LETTER TO THE EDITOR

Hidden quantum group structure in Chern-Simons theory

ACTWu
Randall Laboratory of Physic, University of Michigan, Ann Arbor, MI 48109, USA

Received 5 May 1993

Abstract

The unexpurgated K^{\prime} matrix in the Chern-Simons theory of topological systems (such as the fractional Hall system, the chiral spin system and the anyon system) is viewed as a q-deformed Cartan matrix. The connection to the known generalized quantum groups is pointed out. An alternative interpretation in terms of quantum superalgebra in the graded Yang-Baxter basis also holds.

The $(2+1)$-dimensional Chern-Simons theory [$1-8$] has a number of interesting properties, for example, topological invariants [3], fractional statistics [4-7], link polynomials and knots [8], and connection to rational conformal field theory $[8,9]$. Through the last two features, the connection with the Yang-Baxter equations and quantum groups $[10,11]$ is established.

Recently, Zee and his collaborators [12-14] have discussed the long-distance properties of two-dimensional topological fluids (such as the Hall fluid, the chiral spin fluid, and the anyon superfluid) in the Chern-Simons approach. The theory is characterized by a $m \times m K$-matrix (see (4) below) which can be transformed into a K^{\prime} matrix whose $(m-1) \times(m-1)$ block is the Cartan matrix for the Lie algebra $s u(m)$. Thus a $S U(m)$ symmetry is claimed $[12,15]$ by ignoring the last row and the last column in the K^{\prime} matrix.

In this letter we wish to point out that the unexpurgated K^{\prime} matrix could be viewed as a q-deformed Cartan matrix which has been discussed in the generalized quantum groups [16]. This generalized quantum group structure arises in the non-standard braid group representations when the quantum group parameter q is changed into $-q^{-1}$ at certain strategic places in the Yang-Baxter R-matrix. In the conventional Yang-Baxter basis, the new algebra corresponds to a distorted $s \ell_{q}(m+1)$ with a special value of q (q being a root of unity). Alternatively, in the graded Yang-Baxter basis, the new algebra corresponds to the superalgebra $s \ell_{q}(m \mid 1)$.

For the basic formalism of the K matrix in the Chern-Simons theory, we refer the reader to Zee [12]. The effective Lagrangian has the following form:

$$
\begin{equation*}
L=(1 / 4 \pi) \varepsilon^{\mu \nu \lambda} \alpha_{\mu} K \partial_{\nu} \alpha_{\lambda}+\alpha^{\mu} j \mu \tag{1}
\end{equation*}
$$

where α_{μ} is a gauge potential and j_{μ} is a reduced current (vortex current minus the electromagnetic current). K is the $m \times m$ matrix:

$$
K=\left(\begin{array}{ccccc}
p+1 & p & \cdot & \cdot & p \tag{2}\\
p & p+1 & \cdot & \cdot & p \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
p & p & \cdot & \cdot & p+1
\end{array}\right)
$$

Physically, the parameter p is a measure of the fiux attached to each electron in the Hall effect; p enters in the fractional filling factor $v=m /(m p+1)$, for even p. In $[12,14]$, it is shown that the Fourier transform J_{n} of the J_{0} current in the K-matrix Chern-Simons model satisfies the Kac-Moody algebra

$$
\begin{equation*}
\left[J_{m}^{I}, J_{n}^{J}\right]=m \delta_{m_{n}-n} K^{L} . \tag{3}
\end{equation*}
$$

Furthermore, the theory is invariant under a transformation on K, namely $X^{\tau} K X$ with integer-valued matrix X esl (m, Z) which would preserve the integer-valued topological vorticity. One finds $[15,14,12]$ that

$$
K^{\prime}=X^{\tau} K X=\left(\begin{array}{rrrrr}
2 & -1 & 0 & . & 0 \tag{4}\\
-1 & 2 & -1 & 0 & . \\
0 & -1 & 2 & -1 & . \\
. & . & . & . & . \\
. & . & . & 2 & -1 \\
0 & . & . & -1 & p+1
\end{array}\right)
$$

by taking

$$
X=\left(\begin{array}{rrrrr}
1 & 0 & . & . & \cdot \tag{5}\\
-1 & 1 & 0 & . & . \\
0 & -1 & 1 & . & \cdot \\
\cdot & \cdot & \cdot & . & . \\
. & . & . & -1 & 1
\end{array}\right)
$$

When the last row and the last column of the K^{\prime} matrix are disregarded, one recognizes the $(m-1) \times(m-1)$ submatrix as the Cartan matrix for $s u(m)$, thus a $S U(m)$ symmetry for the model $[12,14,15]$.

Consider the unexpurgated $m \times m K^{\prime}$ matrix given by (4). Equation (4) implies that the m th root vector (of the underlying algebra) has a norm $[(p+1) / 2]^{1 / 2}$ instead of the usual 1 . We can rescale this norm to be one, but at the cost of deforming its scalar product from $2 \cos \theta=-1$ to $2 \cos \theta=-[2 /(p+1)]^{12}$. The rescaled K^{\prime} matrix reads

$$
K^{\prime}=\left(\begin{array}{rrrccc}
2 & -1 & 0 & \cdot & \cdot & \cdot \tag{6}\\
-1 & 2 & -1 & \cdot & \cdot & \cdot \\
0 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 2 & -[2 /(p+1)]^{1 / 2} \\
\cdot & \cdot & \cdot & \cdot & -[2 /(p+1)]^{1 / 2} & 2
\end{array}\right)
$$

A special class of the q-deformed Cartan matrix has been discussed in [16] in the context of non-standard braid group representations of the quantum group $s \ell_{q}(m)$. We here discuss the non-trivial case $p \neq 1$. (Physically relevant cases are when p is even.)

