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ABSTRACT

Work on the design, fabrication and testing of three broadband antennas is de-
scribed. The antenna types are, 1) high-gain constant beamwidth, 2) omnidirection-
al and 3) loaded conical helix.

During this reporting period the optimum F/D ratio for the reflector of the
high-gain constant beamwidth antenna has been determined. A decision has also
been made to have the reflector surface fabricated from fiberglass, and, therefore,
a plaster mold has been constructed. In the proposal, several techniques were sug-
gested by which the constant beamwidth characteristics of the antenna could be
achieved. During this reporting period the feasibility of using a wire grid structure
as a reflecting surface has been considered and is reported.

Four antenna types have been considered to meet the omnidirectional antenna
requirements. The antenna types considered were biconical, crossed plate,
spiraled trapezoid and a random length array. A thorough discussion of the biconi-
cal antenna is included, which demonstrates both its advantages and disadvantages.
Also a discussion of dipole vs. monopole configurations is included to aid in the
understanding of the problem associated with broadband omnidirectional antennas.

A theoretical solution for the size reduction of a helix antenna loaded with a
full core of magneto-dielectric material is discussed. The reduction formula in-
dicates the permittivity to be more important than the permeability of the loading
material. Experimental far-field patterns of the loaded helix antenna are shown
which partially support the analysis.
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FOREWORD

This report was prepared by the University of Michigan Radiation Laboratory
of the Department of Electrical Engineering under United States Army Electronics
Command Contract No. DA 28-043 AMC-01263(E). The contract was initiated under
United States Army Project No. 5A0-21101-A902-01-08, '"Broadband Antenna Tech-
niques Study''. The work was administered under the direction of the Electronics
Warfare Division, Advanced Techniques Branch at Fort Monmouth, New Jersey.
Mr. Anthony DiGiacomo is the Project Manager and Mr. George Haber is the
Contract Monitor.

The material reported herein represents the results of the preliminary inves-
tigation into techniques applicable to the design and development of broadband anten-

nas.

The authors wish to acknowledge the contributions of Professor C. T. Tai and
E. Andrade for their work on the omnidirectional antenna.
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I
INTRODUCTION

This contract is divided into three tasks; 1) broadband constant beamwidth
high-gain antenna, 2) omnidirectional broadband antenna and 3) broadband loaded
conical helix.

Under Task 1, a high-gain antenna is to be developed that covers the frequency
range 1 - 10 GHz. The beamwidth is to vary less than 2:1 such that a relatively
constant gain of 20 db above an isotropic source is achieved with a VSWR less than
3:1 with respect to a 50 ohm load. The investigation is to include a theoretical and
experimental study of broadband, constant beamwidth, high-gain antennas. Elec-
tronic switching, electromechanical or mechanical motion to effect the constant
beamwidth characteristics of the antenna are not to be considered. As a result, the
constant beamwidth characteristics must be achieved employing antenna beam shap-
ing techniques.

Under Task 2, a broadband omnidirectional antenna of the monopole or dipole
configuration is to be developed which will be operational over the frequency range
of 100 MHz to 1 GHz having a VSWR of less than 3:1 with respect to a 50 ohm load.
It is desired that the configuration be as thin as possible and its overall length com-
parable to that of a half-wave dipole at the low end of the frequency band (100 MHz).
The maximum diameter of the configuration is to be less than 20 inches.

The objective of Task 3 is to design a circularly polarized antenna covering
the frequencies of 50 MHz to 1.1 GHz, with a 2:1 reduction in size, and a maximum
weight of 20 Ibs. The antenna is to be a loaded conical helix. Various loading tech-
niques are to be investigated including ferrites and dielectrics. The conical sections
of the antenna may be truncated with the possibility that one may be set within the
other. Cross-over networks which cause different sections to operate at different
frequencies may be required.

Preliminary work on these tasks was reported in the first quarterly report
(Ferris et al, 1965).




THE UNIVERSITY OF MICHIGAN
7260-2-Q

II
BROADBAND CONSTANT BEAMWIDTH HIGH-GAIN ANTENNA

During this portion of the study, a broadband high-gain antenna is to be de-
signed and developed. The gain of the antenna is to be approximately 20 db and
must be constant over a bandwidth of 10:1 (1 - 10 GHz) with a beamwidth variation of
less than 2:1 across the frequency band. Since a beamwidth variation of less than
2:1 is allowed, it implies that the gain of the antenna may vary approximately 6 db
and still be within specifications. The study is to include both theoretical and ex-
perimental work. The theoretical work is to provide information needed in the de-
sign and fabrication of antennas required to meet the specifications. The experi-
mental work is required to verify the theoretical analysis and to demonstrate that
the design criterias are adequate for developing a broadband constant beamwidth
high-gain antenna.

2.1 Theoretical Study

Several techniques have been suggested that may be employed to achieve a
broadband constant beamwidth high-gain antenna. Three techniques are the use of a
reflector with 1) absorber, 2) holes and 3) a radial wire grid structure. Each of
these techniques has been considered further, and to obtain a better understanding
of a broadband reflecting surface, the use of a uniformly spaced wire grid structure
is now being studied. The justification for using this type of structure, is the ease
with which a theoretical analysis may be made. It is anticipated that from this
theoretical analysis and an experimental study, a better understanding of broadband
high-gain antenna techniques will be obtained.

