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Accurate correction of surface noises of polygonal meshes
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SUMMARY

In this paper we propose a new algorithm for accurate correction of surface noises of polygonal
meshes. It consists of three basic components: (a) feature-preserving pre-smoothing; (b) partitioning
of feature and non-feature regions; (c) second-order predictor for non-feature regions and median
filter for feature regions. The unique contributions of our approach include (a) an idea of partitioning
an input surface into feature and non-feature regions so that different smoothing algorithms, which
are best suited for either feature or non-feature regions can be, respectively, applied; (b) a second-
order predictor that provides higher smoothing accuracy and better convergence on smoothly curved
surfaces. In comparison with several existing algorithms, our algorithm is evaluated quantitatively
in terms of surface normal and vertex distance error metrics. Numerical experiments indicate the
effectiveness of our approach in the aspects of convergence and accuracy. Copyright © 2005 John
Wiley & Sons, Ltd.

KEY WORDS: noise reduction; polygonal mesh; structure; topology optimization; reverse engineering

1. INTRODUCTION

Accurate correction of surface noises of polygonal meshes is an important issue in engineering
applications. The noises may come from non-contact optical sensors in reverse engineering [1, 2]
or from isosurface extraction of finite-element-based topology optimization [3,4] in structural
optimization. In general, if 3D objects are represented by polygonal meshes, noise at each vertex
may cause arbitrary perturbation along the surface normal or a movement on the underlying
surface of the model. The former destroys the surface smoothness, while the latter deteriorates
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the mesh quality. In this paper, we focus on how to effectively remove noised vertex perturbation
in the direction of departing the underlying geometry, and call the removal of such noises as
surface denoising or smoothing.

In many cases, surface fairing was used interchangeably with surface smoothing. How-
ever, in this paper we stress a subtle difference between surface fairing and denoising. The
goal of the former is to achieve an aesthetic surface design of a geometric model, while the
latter focuses on removing noises obtained from 3D sensing technologies or finite element
simulation. In the past, many researchers [S—11] cast the surface fairing problem as an opti-
mization problem that minimized certain functionals such as membrane energy [12], thin plate
energy [12], total curvature [13—15], or sum of distances [16]. The minimization of the contin-
uous functionals is discretized to a finite dimension, and divided difference operators are used
to replace derivative operators, leading to a linear or non-linear system with respect to vertex
positions.

In the area of surface denoising, one group of studies are characterized by adopting smooth-
ing algorithms in signal processing. One brute-force algorithm is the conventional Lapla-
cian smoothing with well-known problems of oversmoothing and volume shrinkage, which
were corrected by Taubin in his volume-preserving Laplacian smoothing [17] and by Vollmer
et al. [18]. A reweighting of the Laplacian was later introduced by him [19]. A series of stud-
ies made by Belyaev, Ohtake and Yagou led to a set of smoothing algorithms of using mean
filter, median filter, Gaussian filter and their weighted counterparts [20—-23]. One nice feature
of their algorithms is that no dampening coefficient / is needed from users. On the basis of
subdivision, a general signal processing framework was introduced, in which denoising was
one application [24]. Weiner filter was adopted by Peng et al. for smoothing multi-resolution
meshes [25], by Pauly and Gross for point-sampled geometry [26] and by Alexa for a general
mesh geometry [27].

Another group of studies were based upon the concept of second-order geometric flow with
a target of reducing surface area or converging to a minimal surface. Mean-curvature flow was
an early approach that was used to reduce noise [28]. It was later improved by considering
anisotropic diffusion [29-32]. Ohtake et al. [21] used a threshold of mean curvature to terminate
the oversmoothing of mean-curvature flow. As a related study, an intrinsic Laplacian of mean
curvature was used for mesh fairing by decoupling the fourth-order PDE into a pair of second-
order equations [33].

Recently, a number of studies have been conducted to preserve sharp features during a
mesh smoothing process. One technique that was commonly used is the so-called anisotropic
diffusion [29, 32,34-37], which was originally proposed in image processing [38]. The basic
idea behind this technique is to attenuate the smoothing at the sharp feature. Besides the
attenuation, some researchers added feature enhancement into the smoothing process [29].
Another closely related technique is called bilateral filtering [39, 40], which was also originally
proposed in image processing [41]. Its basic idea is to combine a standard Gaussian filter
and a feature-preserving weighting function, a similarity function. The third technique for
feature-preserving smoothing is a median filter that was well-known in image processing. One
nice feature about the median filter is that it can be flawlessly implemented for polygonal
meshes [23].

Even though a considerable amount of advance has been made in the recent past in the area
of surface denoising or surface smoothing, there are still two important issues that have not
been sufficiently addressed as listed below.
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Figure 1. Smoothing of a perfectly smooth sphere: (a) original model; and (b) convergence test.

