trapezium are indicated by 
irregular textured surfaces, but neither of these contacting bones are preserved and the contacts 
cannot have been solidly fused. The trapezoid part of the bone has a distal facet for 
articulation with a small metacarpal I1 (see below). 

The magnum-trapezoid measures about 14.1 mm proximodistally, 24.0 mm dorsoventrally, 
and 15.6 mm mesiolaterally . 

Trapezium.-The trapezium of Ancalecetus simonsi is not preserved in CGM 42290, but 
there is an irregular textured surface on the ventral side of the trapezoid for articulation with 
a small trapezium, so a trapezium was clearly present in Ancalecetus. 

Pisifom.-The pisiform (Pis in Fig. 22) is smaller than the pisiform of other basilosaurids. 
It is fused to the dorsal surface of the cuneiform and also articulates with the humerus, but the 
latter contact does not appear to be fused. The pisiform is a relatively flat bone with a distinct 
distal hook in its dorsal end. 

The pisiform measures about 17.0 mm proximodistally, 22.3 mm dorsoventrally, and 
9.4 mm mesiolaterally . 

Mc II.-The only identifiable hand bone distal to the carpus is a right metacarpal I1 
(Fig. 13K), which fits the metacarpal facet on the distal surface of the trapezoid part of the 
magnum-trapezoid described above. The bone has a straight body, oval in cross-section, with 
both proximal and distal articular surfaces damaged. It has the proportions of a metacarpal and 
was identified by matching remnants of articular surfaces with those on a complete set of 
metacarpals of Dorudon atrox. 

Measurements of the second metacarpal are L = 40.1 mm (probably about 44 mm in life); 
DVW = 13.2 : 9.7 : ca. 12 mm; MLH = 1t.3 : 7.4 : --- mm. 

DISCUSSION 

Our first concern studying CGM 42290 was whether this is an aberrant individual of 
Dorudon atrox, the common basilosaurid of the same size found in the same stratigraphic 
interval in Wadi Hitan. Such a problem might have been most easily solved by finding more 
individuals like CGM 42290, but no similar specimens were found. However, collection of 
some ten good skeletons of Dorudon atrox enabled us to characterize its variability (Uhen, 
1996), providing the necessary base for comparison of CGM 42290. 

CGM 42290, the type specimen of Ancalecetus simonsi, is similar in many comparable 
aspects to Dorudon atrox, however it differs significantly in two. The malleus of the ossicular 
chain transmitting sound to the inner ear is somewhat different in proportions from that of D. 
atrox and it is substantially different in orientation (Fig. 8). The functional significance of 
these differences has not been studied, but some functional distinction is implied. Secondly, 
and most obviously, the forelimb of A. simonsi is reduced in size and different from D. atrox 
and other basilosaurids in having a relatively narrow scapula (Fig. 23), very limited motion at 
the shoulder joint, solid fusion at the elbow (Fig. 24), and considerable fusion of wrist elements 
(Figs. 25-26). Taken together, these mean that the forelimbs of A. simonsi were habitually and 
necessarily carried extending posteriorly and positioned flat against the rib cage as shown in 
Figure 27A. Functionally, this means that they cannot have been used as anterior horizontal 
stabilizing fins or flippers controlling dorsoventral movement of the head and thorax, nor could 
they have been used for turning or other complex maneuvers typical of active cetacean 
swimmers. 



ANCALECETUS, NEW ARCHAEOCETE FROM EGYPT 399 

FIG. 27-Reconstruction of Ancalecetus sirnow' compared to that of Dorudon atrox. A, reconstruction 
of A. sirnow' based on CGM 42290 (bolotype) described here. B, reconstruction of D. atrox based 
on CGM 42183 and UM 97512, 100146, 101215, and 101222 (Uhen, 1996). Both skeletons are 
drawn to the same scale, but the length of the A. sirnomi skeleton is speculative, based on elements 
shown in Fig. 3 in comparison to similar elements of D. atrox. Note distinctly different forelimbs of 
these two contemporary dorudontine archaeocetes. 