As evidence by the present study, a desirable feature of a broadband high-
gain antenna is the feasibility of having a relatively constant beamwidth over a wide
frequency range. The present study is concerned with limiting the beamwidth vari-
ation of the parabolic antenna to less than 2:1 for a frequency range of 10:1. The
use of an equally spaced wire grid reflecting surface is presently being investigated
to effect such a design. Early work in this program was confined to a pillbox,
therefore, the following theoretical analysis will be concerned with a pillbox
structure, which may be expanded to a two-dimensional parabolic reflector later.

The equation of the parabolic curve used for the back wall may be expressed
in polar coordinates as:

—2p (1)

I‘=1+cose
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where r is the distance from the origin to the curve, and 6 is the angle from the
y axis to r. Figures 1 and 2 depict the curve, coordinate system, and the position
of the feed in the antenna. It will be noted that the power from the feed will exper-
ience an attenuation proportional to 1 / r as it propagates toward the reflecting sur-
face, (since the field radiates with a cylindrical wavefront in the pillbox).

To determine the reflector distribution, it is necessary to determine the
space attenuation effects within the pillbox. Since the point of minimum loss occurs
at 6=0°, which corresponds to r =p, the loss at r = rn is expressed as:

r 2

- —_——
10 log " 10 log 1+ cos 0

(2)

This result appears graphically in Fig. 3 for 6 < 1200. From Fig. 1 and 2, it can
be seen that

6=(p+B) (3)
B has been chosen to be 62 1/ 2° to optimize the pillbox aperture distribution. The

space attenuation effects may now be added directly to the antenna feed pattern to
obtain the illumination over the reflector.

The effective aperture of the pillbox as a function of 6 may now be found.
Recall from equation (1) that r=2p /(1 + cos 6). By inspection of Fig. 1 and 2,

2 p sin 0 ()
1+ cos 6

X=r sin 6=
In this case, p =13 inches so that

. - 26sin(f+62 1/2°)
1+ cos (f_+ 62 1/2°)

(5)

Let ¢1 be the angle at which the first -10 db ray of the primary feed intercepts the
reflector and let ¢2 be the second -10 db ray that intercepts the reflector. The
effective aperture size is then given by:

L=x2--x1 (6)
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Finally, the 3 db beamwidths of the pillbox may be approximated by:

_K57°)

L (7)

Y

where K is a function of the aperture distribution (e.g. K= 1.2 for a cosine distri-
bution), and A is the wavelength. The results are tabulated in section 1 of Table I.
Notice that the results are in good agreement with the experimental data, differing
only by a factor of 0.64. In each case, the beamwidth variation is very nearly 3:1
over a 10:1 frequency band.

In the above discussion, it was assumed that the pattern of the primary feed
was available, and the design was centered about this information. An alternate
approach is to assume the pattern of the primary feed is not available and must be
determined analytically such that the following discussion is applicable.

For this case, the pillbox feeds will be limited to H-plane sectorial horns such
that the phase variation across the aperture is <1/ 16; the amplitude taper may be
expressed as A cos f), where @ is the angle from a normal to the plane of the aper-
ture as shown in Fig. 2. Allowing £ to be the length of the primary feed aperture,
the far field amplitude distribution is given by:

_rf cosu
Ep=73 2 2 (8)
7|l _u
[:2]
where
J
u= %" sin @
. s . cos u
Neglecting multiplicative constants, E_ = A —— (9)

Figure 2 describes the orientation of the sectorial feed in the pillbox. If (3 is the
angle between the y axis and the line normal to the feed aperture, the variable 1}
in equations (8) and (9) may be expressed in terms of the new variable 6 as:

p=(6-B) (10)
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FIG.1: PARABOLIC REFLECTOR COORDINATE SYSTEM
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FIG.2: ANTENNA FEED POSITION
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TABLE I: Feed And Antenna Beamwidths

Frequency Feed 10db BW Illum. 10db BW Eff. Ap. 3db Ant. BW Exper. BW
(GHz) (Degrees) (Degrees) (Inches) (Degrees) (Degrees)

Section I Solid Reflector

1 102 100 31 26 16

2.5 86 82.5 22.5 14 9

5.3 45 44 13 12 7
10.0 26 29 9 9 9.5

Section I Wire Grid; 0.03 < a/A < 0.30, 2= 50

1 102 100 31 26 -
2.5 86 82.5 22.5 14 -
5.3 45 39 11 14 -
10.0 26 17.5 5 16 -

Section ITI Wire Grid; 0.05 < a/x < 0. 50, §= 50

1 102 100 31 26 --
2.5 86 78 20 16 -
5.3 45 26.5 8 19 --
10.0 26 20 5 16 —
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where u=7r—l' sin (6 - B) (11)

This is an expression of the magnitude of the electric vector in the Fraunhofer
field of the sectorial feed, expressed in the coordinate system established within the
pillbox.