1.1. Convergence

For any iterative smoothing method, convergence is an important issue to consider. If an
input mesh model contains a reasonably uniform level of noises, the smoothing process of
all existing algorithms proceeds nicely as expected. However, one ambiguous problem is how
to determine the termination point for this iterative process. Normally, a threshold is used
as an indicator to terminate the smoothing process, and very little attention was paid to the
smoothing behaviour beyond that termination point, which is related to the post-threshold
stability of each algorithm. Such stability is an important indicator in classifying different
smoothing algorithms. An algorithm without the post-threshold stability cannot be considered
as having a true convergence, leading to an unstable smoothing accuracy that may vary from
model to model, because it is significantly dependent upon a correct choice of the termination
threshold.

When we consider smoothing algorithms, one of the best ways to test the post-threshold
stability of different approaches is to apply these algorithms on a ‘perfectly’ smooth data model.
Since we represent a data model in a discrete polygonal mesh, ‘perfectly’ herein means an
almost perfectly smooth mesh. If an algorithm has a true convergence, the smoothing process
of a perfectly smooth data model should not deviate from its initial geometric configuration, i.e.
no smoothing action should take place. Figure 1 shows the smoothing process of a perfectly
smooth sphere by using several existing algorithms (see Section 3). The quantitative error
metrics are described in Section 3. We intently choose this simplest model without any sharp
feature to demonstrate that there is an issue about convergence even with simple models. From
Figure 1(b), it can be seen that there still exists a room for improving the existing algorithms
in the aspect of convergence or post-threshold stability. The execution time of the algorithms
with this model is given in Table L.

1.2. Accuracy

Very few papers have devoted a quantitative evaluation and comparison between different
smoothing algorithms [20, 23]. Only with quantitative error metrics can we compare different
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Table I. Execution time of different smoothing algorithms with simple models.

Smoothing # of smoothing Execution
Model # of vertices # of triangles algorithms step time (s)
Sphere 472 940 MN 100 0.41
MD 100 2.71
GS 5 3.05
BL 100 0.07
MC 100 0.81
VL 100 0.03
MQ 100 6.48
Cone 978 1952 MD 100 6.03
GS 100 6.68
BL 5 0.24
VL 100 0.17
MN 100 0.95
MQ 100 22.06
Monkey saddle 225 392 MN 100 0.17
MD 100 0.97
GS 100 1.14
BL 5 0.032
VL 100 0.015
MQ 100 4.02
Catenoid 216 384 MD 100 0.94
GS 100 1.17
BL 5 0.05
VL 100 0.016
MC 100 0.61
MQ 100 3.95

Note: MN—mean filter; MD—median filter; GS—Gaussian filter; BL—bilateral filter; MC—mean-curvature
flow; VL—volume-preserving Laplacian, MQ—median-quadratic filter (our scheme).

algorithms in an unambiguous way in terms of smoothing accuracy, which is important to
remove the noises in many engineering applications such as reverse engineering and finite
element simulation, but not to surface fairing for aesthetic design. Besides, one interesting
phenomenon is that a certain group of algorithms (median filter) have a better accuracy in
smoothing noised data models with sharp features (e.g. a box), while another group of algo-
rithms (mean and Gaussian filters) give a higher accuracy on noised data models without sharp
features (e.g. a sphere). One question that naturally comes down upon us is ‘can we have an
algorithm that performs best in both cases?’.

When we evaluate the smoothing error, there are at least two categories of metrics avail-
able [20]. The first one is related to the error in the surface normal between corresponding
triangles of the denoised surface and the underlying smooth geometry. Here, the underlying
smooth geometry means the true target surface after removing noises from the noised surface.
Normally, it is difficult to accurately determine the underlying smooth geometry from a noised
surface measured from various digital scanning equipments. On the other hand, synthetic smooth
surfaces can be easily added by various types of noises and therefore used as test objects in our
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evaluations. Surface normal reflects the intrinsic shape of each object, and is not changed when
the object is subject to a global and isotropic scaling operation. Therefore, it is an important
quantitative index from the viewpoint of geometry.

The second category of metrics is related to the error in the geometric distance between the
denoised surface and the underlying smooth surface. Volume shrinking is an important factor
that contributes the geometric distance error. Even though, a numerical manipulation, called
volume scaling [28], can be used to reduce the geometric distance error for those algorithms
that cause volume shrinking, an implicit assumption is that the noise level is uniform over the
surface of an object. If this assumption is not satisfied, the volume scaling may not be used
effectively to reduce the geometric distance error.

In order to address the above two issues, a new algorithm is designed in this paper. The
main contributions include:

(1) our algorithm has a better convergence than existing algorithms such that it is less
dependent upon a well-chosen termination threshold.

(2) our algorithm gives an overall better accuracy in smoothing data models with or without
sharp features.

The rest of this paper is organized as follows. In Section 2, our new algorithm for surface
denoising is introduced. Then, in Section 3, numerical experiments are reported and discussed,
followed by some concluding remarks in Section 4.