An advanced archaeocete with such limited swimming capability seems dysfunctional by 
comparison with active swimmers like contemporary Dorudon atrox (Fig. 27B), but well 
developed masticatory wear on teeth, and fusion of skull bones and epiphyses on vertebrae 
show that the one known individual of Ancalecetus simonsi lived to adulthood. The forms of 
left and right forelimb elements in A. simonsi, to the extent that they can be compared (notably 
the scapulae and humeri), are perfectly symmetrical bilaterally, which rules out modification 
due to injury during life. Radiographs show no evidence of the bone remodelling one would 
expect to be associated with injury. There is no evidence of pathological bone growth in the 
surface textures of bones, nor again do radiographs suggest pathology. It is possible that the 
unusual forelimbs of A. simonsi represent a rare developmental anomaly, which could explain 
its symmetry on both left and right sides, but so rare an anomalous individual would not be 
expected to live to adulthood as evidenced by tooth wear and the cranial and epiphyseal fusions 
just mentioned. We conclude that CGM 42290 represents a viable evolutionary experiment in 
cetacean morphology, albeit one that probably did not give rise to any subsequent diversity of 
whales. 

From a functional point of view, it is difficult to comprehend how a basilosaurid like 
Ancalecetus simonsi could be an active swimmer without more mobile forelimbs for 
stabilization and guidance. The vertebrae that are known, admittedly only 20 compared to the 
65 of Dorudon atrox, compare well to those of D. atrox, suggesting that it may have been an 
active swimmer. We have reconstructed Ancalecetus as having had the long and heavy tail of 
an active caudally-powered cetacean. However, the lengths of the body and tail are speculative 
and will remain so until a more complete vertebral column of Ancalecetus is found. 

Ancalecetus simonsi increases the number of genera and species of latest Bartonian to earliest 
Priabonian archaeocetes known from the Gehamam and Birket Qarun formations of Wadi 
Hitan. These are, from largest to smallest: 
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Basilosaurus isis (Andrews , 1904) 
Pontogeneus ? brachyspondylus (Miller, 1849) 
Dorudontine with intermediate lumbar centra (possibly two taxa) 
Dorudon atrox (Andrews, 1906) 
Ancalecetus simonsi, new genus and species 

Basilosaurus isis and Dorudon atrox are both very common in Wadi Hitan. These are 
represented by many more or less complete skeletons that include evidence of greatly reduced 
but still functional hind limbs (Gingerich et al., 1990; Uhen, 1996). Pontogeneus? 
brachyspondylus is represented by one association of two large lumbar vertebrae. The 
dorudontine with intermediate lumbar centra is known from several poorly-preserved partial 
skeletons in the Cairo Geological Museum and University of Michigan collections. Two taxa 
of the latter may be represented, but known specimens are inadequate to permit a clear 
determination. Ancalecetus simonsi is known only from the one well-preserved partial skeleton 
described here. B. isis, P. ? brachyspondylus, and D. atrox are all known from the Birket 
Qarun Formation in and north of Birket Qarun in Fayum (the source of many specimens in the 
museums of Cairo, Berlin, Frankfurt, London, and Stuttgart). Another basilosaurid, 
Saghacetus osiris, is common in the upper Qasr el-Sagha Formation north of Birket Qarun but 
it has never been found in the Gehannam or Birket Qarun formations north of Birket Qarun nor 
has it been found in Wadi Hitan. 

Ancalecetus is clearly an advanced archaeocete like other basilosaurids. It differs in many 
ways from protocetids. Within Basilosauridae, Ancalecetus has the vertebral proportions of a 
dorudontine rather than a basilosaurine. Here we have compared Ancalecetus almost 
exclusively to Dorudon because Dorudon is both similar in many ways and common in the 
Birket Qarun Formation where Ancalecetus is found. Ancalecetus has reduced carpal elements 
the size of those of North American Zygorhiza, but it has the derived developmental fusion of 
the magnum-trapezoid that unites Dorudon with Basilosaurus, which may be an important 
difference from Zygorhiza (Kellogg, 1936, fig. 74). We interpret the small size of the carpals 
of Ancalecetus relative to the rest of the skeleton as reflecting the general reduction seen in 
other forelimb elements. 
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