The power distribution along the parabolic reflecting surface will vary as
1/r, (recall that the antenna is essentially only two-dimensional, restricting the
wavefront in the z direction). Since r =2p /(1 + cos 6), the magnitude of the

electric field at the reflector surface ER may be given as:

1/2

+
A 1+ cos O cos u . (12)

E
R 2 p e
2

Since the rays reflected from the back wall of the pillbox will be collimated after
reflection, no attenuation of the wavefront will occur. The amplitude distribution at
the aperture of the pillbox as a function of x will then be the same as the amplitude
distribution at the back wall as a function of the same variable. The phase distri-
bution across the pillbox aperture will be constant because of the geometrical
properties of the parabolic surface of the back wall. Using the relations:

l+cos9 cosu

- a=TL i (o-
ER(G)—A b [:] Y sin (6 - B)
=ngsine - . - 2p
and T+ o0os 0° fromx=rsinf, r T oos (13)

one may express the amplitude of the electric field across the aperture as a

function of x, EA (x) =f (x). (14)
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The far field pattern of the pillbox may then be expressed as:
|

E @)= BfEA (x') e 0¥ gy (15)
—|

where x' is the distance x along the aperture normalized to 1, and

u' =7;—L sin o (16)

L being the length of the pillbox aperture and « the angle from a normal to the
plane of the aperture at the aperture center.

Thus far it has been assumed that: 1) the phase variation across the sectorial
feed horn is < A/ 16, and that the amplitude taper is a simple cosine function, 2) dif-
fraction effects at the edges of the feed may be neglected, 3) the reflecting surface
may be considered to be in the far field of the feed, 4)'spill-over", i.e. energy
radiated by the feed not intercepted by the reflector may be neglected, 5) diffraction
effects at the edges of the pillbox aperture may be neglected, 6) there are no stray
reflections within the pillbox, and 7) the reflecting surface is smooth, i.e. perfect
reflecting parabolic curve.

2.2 Constant Beamwidth Structure

To further restrict the beamwidth variations the use of a modified reflecting
surface is planned. Suppose now that the solid reflector is replaced by a series of
equally spaced wires which will behave as a frequency sensitive reflector. However,
in order that there will be adequate reflected power at the higher frequencies, a
solid section is required in the center of the wire grid structure. The portion of
the power transmitted through the grid can be found from the nomograph given by
Mumford (1961). Assume that the power not transmitted is reflected. Figure (4) and
(5) are plots of the attenuation of the reflected power in db for two different wire
spacings. This new attenuation factor may now be superimposed on the original
feed patterns from which a new reflector distribution and the effective pillbox
aperture dimension may be obtained. Sections II and III of Table I tabulate the re-
sults. As can be seen from the analytical results, using an equally spaced wire
grid reflecting surface, beamwidth variations of 2:1 over a 10:1 frequency band may
be obtained. Experimental verification of these results with various spacings is at
present being undertaken.

Thus far, all efforts (experimental and analytical) have been concerned with
the pillbox antenna. However, the final task is the construction of a high-gain,
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constant beamwidth parabolic reflector. The pillbox results will be extended to this
antenna in the near future.

2.3 Experimental Study

In the previous Interim Report, it was noted that the feasibility of using the
broadband ridged horn had been demonstrated and it was next necessary to deter-
mine the F/D ratio of the reflector. To determine the optimum F/D ratio, a pillbox
structure was employed to simulate energy radiating from the central portion of the
full reflector. The principle design goal was to optimize the F/D ratio that would
minimize the aperture size of the primary feed and simultaneously yield satisfactory
secondary patterns. It is logical that as the F/D ratio is increased, the aperture
size of the primary feed must also be increased to ensure that the beamwidths of the
primary feed properly illuminates the reflector as the frequency is decreased. As
a result of both an analytical and experimental investigation, the F /D ratio was
chosen to be 0.25. After the F/ D ratio had been selected, the construction of a full
scale 2-dimensional parabolic reflector was started. The reflector will be asym-
metrically fed with the broadband ridged horn. Initially, it was planned that the full
scale reflector could be fabricated from a metallic alluminum sheet that had been
spun to the desired contour. However, it was later concluded a less expensive and
more desirable reflector could be fabricated from fiberglas.

2.4 Casting Materials

A reflector mold has been constructed and covered with dental stone. Several
casting materials were considered before the choice of dental stone was made. Be-
low is a brief discussion of the materials that were considered.

All materials considered were forms of plaster. By different processes of
reduction of gypsum widely varied physical properties of the refined material are
obtained. Mineral gypsum is a hydrated calcium sulfate (CaSO4. 2H20) in which the
water of crystallization is weakly held. The powdered material which is heated in
the reduction processes may give either of two products depending upon the temper-
ature used.

(Heat, 350° F)
2CaS0,.2H,0 ——> 2Cas0,. 1/2H20+3H20T (17)

Half-hydrate

or with more heat

11
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(Heat, 400° F)

CaSO4. 2H20 _—> CaSO4+2H2OT (18)

Anhydrite

The half-hydrate is generally called plaster of Paris or gypsum plaster. This is
used in dentistry in two forms, model 1 (slow setting, 20 minutes) and model 2 (fast
setting, 4-5 minutes). Different setting times are obtained by the temperature used
in the reduction process and the size of the powdered particles.

Setting process is the recombination with water to form the hydrated calcium
sulfate. Since the setting process requires water and is obtained through reaction
with water, plaster is a true hydraulic cement. The solubility of the half-hydrate is
about 9 grams per liter at room temperature. The dihydrate has a solubility of 2
grams per liter. When the half hydrate becomes a dihydrate a super saturated solu-
tion is formed with the dihydrate precipitating in crystalline form. This precipita-
tion in crystalline form is the process that gives strength to the plaster.