We go to the non-standard braid group representation [16] of $s \ell_{q}(m+1)$ by making one deformation $q \rightarrow-1 / q$ in the last entry in the $(m+1)^{2} \times(m+1)^{2} R$-matrix. The net result is the following generalized algebra:
(a) $\quad\left(X_{m}^{ \pm}\right)^{2}=0 \quad$ for the last m th element.
(b) Corresponding to the regular Cartan matrix element $a_{i j}=3 \delta_{i j}-1,|i-j| \leqslant 1$, for i, $j=1, \ldots, m-1,\left(a_{i j}=0,|i-j|>1\right)$, we have the standard quantum algebra $s \ell_{q}(m)$:

$$
\begin{equation*}
K_{j} X_{j}^{ \pm} K_{i}^{-1}=q^{ \pm a j i j 2} X_{j}^{ \pm} \quad i, j=1, \ldots, m-1 \tag{7b}
\end{equation*}
$$

(c) Corresponding to the entry $a_{m-1, m}$, we obtain

$$
\begin{align*}
K_{j} X_{i}^{ \pm} K_{j}^{-1} & =(-q)^{ \pm 1 / 2} X_{i}^{ \pm} \tag{7c}\\
& =q^{ \pm 1 / 2 a} m-1, X_{i}^{ \pm} \quad i, j=m-1, m \tag{7d}
\end{align*}
$$

(d) Inserting the value from (6)

$$
\begin{equation*}
a_{m-1, m}=-[2 /(p+1)]^{1 / 2} \tag{8}
\end{equation*}
$$

we see that (7c) and (7d) are compatible for q being a root of unity:

$$
\begin{equation*}
q=\exp \left(-\mathrm{i} \pi /\left\{1+[2 /(p+1)]^{1 / 2}\right)\right. \tag{9}
\end{equation*}
$$

This shows that the unexpurgated K^{\prime} matrix of (4) can be interpreted as a q-deformed Cartan matrix which can be accommodated in the non-standard braid group representation $s \ell_{q}(m)$ with special value of q given by (9). Alternatively, in the graded Yang-Baxter basis, the non-standard braid group representations can be reinterpreted as quantum superalgebra $[16,17]$. Thus for the present case of (6), we would get the quantum supersymmetry $S L_{q}(m \mid 1)$. Such supersymmetry is perhaps not a great surprise for the anyon systems. A concrete realization of generalized quantum group structure in two-dimensional quantum fluids would be of interest and the details remain to be worked out.

The author thanks A Zee for an illuminating lecture and for a copy of his Kyoto Lectures.

References

[1] Schwarz A 1978 Lett. Math. Phys. 2247 Schonfeld J 1981 Nucl. Phys. B 185157
[2] Jackiw R and Templeton S 1981 Phys. Rev. D 232291
Deser S, Jackiw R and Templeton S 1983 Phys. Rev. Lett. 48 975; 1984 Ann. Phys., NY 140372.
[3] Zuckerman G Proceedings of 1986 San Diego Summer Workshop ed S T Yau
[4] Polyakov A M 1988 Mod. Phys. Lett. A 3325
[5] Fröhlich J 1987 Cargese Lecture, in Nonperturbative Quantum Field Theory eds G't Hooft et al (New York: Plenum Press)
[6] Hagen C R 1984 Ann. Phys., NY 157342
[7] Arovas D, Schrieffer R, Wilczek F and Zee A 1985 Nucl. Phys. B 251117
[8] Witten E 1989 Commun. Math. Phys. 121351
[9] Kohno T (ed) 1990 New Development in the Theory of Knots (Singapore: World Scientific) and references therein
[10] Yang C N and Ge M L (ed) 1989 Braid Group, Knot Theory and Statistical Mechanics (Singapore: World Scientific)
[11] Jimbo M (ed) 1990 Yang-Baxter Equation in Integrable Systems (Singapore: World Scientific)
[12] Zee A Proceedings of 1991 Kyoto Conference on Low Dimensional Field Theories and Condensed Matter Physics
[13] Wen X G and Zee A 1992 Phys. Rev. B 44 274; 1990 Nucl. Phys. B 15135
[14] Fröhlich J and Zee A 1992 Nucl. Phys. B 364517
[15] Blok B and Wen X G 1990 Phys. Rev. B 428133
Read N 1990 Phys. Rev. Lett. 651502
[16] Ge M L and Wu A C T 1992 J. Phys. A: Math. Gen. 25 L807
[17] Kulish P P and Skylanin E K. 1980 Zapiski Nauch Sem. LOMX 95129 (English translation); 1982 J. Math. 191596
Bazhanov and Shadrikov 1987 Theor. Math. Phys. 731302
Schnidke W B, Vokos S P and Zumino B 1990 Z. Phys. C 48249
Liao L and Song X C 1991 Mod. Phys. Lett. A 6959