2. A NEW SURFACE DENOISING ALGORITHM

For a better convergence and denoising accuracy, the following approach is proposed:

(1) Adopt a feature-preserving pre-smoothing (median filter) that does not require any thresh-
old and implicitly retains the sharp features. Use G' geometric discontinuity and curva-
ture threshold as an indicator for surface partitioning of feature and non-feature regions.
Feature regions mean the areas in which either sharp edges or high curvatures exist,
while the remaining parts are called the non-feature regions.

(2) Adopt a median filter for feature regions. In comparison with anisotropic diffusion algo-
rithms, its main advantage is no need for the directions of principal curvatures, which
may become invalid at singular points. It also avoids some pitfalls of bilateral filters at
sharp edges.

(3) Design a second-order predictor as an accurate indicator for guiding a surface smoothing
process in non-feature regions. The main benefit of the proposed second-order predictor
is a better accuracy and convergence with curved surfaces than the first-order predictors,
mean-curvature flow and Gaussian predictors in existing algorithms.

(4) Apply our second-order predictor in non-feature regions, while the median filter is used
in feature regions. This forms a hybrid approach that performs consistently better than
existing algorithms with different types of noised data models in terms of convergence
and smoothing accuracy.

In an algorithmic format, our approach is represented by the following procedure, which
calls different routines to be introduced in the rest of this paper.
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Algorithm: Hybrid approach of surface denoising

(1) feature-preserving pre-smoothing of an input noised mesh
(2) surface partitioning of the resulting mesh
(3) loop over all elements in the input noised mesh

(3.1) if it is in a feature region, call median_filter() routine
(3.2) otherwise, call second_order_filter() routine
(3.3) go back to (3), and repeat in an iterative manner

2.1. Feature-preserving smoothing

Sharp features in a data model are a main challenge to all smoothing algorithms, because
geometric non-smoothness at these features invalidates many analysis arsenals in calculus and
differential geometry. A number of researchers adopted the concept of anisotropic diffusion that
was originally proposed by Perona and Malik [38]. The basic idea of this approach is to smooth
non-feature regions as usual and to avoid the smoothing of sharp features by using a very small
weighting factor that is actually defined as a function. If the noise at sharp features is at a
relatively small magnitude, this treatment is reasonable. Otherwise, its effectiveness becomes
questionable. Some researchers [29, 31, 37] used additional treatment for feature enhancement in
a smoothing process, which may lead to a possibility of overpreserving features. Overpreserving
features may be useful in some situations. However, it seems not to be a question about the
need for a smoothing algorithm that avoids both underpreserving and overpreserving features
in the area of surface denoising.

When we extend the anisotropic diffusion from 2D images to 3D surface meshes, one
major shortcoming is that this extension is only valid for simple edges, but not for some
singular points. For instance, if discrete curvatures are calculated at the tip of a cone shown in
Figure 2(a), the directions of both maximum and minimum principal curvatures are meaningless
and misleading. Any edge sharpening treatment along these two directions (k1, k2) would result
in an erroneous edge enhancement. In Figure 2(b), if three edges meet at one point and are not
orthogonal to each other, the anisotropic diffusion will not behave correctly at this tip point,
because the directions of two principal curvatures do not coincide with at least two edges.

{a)

Figure 2. Two counterexamples for anisotropic diffusion at singular points in three dimension.
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Figure 3. Three counterexamples for bilateral filtering: (a,b) Fleishman’s
approach; and (c) Jones’ approach.

Recently, bilateral filter was used to preserve sharp features in a smoothing process [39, 40].
It is a combination of a standard Gaussian filter and a feature-preserving weighting function,
a similarity function, which is another Gaussian function to penalize a large variation in the
distance of neighbouring vertices to the target tangent plane [39] or in the distance between
the centre vertex and neighbouring elements [40]. Both schemes work in a partially correct
way at sharp features. Figure 3(a) shows that if the centre vertex is on a sharp feature, the
predictor of Fleishman’s approach tends to round the feature. On the other hand, if the centre
vertex is at least one element away from the sharp feature, the scheme may work correctly
or incorrectly depending upon the variation of neighbouring vertices. Figure 3(b) illustrates an
extreme case in which vertex Q contributes a wrong vector v with respect to the vector vi of
vertex Q; when we construct a predictor for the centre vertex P. In contrast, Jones’s approach
works correctly when the centre vertex is on a feature edge. However, if the centre vertex P
is one or very few elements away from the feature edge, his scheme does not work in an
entirely correct way, because the distance d, may be in the same range as or even smaller than
the distance d; in Figure 3(c), leading to a wrong contribution to the predictor of the centre
vertex P.

On the contrary, the conventional median filter can avoid the above problems if it is imple-
mented correctly for 3D polygonal meshes. The basic concept and procedure for the median
filter were described in Reference [23]. Theoretically, most discrete integrations or averaging
operations at sharp features are invalid because of G! geometric discontinuity at these locations.
The median filter avoids the averaging operations, and in the meantime provides a reasonable
quality of smoothing for high-curvature non-sharp feature regions.