Dental stones (both regular and improved) are a form of the anhydrite but due
to rapid heating in the reduction process the CaSOy retains the crystalline structure
of CaS0Oy4.1 / 2H,0 giving a more soluble anhydrite. The reaction with water is
similar, but each particle reacts somewhat slower forming crystals that are larger
and stronger.

Dental stone is many times more durable than dental plaster being harder and
less prone to crack. It also has the advantage of less expansion in the setting pro-
cess (less than 0.5 percent) and lower heat of formation. Regular dental stone has
a compressive strength of 8,000 lbs per square inch. Improved dental stone has a
compressive strength of 12, 000 lbs per square inch and a Rockwell C hardness of
90. No figures were available on tensile strength but it was felt that the improved
dental stone would also have a higher tensile strength.

Other superior properties of improved dental stone include its low expansion
(less than 0. 08 percent) and a greater surface hardness. In addition it appears that
the improved dental stone would have greater strength and therefore less likelihood
of cracking when the form is moved. For these reasons, it was selected as the
casting material.

Setting time of the plasters considered above may be accelerated by the use of

potassium sulfate (K_SO 4). The process is not clearly understood, but a 2 percent
solution of K280 4 wi%l cause almost immediate setting.

12
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Retarding the setting time is accomplished by using sodium tetraborate
(NazB 407. 10H20). A 2 percent solution may retard the setting up to 4 hours.

The reflector was made by using plywood forms sawed to the rough dimen-
sions of the parabolic reflector. These sections were attached to a cylindrical
sector of a 4" x 4" support at the vertex. The base of the mold was formed by
attaching the plywood forms to a half inch plywood sheet. To provide support for
the first layer of plaster the plywood forms were covered with ordinary window
screen. A revolving scraper was constructed by using a metal blade machined to
the parabolic form. This scraper was supported by a collar at the vertex and a cir-
cular track at the base (Fig. 6-7). In this way, the scraper was free to rotate about
the principal axis of the parabolid with approximately 1/4'" clearance over the ply-
wood and screen. Successive layers of dental plaster were applied until the scraper
would just touch the surface giving the desired contour. The resulting mold is ex-
tremely durable due to the greater tensile and compressive strength of improved
dental stone, and contains a smooth surface, accurate to A/ 16 at the highest fre-
quency of interest ( 10GHz).

The mold is now being coated with fiberglas by a local manufacturer of fiber-
glas boats. The fiberglas is sprayed on the mold with a gun in a similar manner
that undercoating is applied to automobiles. This process is less expensive and
faster than manually applying the resin and fiberglas cloth. It is anticipated that the
hard dental stone mold will be durable enough to obtain several reflectors of vary-
ing thickness if necessary. These will be used to optimize the broadband reflector
surface, the grid structure, and in experimenting with holes in the reflector sur-
face.

13
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FRONT VIEW OF REFLECTOR MOLD AND SCRAPER
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III
OMNIDIRECTIONAL BROADBAND ANTENNA

The design goals for the omnidirectional antenna are; 1) 10:1 frequency range
(0.1 -1.0GHz), 2)1.5db gain with respect to an isotropic source for the above
frequency range, 3) VSWR of less than 3:1 for the above frequency range, and 4) the
maximum diameter of the antenna is not to exceed 20 inches. Broadband vertical
radiators that have been employed in the past to achieve omnidirectional coverage
are sleeve dipoles, conical dipoles and a crossed plate monopole. However, the
sleeve and conical dipole typically have a 3:1 frequency range limit. Lamberty
(1958) demonstrated the crossed plate to be operational over a 20:1 frequency range.
Several other antenna configurations have been considered during this study which
are: 1) biconical, 2) crossed plate, 3) spiraled trapezoid, and 4) array of vertical
monopoles. Before discussing these, the merits of a dipole configuration versus a
monopole configuration will be considered.

3.1 Dipole vs. Monopole

Dipoles have been developed which are capable of operating satisfactorily over
a 3:1 frequency range, e.g. sleeve dipoles and biconicals. However, the use of
these antennas for wider bandwidths, e.g. 10:1 have not been highly successful be-
cause of resonant current effects that tend to distort the radiation patterns. Before
discussing dipoles, further consideration will be given to the techniques for feeding
them.

3.1.1 Dipoles

There are basically two techniques for feeding the dipole configuration which
are: 1) center fed, and 2) axial fed.

When employing the center fed system, it is desirable for the input line to be
perpendicular to the principal plane of propagation as shown in Fig. 8. In the event
the lead-in is parallel to the principal plane of the E field, currents will be induced
on it and radiated to distort the radiation pattern about the axis of the dipole. A
second undesirable feature of this configuration is the problem associated with
mounting a vertically polarized dipole (while maintaining the lead-in horizontal) since
it would be awkward and structurally weak.

An additional limitation imposed on the center fed system is the need for the
antenna to be fed by a balanced line. Since, for the purposes of the present contract,
the antenna is to be operational over a 10:1 frequency band, a broadband balun would
be required. Ten to one baluns have been developed and reported by Duncan, et al

16
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(1961) and Gans, et al (1965). Both of these baluns taper from an unbalanced sys-
tem (coax or stripline) to a balanced system over an appreciable part of a wave-
length such that they must be approximately A/2 long at the lowest frequency of in-
terest. In general, these units are not rugged and additional structural members
are required.

To overcome some of the problems associated with center fed dipoles, de-
signers often turn to the axially fed dipole (Fig. 9). This configuration eliminates
the need for a balun and also simplifies the mounting problem for vertically polar-
ized elements. Since the lead-in is fed through one of the elements of the dipole,
provisions must be made to minimize currents from flowing on the lead-in. RF
chokes are generally employed to minimize these currents, however, they are
effective over narrow frequency bands (less than 10 percent) and therefore, are not
recommended for wide band applications. To overcome the problems associated
with dipoles, monopole antennas are generally recommended. However, one must
be careful as to how he defines a monopole as will be shown in the next section.

3.1.2 Monopoles

A prime factor which tends to be favorable for the monopole is that it is an un-
balanced antenna. The monopole in its simplest sense consists of one half of a di-
pole and an infinite conducting ground plane. The infinite conducting ground plane
has in induced surface charge which produces a field that is identical to that which
would be produced in a plane located at the center of the dipole, and normal to its
axis such that the other half of the dipole is imaged in the ground plane. Since in
practice it is not feasible to employ an infinite ground plane, finite ground planes are
substituted. It has been shown (Lazarus, 1947) that if the finite ground plane is
several wavelengths in diameter, the far field radiation patterns will be similar to
those of a monopole above an infinite ground plane. As the ground plane size is re-
duced such that its dimensions approach the free space wavelength of the frequency
being radiated, the radiation patterns become distorted in the plane containing the
axis of the monopole (elevation plane). This distortion of the pattern is the result
of the finite ground plane surface charges being altered. These surface charge
alterations are caused by the currents reflected from the edges of the finite ground
plane. Therefore, when the ground plane is large (e.g. 5 or more) the radiation
pattern is omnidirectional with its maximum along the surface of the ground plane.
As the ground plane size is reduced until it becomes less than a wavelength in dia-
meter, the pattern remains omnidirectional with its maximum intensity gradually
tilting upwards to some arbitrary angle above the ground plane (Jasik, 1961). In
addition to the radiation characteristics being sensitive to ground plane size, the

18
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impedance characteristics are also sensitive as noted by (King, 1956). Therefore,
the designer cannot divorce the ground plane from the antenna but must consider it
a part of the antenna system.

Returning now to the requirements of the present program. Since the maxi-
mum diameter of the antenna is not to exceed 20 inches, the ground plane must not
exceed 20 inches because it must be considered as a part of the antenna system. The
frequency range of the antenna is to be from 0.1 - 1.0 GHz such that the free space
wavelength varies from 120 - 12 inches. Because the ground plane size is to be
fixed at 20 inches maximum, its electrical size will vary from 0.17A-1.7A If we
consider the ground plane to be flat and therefore electrically small, the electrical
characteristics of the antenna will be frequency sensitive, as noted above regard-
less of the electrical characteristics of the monopole element. Therefore, if one
desires to have a broadband monopole antenna system, it is necessary for both the
monopole and ground plane to be individually broadband elements. We must now
consider the techniques applicable to achieve a broadband ground plane to satisfy the
contractual requirements. One method for achieving a broadband ground plane is to
employ a conical surface rather than a flat surface. A ground plane having a con-
ical surface is analogous to using one half of a biconical antenna which is regarded
as a broadband antenna configuration. However, care must be exercised in choos-
ing the conical surface. Further discussion on the conical antenna and its broad-
band characteristics is therefore included in the séection on broadband elements.

3.2 Broadband Antenna Elements

This section discusses several broadband element configurations. These
elements may be utilized either by combining two similar elements to form a broad-
band dipole or by use of a single element and a suitable ground plane to form a
broadband monopole. The four antenna types considered during this reporting period
were the conical, crossed plate, spiraled trapezoid, and a random length array.

3.2.1 Conical Antenna

The conical antenna may be completely described in terms of angles, a general
requirement of many broadband antennas. This configuration has also been shown
experimentally (Brown and Woodward, Jr., 1952) to be broadbanded for a 5:1 fre-
quency band.

To be truly broadband, an antenna must possess both acceptable VSWR and
pattern characteristics over the frequency range of interest. Antennas may have
acceptable impedance characteristics but unacceptable pattern characteristics.
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Therefore in the development of a broadband antenna one must determine both the
impedance and pattern requirements that will best solve the problem. For example,
a breakup of the biconical antenna pattern into grating lobes may not be objection-
able if the application requires a main beam along the horizon.