Our strategy in handling data models with sharp features includes the following key com-
ponents:

(1) feature-preserving pre-smoothing
(2) partitioning of feature and non-feature regions
(3) median filter for feature regions

Pre-smoothing is an important step to preprocess a noised mesh model for the purpose of
feature recognition or for guiding a smoothing process. If the noise level of a data model is very
high, it is difficult to fulfil the feature detection without a pre-smoothing process. On the other
hand, if this pre-smoothing process is not conducted carefully, some true feature information

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1678-1698
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Figure 4. Partitioning of feature and non-feature regions. Data courtesy of Stanford Computer Graphics
Laboratory (dark color—feature region).

may be lost before the feature detection procedure is carried out. Some researchers [29, 32]
used the pre-smoothing in anisotropic diffusion, and others [40] applied it in bilateral filtering.
One remaining problem is that they did not use a feature-preserving smoothing algorithm for
pre-smoothing. Instead, either Gaussian filter or mean-curvature flow was used. This casts a
doubt about the total validity of their approaches. More recently, Clarenz et al. [31] used
moment analysis in identifying feature regions. The validity of the moment analysis on an
initially noised surface really depends upon the noise level of the model. If a model is highly
noised, the authors consider that a pre-smoothing is still a necessary step before an accurate
feature detection. In this paper, we propose to use a feature-preserving smoothing algorithm,
median filter, for conducting the pre-smoothing. One salient characteristic about the median
filter is that it implicitly preserves sharp features, i.e. it does not rely on the feature recognition
of feature regions as the anisotropic diffusion does, and it does not depend upon any threshold
from users.

The partitioning of feature and non-feature regions is conducted by a breath-first search
that traverses all triangles of a mesh model (Figure 4). Sharp features are defined by either a
G! discontinuity or a high curvature. The G' discontinuity is identified by the angle formed
by surface normal of two adjacent triangles. In this paper, if it is greater than 45°, a sharp
edge is considered to occur between these two triangles. There is a vast amount of literature
related to different approaches for estimating discrete curvatures [42—47]. However, no report
is available for the comparison among these schemes with respect to accuracy, convergence
and computational efficiency. In Reference [48], we also proposed an accurate estimation of
discrete nodal curvature with a mathematically proven convergence. The salient features of
our scheme include (a) proven convergence to the continuous curvature (see Proposition 2);
(b) independence upon surface parameterization (a one-to-one mapping from a parameter domain
to a surface). We use an index kip = 0.5(|k1| + |k2|), where ki and k; are maximum and
minimum principal curvatures, respectively. When ki> is greater than a certain threshold, a
high-curvature feature region is located.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1678-1698
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We do not consider the surface partitioning mentioned above is a contribution of this paper.
However, the application of surface partitioning in the area of surface denoising is an original
idea proposed in this paper. Unlike the anisotropic diffusion, we are not concerned with the
directions of principal curvatures and their pitfalls. Median filter implicitly preserves the sharp
features. Yagou’s median filter [23] is used in this paper for feature regions.

2.2. Second-order predictor

Here, the predictor means an indicator for a surface smoothing process, and it is a main driving
force for such a process. The Laplacian smoothing is the simplest and oldest scheme, and its
predictor is also the worst that frequently leads to a situation of oversmoothing. Figure 5(a)
shows that the predictor of the Laplacian smoothing, Vi, is basically a vector from a current
vertex, Cy, to a target planar face that contains all neighbouring vertices (Vo—Vs). Even though,
a small correction coefficient, 4(< 1.0), can be used to delay the incident of oversmoothing,
it will happen after the iteration number becomes large enough.

Several studies have partially alleviated the problem of Laplacian smoothing, but not com-
pletely. Figures 5(b) shows the predictors of mean filter and median filter smoothing algo-
rithms [23]. For the sake of clarity, we show the predictor in 2-dimension. In this figure,
C,Vy and C,V; represent two elements that are adjacent to the current vertex, Cy. Qo and
Q; are the centroid of these two elements, respectively. My and M, are the weighted surface
normal of these two elements, and calculated by the mean or median filtering algorithm (see
Reference [23]). The smoothing predictors contributed by these two elements are, respectively,
shown as Vﬁ and V!, the vector sum of which is the overall predictor. It is quite difficult to
judge whether the predictors of these two filters oversmooth or undersmooth a curved surface
in Figure 5(b), because we do not have an accurate estimation about the underlying smooth
geometry in these two approaches. But they are certainly much better than the Laplacian
smoothing. The Gaussian smoothing is similar to the mean filter, and the only difference lies
in the fact that it is a weighted mean filter with a Gaussian function as its weighting function.
Some algorithms like Wiener filter do not have an explicit predictor [25]. The Wiener filtering

M
M, & 0
e

Figure 5. Predictors for different smoothing algorithms: (a) Laplacian smoothing; (b) mean and
median filters; and (c) second-order.
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relies on a statistical analysis to have an optimal estimate of denoised surface, and is difficult
to be compared with other schemes.