The biconical antenna basically provides a smooth transition between guided
and free space waves. A criteria for a broadband antenna is for a reflectionless or
near reflectionless transition. Biconical antennas of infinite length and a total in-
cluded cone angle of 60° (Fig. 10) or greater will set up only the TEM mode be-
tween the conical surfaces. If the cone angle is less than 60° the coaxial TEM wave
and biconical TEM wave will not be well matched, because of the poor transition
from the coaxial line to the antenna. Practical applications of the biconical require
that a finite cone length be employed. For the finite case the TEM wave is ter-
minated at the base end of the cone where the transition to free space is accom-
plished by establishment of a TM wave. This TM wave has two components, an
outwardly traveling wave into free space and an inwardly traveling wave toward the
apex of the cones. The inward traveling TM wave is shown (Schelkunoff, 1943) to
approach zero as the apexes of the cones are approached. Since the dominate field
near the apexes is a TEM wave, the velocity of propagation is independent of fre-
quency, and the characteristic impedance for a long finite biconical is essentially
frequency independent. Therefore, the input impedance of the antenna is primarily
controlled by the transmitted and reflected TEM waves which further determine the
input VSWR. The magnitude of the reflected TEM wave is determined by the match-
ing of the TEM field by the TM field at the biconical aperture. These two fields can
be well matched only if the radius of the base of the cone is electrically large so
that the l/r2 and 1/ r3 terms of the TM wave are small. Further the cone angle
must be large such that the 1/sin 8 component of the TEM wave is approximately
equal to the sin 6 component of the TM wave. For cones having a base radius less
than A/4, the TM field in the transition region introduces a large reactive field which
is significant at the apexes of the cones. This large reactive field disrupts the input
impedance by introducing a large reactive component.

Consideration must now be given to pattern performance. The patterns of
the biconical depends upon the ratio of the reflected to the transmitted current in
the cone region, i.e. the phase and amplitude distribution of the total current. The
total current includes both the TEM and TM waves. Although the TM induced cur-
rents disappear at the cone apex and do not contribute appreciably to the impedance,
they are of sufficient amplitude at the base to contribute significantly to the pattern.
Therefore, patterns cannot be computed from the behavior of the TEM wave alone.
Although the impedance may be essentially unaffected as shown above, the pattern
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may exhibit a lobing structure due to the discontinuity at the cone base.

For broadband applications the biconical is limited for two reasons, 1) due to
impedance characteristics at the lower frequencies, and 2) due to the pattern char-
acteristics at the higher frequencies. At the lower frequency where the antenna be-
comes less than 1 /4 the impedance has a large mismatch due to the large reactive
component as a result of the TM wave at the apex. As the frequency is increased
the conical sections become several /2 long and a lobing of the pattern results
(Brown and Woodward, 1952).

For the bandwidth and application of this project, it appears that the biconical
would provide satisfactory electrical performance. However, other antennas are
being investigated as to their desirability since the biconical antenna is large and
cumbersome for mobile applications. Another antenna similar in size to the bicon-
ical is the crossed plate antenna discussed in the next section.

3.2.2 Crossed Plate Antenna

Elevation patterns for the crossed plate monopole appear similar to experi-
mental patterns for a conical monopole (Brown and Woodward, Jr.). Early patterns
for the azimuth plane (omni-directional) were obtained with a pair of crossed plates
mounted over a square ground plane. These patterns showed poor omni-directivity.
Diffraction effects at the corners and sides of the square ground plane are believed
to have caused the lack of uniformity. The effect of the square ground plane may be
analyzed by replacing the corners and sides of the ground plane with an array of
point sources as shown in Fig. 11. The sources at the four corners produce a
cloverleaf pattern which would be superimposed on the element pattern. In addi-
tion, the sources at the edges would produce a second cloverleaf pattern displaced
450 from that generated at the corners, and of a greater magnitude. This second
cloverleaf pattern must also be superimposed on the element pattern. Since these
two effects were observed on the data, it is felt the poor omni-directivity was
caused by the square ground plane. Improved omni-directional patterns could be
obtained through the use of a circular ground plane.

Data for the VSWR of the crossed plate presented in the previous quarterly
exhibited several frequencies having high VSWR's. It is to be recalled that these
plates were square with no tapering at the base. Preliminary data with one plate in
a monopole configuration shows considerable improvement in VSWR by tapering the
antenna edge at the base to form a conical transmission line. The maximum VSWR
for this configuration was 2:1 across a 10:1 frequency band.
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The crossed plate antenna exhibits the same physical limitation as the bicon-
ical since the elements are large and bulky. One of the main objectives during this
reporting period has been to obtain a smaller physical structure, two of which will
be discussed below.

3.2.3 Spiraled Trapezoid

One of the well established broadband antennas is the log periodic. However,
in its normal configuration it is not suitable as an omnidirectional antenna because
it produces an end fire radiation pattern. A study has been conducted to modify the
log periodic such that an omnidirectional pattern could be obtained. Initially, a
sheet of metal was cut into a trapezoid, i.e. a linear taper. Acceptable impedance
characteristics (less than 3:1) were observed for a 10:1 frequency range. The trap-
ezoid was then rolled into a spiral (Fig. 12). Several spiral configurations were
tried before acceptable VSWR data was obtained. It is to be noted that much of this
work was of the cut and try variety such that accurate physical dimensions were
not obtained.

Patterns of the spiraled trapezoid were omnidirectional over a 3:1 band (in
the low frequency range) and as the frequency was increased to increase the band-
width the omnidirectional pattern degenerated to a cardioid that rotated with the fre-
quency. Since this data did not appear promising for the present program require-
ments, further efforts to optimize the physical parameters of the antenna have not
been tried.