A number of recent studies used the mean curvature as a predictor in the so-called mean-
curvature flow, surface diffusion flow or its variants. The target surface for a mean-curvature
flow should be a minimal surface on which the mean curvature is zero or a minimum surface
area per volume. Typical minimal surfaces include plane, catenoid, helicoid, etc. Sphere is the
case of minimum surface area per volume. Normally, it is difficult to justify the coincidence
between the underlying smooth geometry of a data model and a target minimal surface either
globally or locally. The only exception is to approximate a local patch by a target local
plane. But this treatment still causes unavoidable smoothing error on a curved surface whose
underlying smooth geometry has arbitrary curvatures.

Yet, another group of researchers used a first-order predictor (i.e. a tangent plane or its
variants) as an approximation to a local surface vicinity. In other words, a tangent plane is
considered as the target local plane. It shares the same advantages and disadvantages as using
a linear approximation of Taylor series to a continuous function. It is fast, simple and tolerable
in its accuracy as long as the surface itself is close to a planar surface or the local surface
vicinity is small enough, which means a dense mesh. Regardless of this minor limitation, this
predictor suffers another more fundamental problem: the difference between a true underlying
surface and the planar tangent plane or its variants used in existing approaches. This problem
can be illustrated by applying a recent scheme [39] onto a perfect sphere as in Figure 1(b),
which indicates that the algorithm will make vertices to deviate their original positions that
correspond to a perfect sphere.

We propose to use a second-order predictor as an approximation to each local surface
vicinity except at the locations of sharp features. It is obvious that a second-order predictor
is well suited for a smoothly curved surface patch, is a waste for a planar surface patch,
and is not valid at the locations of sharp features. In Section 2.1, we introduce a feature-
preserving pre-smoothing procedure to identify all the sharp feature regions. Here, we focus
only on the regions without sharp features. The key components of our second-order predictor
include:

(1) A ‘robust’ least-squares fitting procedure to fit each surface neighbourhood with a local
quadric patch.
(2) A fast procedure to determine our second-order predictor.

As to the least-squares fitting procedure, ‘robust’ means that any outlier vertex due to G'
discontinuity will be excluded in the least-squares fitting. By means of a feature-preserving pre-
smoothing procedure, the G! discontinuity can be identified. For details, refer to Section 2.1.
In addition, when we construct a local surface neighbourhood for the least-squares fitting, any
outlier vertex that has a distance far more than a threshold should be excluded from the fitting
such that individual abnormally noised points can be removed. Before conducting a least-
squares fitting, the tangent plane or surface normal at each vertex needs to be determined in
order to construct a local co-ordinate system by using the following procedure, which is suited
for arbitrary point sets or polygonal meshes.

Routine: local_coordinate(p, M, v, v2, v3)
Pre-condition: p is a vertex. M contains the information of a mesh.
Post-condition: (vy, v2, v3) represents the orientation of a local co-ordinate system

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1678-1698
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Determine a set of neighbouring vertices for vertex p.

The rule for selecting neighbouring vertices is to choose at least six different points.
In this paper, we use two-ring vertices as candidates after excluding any outlier vertex
due to G' discontinuity (see Section 2.1) or extreme distance. We also implement a
neighbourhood defined by a radius specified by users.

Determine a tangent plane at vertex p.

The principal components analysis [49] is used to determine the tangent plane at vertex p.
The covariance matrix of the set of neighbouring vertices is

CV= Y (@-p®@-p (1
q € Nbhd(p)

where Nbhd(p) is the set of neighbouring vertices at vertex p and ® is outer product
operator of vectors. A Jacobi transformation [50] can be used to determine eigenvectors
(v1,v2,v3) and eigenvalues (41 > A2 > 43) of the CV. v3 represents the normal direction
of the tangent plane, v; and v, are the base vectors of orthogonal parameter co-ordinates
in the tangent plane.

Note that in step 1 of local_coordinate() routine, if the number of two-ring vertices is still
less than 6 as occasionally in cases where p is on a boundary edge or at a boundary corner,
the centroid and the middle edge points of each neighbouring element are added into the set
of neighbouring vertices for vertex p. After knowing the local co-ordinate system at vertex p,
we are ready to conduct a least-squares fitting as follows.

Routine: least_squares_fitting(p, M, vy, vz, v3, X)

Pre-condition: p is a vertex. M contains the information of a mesh. (v{, v2, v3) is the local
co-ordinate system.

Post-condition: X contains coefficients of a local quadric patch.

(1) Loop over every vertex p for a second-order fitting

(1.1) Determine a local quadric co-ordinate patch.
In the local co-ordinate system (vy, v2, v3), a quadric co-ordinate patch:

Z=f(x,y)=a1x2+azxy+a3y2+a4x+a5y+a6 2)

is used to approximate the surface in the neighbourhood of vertex p. Note that
co-ordinates (x, y) are measured along (vi, vp) directions, and z co-ordinate is
measured in the v3 direction. The linear least-squares estimation of six coefficients
a; is expressed as

BX=7Z 3)
in which
(7 xiyi v oxoy 107 71 ai
x22 X2y y22 x3 y» 1.0 22 as
B=1 . 2= X=1 )
x,% XnYn y,% Xn yn 1.0 Zn ag
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where n is the number vertices of Neighbor,_,,(p). Equation (3) can be trans-
formed to

X=B"B)"'BTZ )
which can be solved by the Cholesky decomposition of BTB.

If BTB in Equation (5) is ill-conditioned, then the Cholesky decomposition should be replaced
by a singular value decomposition [50] to solve BX =Z. Therefore, in our implementation, we
use the result of the Cholesky decomposition as a conditional flag. If there is no failure in
the Cholesky decomposition for the fitting of each quadric patch, the program will continue
the remaining calculation in Equation (5). Otherwise, BX=2Z is solved by the singular value
decomposition. However, in all of our testing models, we did not experience a single case of
failure for the Cholesky decomposition of BTB.

The above procedures for calculating a second-order predictor are supported by the following
propositions [48].

Proposition 1

If the tangent plane at point p is determined by using the principal component method in
the routine local_coordinate(), the local quadric co-ordinate patch: z = f(x, y) =ajx> +axxy +
a3y® + asx + asy + ag sufficiently represents all major types of surfaces: elliptic, hyperbolic,
parabolic and planar, at the neighbourhood of point p.

Proposition 2

If the local quadric co-ordinate patch: z = f(x, y) =a1x*+arxy+a3y*+asx +asy+ag is used
to approximate the surface S at the neighbourhood of point p, and if surface S is second-order
continuous at point p, the discrete curvatures of this local patch converge to the curvatures of
surface S at point p in a limit.

Our second-order predictor is illustrated in Figure 5(c), in which P is the current vertex
and Q;—Q4 are its two-ring neighbouring vertices. Vg—Vf, are predictors for the second-order
smoothing, and are determined by a vector from each vertex to its closest point on the local
quadric patch, which can be located in a process for finding the distance from each vertex to
the local quadric patch. Equation (3) can be rewritten in the following matrix form:

S()=pTAp +bp+c=0 (©6)

where p' =[x y z] represents points on the surface S(p).c=a¢ is a scalar. A and b are a
coefficient 3 x 3 matrix and a coefficient 3 x 1 vector, respectively, and are in the following
forms:

ap 0.5a; O as
A=[05a a3 0|, b=| a;s @)
0 0 0 —1

For a given vertex q, its closest point p on the surface S can be determined by the following
geometric relationship:

q—-p=tVS(p)=1(2Ap+b) ®)
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=i real distance

===ph= quasi distance

Figure 6. Quasi-distance between vertices and a local quadric surface patch.

where ¢ is a scalar. VS(p) is the gradient of the surface, which is in the direction of surface
normal and should be the same as the direction of q—p. If we apply an eigendecomposition on
A [51], then A = RDRT, where R is an orthonormal matrix whose columns are eigenvectors of
A, and D is a diagonal matrix whose diagonal elements are eigenvalues of A. The substitution
of decomposed A into Equation (8) yields

R(I+2:D)"'RT 0
p= ) @ ©)

where I is an identity matrix. Matrices R and D have dimension 2 x 2. Replacing p in
Equation (6) by the expression in Equation (9) yields a polynomial equation of degree 5
with respect to ¢. After a suitable root of ¢ is found, the closest point p is then determined
by Equation (9). However, one remaining problem is that there is no algebraic solution to a
polynomial equation of degree 5, leading to an expensive computation to obtain the roots of ¢.
Our alternative solution to this problem is to find a quasi-distance between a vertex and the
local quadric surface patch, which approximates the real distance, as shown in Figure 6. The
quasi-distance is basically a distance between a vertex and the local quadric patch in the local
z co-ordinate direction. This approximation relies on the fact that we have a well-oriented local
co-ordinate system and any outlier vertex of G! discontinuity has been filtered out.

After the quasi-distances are known, our second-order predictor is determined by the following
procedure.

Routine: second_order_filter(M)

Pre-condition: M contains the information of a mesh, including Vs (set of vertices in non-
feature regions)

Post-condition: Smoothed mesh is stored in M.