3.2.4 Random Length Array

A second antenna developed from the log periodic structure is a random
array of elements. Elements were cut to the proper length required for a log
periodic antenna and randomly placed on a thin circular disk (Fig. 13). The VSWR
of this configuration was found to be less than 3:1 over a 10:1 frequency band. Early
pattern data for the antenna demonstrates that it is omnidirectional. The optimum
design for the antenna has not been formalized as yet. Since the antenna appears to
possess electrical characteristics that are acceptable to the present program, the
study is being continued. During the continuation, efforts are being directed to-
wards optimizing the antenna lengths and number of elements required to achieve a
10:1 frequency bandwidth. Because the antenna lengths and number have not been
optimized physical dimensions have not been presented in this report. It is felt that
before presenting data for the antenna, better understanding of its operation is re-
quired. Presently the experimental data is being evaluated such that future design
parameters may be established.

23




THE UNIVERSITY OF MICHIGAN
7260-2-Q

FIG.12: SPIRALED TRAPE ZOID ANTENNA
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FIG.13: RANDOM LENGTH ARRAY

25




above a large flat ground plane.

THE UNIVERSITY OF MICHIGAN

7260-2-Q

Data collected to date has been obtained with the basic element mounted

It is felt that to maintain the broadband character-

istics with a small ground plane, it will be necessary to conduct additional tests
employing a conical ground plane as noted in 3.1 above.

26




THE UNIVERSITY OF MICHIGAN
7260-2-Q

v
LOADED CONICAL HELIX ANTENNA
The progress of the loaded conical helix project has been split into two parts;
theoretical and experimental. The theoretical part is summarized in the following

sections (4.1 — 4.3) where a theoretical solution for full core loading is given
(Hong, 1965).

4.1 Propagation Constant

For analysis of a closely wound helix, it is convenient to choose the sheath
helix as a mathematical model. The sheath helix is a ficticious model of an actual
helix and is pictured in Fig. 14.

The sheath surface is treated as an anisotropic conducting sheath in the sense
that current is constrained to flow only in helical paths. The sheath helix supports
two sets of modes, TE and TM. The axial electric and magnetic fields of each
mode may be represented as:

i
. I (vr) . . r<a
H1,e=A1,e n e e jBz - jnb (19)
z n Kn('y r) r>a
and
i
, I (vr) . .
EIZ, e=BL, 12 ( er) o jBz - jnb r<a (20)
nY r>a
with

and ko=w\|uoeo .
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I, and Kn are modified Bessel functions of order n, and the superscripts i and e
refer to inside and outside, respectively. The boundary conditions at r =a are:
the component of the magnetic field parallel to helical paths is continuous, the com-
ponent of the electric field normal to helical paths is continuous, and the parallel
component of the electric fields are zero. Determining the electric and magnetic
fields with Eqs. (19) and (20), and then using these boundary conditions at r =a,
one finds that in order to have a non-trivial solution, the following determinantal
equation must be satisfied:

e 2 2, e 2 2 , (€ i
Kn('y a) k a (ya)” cot 'y . Kn(v a) 1 In(v a)

e - e 2 2 e ) M s i (1)
K'(y a) [('y a) -npacot :[/] K (ya) r I (ya)
n n n
k2 a.2 ('yea,)2 cot 2 Y 'ye 1’ (‘yia)
- 2 2" i ¢ —
[('yea) -nfBa cottp] v r In ('yla)
with
e.3 i2
A=) | (ya) -nfacoty 22)

(71)3 (v a )z-nBa coty

For slow waves radial propagation constants are almost equal to 3, and we can
approximate ~yl=y€=4,  Using this relationship, the approximate solution of
Eq. (21) for n =0 can be easily obtained by the similar method as that used for the
unloaded helix (Bevensee, 1964). We obtain the relationship between S and kO:

sin ¥ (23)

29




THE UNIVERSITY OF MICHIGAN
7260-2-Q

4.2 Size Reduction for Bifilar Helices

Dyson (1965) has shown that the propagation constant obtained from the sheath
model can be applied for analysis of bifilar helix. He has also shown that for a
conical helix with a narrow cone angle (26,), analysis of a cylindrical helix can be
used with a slight modification. For a conical helix, Eq. (24) is modified as

1+

koa “r
Ba = Tte sin ¥ cos 60. (24)

r

From Eq. (23), we obtain the Brillouin diagram for a bifilar helix. (see Fig. 15).
As frequency changes, the propagation constant S varies along the line:

L+

k a 7]
o - L iny
Ba 1+er S )

k a
When this line meets with the line given by c—o'&} =1- éi)L: , the phase of the radia-
ted fields from each element of the helical antenna is lined up such that a backfire
radiation occurs (Jones and Mittra, 1965). Figure 15 shows that as the frequency in-
creases further, the radiation pattern changes from backfire to broadside, then to
endfire.

The required size of a cylindrical bifilar helix for backfire radiation can be
obtained from the solution of the following two equations:

121
koa ur
Ba = T+ e sin ¢ (25)
r
K02 - 182
cot ¥ cot Y *
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The solution of Eq. (25) is

cos

(26)

sin ¢

a (with arbitrary €. and ur)

(27)

a (with €." ur=1 )

In a similar manner, the active region of a conical bifilar helix for backfire
radiation can be predicted from the following formula:

cos Y . cosG0

(28)

siny . cos 60

with 260 = cone angle.