(1) loop over every vertex that is not in the sharp feature regions, p € V,r

(1.1) call local_coordinate() routine
(1.2) call least_squares_fitting() routine
(1.3) loop over two-ring vertices, q € Neighbor,_;,,(p)

(1.3.1) calculate the predictor in Figure 5(c), Vi, where i corresponds to vertex q

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1678-1698



ACCURATE CORRECTION OF SURFACE NOISES OF POLYGONAL MESHES 1691

(1.3.2) project Vf) onto the surface normal Ny at vertex q
Vi = (Vi e NyNg (10)

where Ny is the surface normal determined by v3 in routine local_coordi-
nate(). N
(1.3.3) Accumulate Vi, to the overall perturbation at vertex q

Ug < Uq + V;, count(q) < count(q) + 1 (11)

where Uy is the overall predictor at vertex q. count() is an integer counter.
(2) loop over every vertex that is not in the sharp feature regions, p € V,r

U, < Up/count(p) (12)

Note that the accumulation in Equation (11) is similar to the treatment of B-spline pertur-
bation that is contributed by different control points. count() is used to ensure the partition
of unity. The calculation of V; can be easily conducted by using the x and y co-ordinate of
q in the local co-ordinate system to determine the z co-ordinate of the closest point on the
local quadric patch: 2:a1x§ + axxyyq + a3 yg + asxy + asys + as. Consequently, (x4, g, 2)
represents the closest point of q in the local co-ordinate system. Finally, U, in Equation (12)
is used to update the position of each vertex that is not in the sharp feature regions in the
current iteration.

3. NUMERICAL EXPERIMENTS

The algorithms introduced in this paper were implemented in VC++ and tested on a HP PC with
a 2.8 GHz Intel Celeron CPU. Routine median_filter () takes O (m?) of time complexity, where
m is an average number of two-ring triangles. The time complexity of routine local_coordinate
() is O(m2), where m is an average number of two-ring vertices. Routine least_squares_fitting()
is the most time-consuming module in this paper, because the Cholesky decomposition is still
expensive. Its worse-case time complexity is O (r*m»), where r = 6. Routine second_order_filter
() is very fast at the order of O(m5). In addition, triangle neighbour relationship needs to be
set up as a pre-computation for our scheme in this paper, and it takes O(n log n) as a one-time
cost, where n = max(N, Ny), Ny and N, are the numbers of triangles and vertices in a mesh
model, respectively. Overall, the time complexity of our scheme is O (nr?mNs), where Ny is
the number of smoothing steps.

In order to evaluate the accuracy of different smoothing algorithms quantitatively, two error
metrics in surface normal and vertex distance were used [20]. Another geometric distance error
metric [52] could be used. The subtle difference between the two distance metrics is that the
former is a measure of distances only from the surface vertices of the smoothed mesh to the
base mesh, while the latter also takes account of the distances from the surface vertices of
the base mesh to the smoothed mesh. Our experiments show that these two distance metrics
are almost interchangeable in terms of evaluating the smoothing accuracy. Thus, in this paper
we report the experiment results only in the first two error metrics.
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Figure 7. Smoothing of a noised cone: (a) noised; (b) smoothing result of our scheme
(smoothed-100 steps); and (c) convergence test.

In this paper, surface noises are always added in the direction of surface normal at each
vertex. It is reasonable to consider synthetic objects as an underlying geometry. Different types
of synthetic noises are implemented, including noise generated by a random number generator,
Gaussian noise, Poisson noise, and uniformly distributed noise. Due to page limitation, we
report only the experimental results with noises produced by a random number generator,
which generates uniformly distributed noises.

Several existing algorithms are chosen for a comparison in terms of denoising convergence
and accuracy. We assign a short name for each algorithm: MN—mean filter [23]; MD—median
filter [23]; GS—QGaussian filter; BL—bilateral filter [39]; MC—mean-curvature flow [28]; VL—
volume-preserving Laplacian [17]; MQ—our scheme, median-quadratic filter. Most of the above
algorithms do not require an input from users for a parameter except the number of smoothing
steps. With the mean-curvature flow, we tried in choosing a best value of A for each data
model.

Figure 7(a) is a noised surface mesh obtained from a synthetic cone, and Figure 7(b) is
the smoothing result of our scheme. The convergence test of different algorithms is shown in
Figure 7(c), from which it can be seen that our scheme performs best, and then the median
filter in terms of surface normal error metric that is calculated between the synthetic model
and the smoothed surface mesh. Mean filter usually performs very closely with Gaussian filter
such that in some of testing examples, we omit one of them. Bilateral filter [39] normally runs
only five iterations so that the error metric at step 5 is what accuracy you can obtain from
that algorithm. Table I shows the CPU time for different algorithms.

The boundary of a non-closed surface mesh may cause an extra problem to the convergence
of smoothing algorithms. According to Figure 8(c), only our scheme shows a benign tendency
of convergence. Figures 7 and 8 contain only the result of surface normal error metric, and a
similar tendency was observed with the vertex distance error metric for these two models.

Since the target surface of mean-curvature flow is a minimal surface or a surface with
minimum surface area per volume, it would be very interesting to observe its smoothing
behaviour on a noised minimal surface. Surprisingly, the mean-curvature flow does not perform
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Figure 8. Smoothing of a noised monkey saddle: (a) noised; (b) smoothing result of our scheme
(smoothed-100 steps); and (c) convergence test.

best on a noised catenoid model among all testing algorithms, as shown in Figure 9(c). If you
look back at Figure 1(c), the same thing happens on a perfectly smooth sphere that is the
case of minimum surface area per volume. Therefore, even though the mean-curvature flow is
already a matured topic in mathematics and several theorems on regularity, global existence and
convergence of the flow have been proved, some noticeable approximation errors must exist in
the existing mean-curvature-flow smoothing algorithms. Our second-order predictor provides an
relatively better convergence on second-order continuous surfaces (Figures 8 and 9) discretized
by coarse meshes on which the first-order approximation error is significant. In the aspect of
computational efficiency, our scheme is quite expensive, as indicated in Table I.

Figure 10(a) is a complex synthetic model (5213 vertices and 10342 triangles) that contains
a jungle of quadric surfaces: several planes, one cone, one paraboloid, three half-spheres,
three cylinders and one torus. The noised model is shown in Figure 10(b), while Figures
10(c)—(f) show the smoothed model by using several testing algorithms, respectively. In terms of
accuracy, our scheme performs best, while the Gaussian filter and volume-preserving Laplacian
give the worst result, as indicated in Figures 10(g) and (h). Since both Gaussian and Laplacian
tend to smooth out the sharp edges as the smoothing step increases, the experimental results at
step 5 are presented in Figures 10(c)—(f) in favour of these two algorithms. Among all testing
algorithms, our scheme, MQ, is the most time-consuming, as in Table II.

Figure 11(a) is a shape obtained from a topology optimization, while Figure 11(b) shows the
smoothing result of our approach. In the cases of topology optimization, we do not know the
base shape precisely such that the calculation of error metrics is not available. However, the
comparison between two sub-figures in Figure 11 indicates the effectiveness of our approach
in smoothing out the roughness of the surface mesh.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1678-1698



1694 J. SHEN, B. MAXIM AND K. AKINGBEHIN

[—a—mMD —— 65 ——BL —— MC —— VL —8— maq |

0.4

0.35 - /
0.25 4 /
_ “

ic

L=}
a

Vertex Distance Error Metr

0.2 o~
0.15 \'\ / ,:-""’
0.1 1
0.05
0 T T ¥ T r
0 20 40 60 30 100 120

—
()
S

Iterations

(b

Figure 9. Smoothing of a noised catenoid: (a) noised; (b) smoothing result of our scheme
(smoothed-100 steps); and (c) convergence test.

Table II. Execution time of different smoothing algorithms with various data models.

# of
# of # of Smoothing smoothing Execution time

Model vertices triangles algorithms step per step (s)
Jungle of 5213 10434 MD 100 0.33
quadratic surfaces

GS 100 0.37

BL 5 0.6

VL 100 0.01

MN 100 0.06

MQ 100 0.69

Note: MN—mean filter; MD—median filter; GS—Gaussian filter; BL—bilateral filter; MC—mean-curvature
flow; VL—volume-preserving Laplacian; MQ—median-quadratic filter (our scheme).

In this paper, we focus on the convergence and accuracy in smoothing noised polygonal
mesh. We believe that these two aspects are crucial for finding an accurate algorithm in the
areas of reverse engineering and post-processing of topology optimization results. Although our
approach is compared favourably with the existing methods in the two aspects, we still have not
achieved a true convergence from a viewpoint of a minimum error. This may be partially due
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Figure 10. Surface smoothing of a jungle of quadratic surfaces: (a) original; (b) noised; (c) our
(5 steps); (d) Gaussian (5 steps); (e) volume-preserving Laplacian (5 steps); (f) bilateral (5 steps);
(g) surface normal error metric; and (h) vertex distance error metric.

to the intrinsic approximation nature of polygonal meshes and partially due to the imperfection
of our approach in handling the randomness and uncertainty of surface noises.

The main contribution of this paper is to propose a new framework for hybrid denoising
with a distinguished feature of applying different smoothing schemes, respectively, for feature
and non-feature regions, which can be identified by a feature-preserving pre-smoothing and
surface partitioning. The denoising accuracy and convergence of our scheme are better than all
the existing approaches.
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(a) ()

Figure 11. Smoothing of a surface mesh obtained from a topology optimization (nodes: 5516; Triangle
elements: 11030): (a) result of topology optimization; and (b) shape smoothed by our approach.

One major weakness of our approach is high computational cost in comparison with most of
other smoothing algorithms. Part of future research is to improve the computational efficiency
of our second-order predictor significantly and in the meantime to maintain the high smoothing
accuracy and feature-preserving property.

4. CONCLUSIONS

In summary, our algorithm is the best in terms of convergence and accuracy, compared to
existing smoothing algorithms. The basic idea of our scheme is to treat feature and non-feature
regions, respectively, with different smoothing algorithms that are best suited. One main benefit
of our approach is its consistently best performance across a wide range of different data
models in terms of denoising accuracy. However, due to extra costs in pre-smoothing and
surface partitioning, our scheme is quite computationally expensive.
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