In Eq. (28) 2a is the diameter of the cross section of the cone in the region
where helical elements become active and radiates. The linear size reduction
factor for a conical helix is
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a(arbitrary € - and u r)

r

= (29)

a(e =u =1)
r r 1+ 1

7

r
1+\| ———siny - cos
l+er v 90

4.3 Discussion

We have shown in the previous section that the size of the bifilar helical
antennas can be reduced by loading the inside of helices with magneto-dielectric
material. The linear size reduction factors are given by Eq. (27) for a cylindrical
helix, and by Eq. (29) for a conical helix. For example, when a cylindrical bifilar
helix with the pitch angle ¥ =6.5° is loaded with ferrite of €= 3.77 and Ky = 2.2,
the ratio of two sizes for loaded and unloaded antennas is 1:1.65. This numerical
value agrees with the experimental data obtained by Rassweiler of the Radiation
Laboratory (private communication).

Another important conclusion from the present analysis is the following:
when the size reduction factor is specified, we can choose any materials with arbi-
trary combination of € r and “r’ as long as

l+i- / l+er
Hr

remains constant. This is a very useful aspect. As it is well known, electric
properties of magneto-dielectric material changes as frequency varies in wide
range. For example, different materials have different frequency ranges where
energy loss due to material loaded inside of helices is minimum. When the weight
of the antenna loaded with certain material is too heavy for mobile or airborne use,
it may be replaced by another material whose weight per volume is less, but whose
reduction factor remains unchanged.

Extension to a monofilar antenna loaded with magneto-dielectric is simple.
We can obtain the reduction factor by merely modifying the Brillouin diagram of
Fig. 15.
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The question to be solved in the future is: Do we have to load the inside of a
helix completely, or is partial loading enough to keep the desired radiation pattern
and the size reduction factor? It is desirable to find out the minimum thickness of
the magneto-dielectric load in order to improve efficiency and to reduce the weight
of the antenna.

4.4 Experimental Results

The experimental portion of this project has concentrated on the measurement
of patterns of loaded and unloaded bifilar helices in order to verify full-core loading
theory, and to investigate the effect of an interior layer loading fitted flush to the
helix windings. Previous investigations have demonstrated size reduction (Lyon et
al, 1965). Table II shows the results so far of many pattern measurements.

Figures 16 - 19 give typical patterns for the bifilar helices tested with various
loadings. To assemble the loaded bifilar helix, a stripped coaxial cable which
serviced as the helix conductor was wound on a thin fiberglas form. The loading
powder was poured inside. Layers of the loading material were achieved by using
a balsa wood core to approximate an air core. Far field patterns were then taken
to ascertain loading. Since helical antennas are wide band, the determination of a
precise center frequency is difficult. Experimental near-field phase measurements
are planned.

The experimental results indicate:

1) Good agreement with theory in some cases is obtained. More data is need-
ed for complete verification.

2) A rather thin material layer reduces the helix size, although to a slightly
less extent than obtained with a full core.

3) A supplementary method of experimental evaluation in addition to far-field
measurements would be helpful in further assessment of theoretical results. With
this in mind, near field measurements are planned.

4.5 Discussion of Possible Prototype

The results of investigations of magneto-dielectric loading of helices indicate
that one promising loading would consist of layered dielectric inside the cone hold-
ing the conductor. The present concept is to have a collapsible log-spiral antenna
of pyramidal form similar to previously designed collapsible umbrella-like struc-
tures (Fig. 20). The dielectric loading slabs would be stored separately and placed
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inside the antenna windings after setting up the antenna. In order to maintain light
weight, an artificial dielectric foam is being investigated (Emerson and Cuming,
Eccofoam, High-K Flexible, € >6).
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TABLE II: Results of Pattern Measurements

Radius Reduction Factor Experi-

THE UNIVERSITY OF MICHIGAN

Material Loading ment (1 10 percent) Theory

€ M

3.8 2.2 Full core .63 .60

3.8 2.2 .04, .02, .01x .63 -
10. 1. 01X .55 (¥ 15 percent) .45

3.8 2.2 . 006 17 .60
10. 1. . 006x 17 .45

* Theory applies to full core only with materials as listed.
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e inloaded ——— 18" layer — —:—1/4'" layer

FIG 16: HELIX WITH DIELECTRIC LOADING Plots of E;
Dielectric €=10. Helix Diameter = 4. 5".
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e unloaded ——— 1/4" layer —.—. full core

FIG. 17THELIX WITH THICK LAYER FERRITE LOADING
Linear plots of E4. Ferrite u=2.2, 3.8, Helix
Diameter = 4. 5" .,
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e unloaded @ ———.5" interior layer —.—. full core load

FIG 18; HELIX WITH THICK LAYER FERRITE LOADING
Plot of Eé Ferritey =2. 2, € = 3.8, Helix Diameter = 4" .
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FIG 19: HELIX WITH THIN LAYER FERRITE LOADING
Linear plots of Ea Ferrite u = 2.2, €= 3.8, Helix
Diameter = 4. 5" |
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SIDE VIEW
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storage before

FIG. 20: PROPOSED PROTOTYPE FOR LOADED CONICAL
LOG-SPIRAL ANTENNA
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