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Abstract. In the final jammed state of the random sequential adsorption of dimen on a one- 
dimensional lattice, the average gap neighbouring a particle that originally adsorbed at time I is 
e-'e-c-'. Thus, the average final gap adjacent to the hm particle to adsorb is e-', while that 
fur the last particle is infinitesimally small. This result shows I h t  there remains a (statistically) 
measurable imprint of the sequence of anival frozen into the RSA system. 

In the random sequential adsorption (RSA) process, particles are adsorbed irreversibly, and 
one at a time at randomly chosen locations in the system. Eventually a jammed state is 
reached in which no space large enough for an additional particle remains. There has been 
a great deal of work on various aspects of this problem; see [1-23] and particularly the 
review of Evans [I]. 

Recently, Bmsilow and the author [I I ]  found that the pair correlation function in the final 
jammed state of parallel squares adsorbing on a plane is different for particles that adsorb at 
different times. The correlation functions about the first, an intermediate, and last squares 
to adsorb (averaged over many runs) implied that a fair amount of space remains around 
the early squares, while the final squares are jammed in tightly between their neighbours. 
These results, which followed from Monte Carlo simulations, showed that some memory 
of the order of arrival remains frozen into the system, highlighting the intrinsic irreversible 
nature of the RSA process. 

To demonstrate this phenomenon analytically, I consider in this paper the pmblem of 
the RSA of dimers on a discrete one-dimensional lattice, a model that has been studied 
extensively since being introduced by Flory [ 12-23]. I derive an explicit expression for the 
average nearest-neighbour gap between a particle and its neighbour at jamming as a function 
of the time at which the particle in question originally adsorbed. Note that this quantity is 
not simply the timedependent gap distribution (which is well known), but a measure of the 
gaps in the jammed state only, around particles that adsorbed at specific times or 'epochs' 
previously. 

The one-dimensional dimer problem is illustrated in figure 1: a pair of neighbouring 
sites on a lattice are chosen at random, and if both are empty, they are filled with a dimer. 
Between adsorbed dimers, them can be a gap of length 0, 1.2, . . . , as shown in that figure. 
Also shown is the equivalent representation of this problem as adsorption of point particles 
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Figure 1. (a) The dimer adsorption process and ( b )  the equivalent problem of particles with 
nwest-neighbour exclusion, where the open circles represent the excluded sites. The size of 
the gaps between the dimers is shown. 

with nearest-neighbour exclusion, which can also be interpreted as a kind of 6agmentation 
process. 

Let c,(t) be the concentration (number per lattice site) of interparticle gaps in the system 
of length n = 0, I ,  2 . .  . at time 1 .  It satisfies the kinetic equation [19, 201 

and conservation law 

Note that (1) is a form of the fragmentation equation but with n shifted by 2 because n is 
the edge-to-edge, rather than centre-to-centre, distance. The solution to (1) for an initially 
empty infinite system is given by [17, 201 

cn(r) = (1 - e- ' )2e2(cw n = 1 , 2 , 3  ... 
co(r) = 

(3) + (e-' - -)e 3 z(e-'-l) 
2 

implying that the total number of dimers (per site) adsorbed by time t is given by 

as there is one dimer per gap. 

with concentrations given by 
When t -+ 03, the only gaps remaining in the system are those of length zero and one, 

1 - 3e" 
C O ( W  = q(m) =e-* cn(m) = o n z I ,  (5) 

In this limit. (2) reduces to 2c0(00) + 3Cl(w) = I, and N(m) is given by 1121 

1 - e-2 
2 

N(m) = co(c0) + CI(c0) = - - - 0.432 332 358 38. . . . (6) 
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Figure 2. Calculation of the function g.. which gives the average remaining gap at one end of 

n = 4. the n u d m  on the dimers represent the order of mirival. 
the system of length n in the jammed State, showing g~ = 1. gt = 0 , ~  = $, I and ga = 1. For 

The fraction of sites covered by dimers is twice the above value, and the fraction of sites 
that are vacant is 

cI(c0) = e-* = 0.135 33528324.. . . (7) 

Finally, the average gap between adjacent dimers at saturation is given by 

0 x co(00) + 1 x c, (00) 2 =-- - 0.313 03528550.. 
c o ( 4  fCI(00) e2 - 1 

To investigate the history dependence of these gaps, I first consider g., defined as the 
average remaining gap at either end of a bounded open interval of length n after that interval 
has been filled to saturation. By simple enumeration (see figure 2) one finds go = 0, gl = 1, 
g2 = 0, g3 = 1. g4 = j . . . . For n > 1, g. satisfies the recursion relation 

because the first particle to adsorb occupies any of the n - 1 possible positions with equal 
probability and, in so doing, reduces the gap on one side from n to i .  The solution to (9) is 

(for n > 0), as may be verified. 
Next I calculate the average final gap around all particles that have adsorbed up tu time 

f .  At t, the gap distribution is given by cn(t).  When gaps of length n ultimately become 
jammed, the average remaining gap at either end will be equal to g,. Thus, the average 
final gap adjacent to particles that have adsorbed from time zero to time t is given by 
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where N ( t )  is given by (4). 
The average final gap about particles that adsorb exactly af time f can be found in two 

different ways. For the first way, consider particles that adsorb during a small time interval 
(f, f + dt). The number of new gaps (of length n )  that are formed during this time interval 
is given by the last term of ( la )  (the gain term), multiplied by dt. When these gaps finally 
become jammed, the average remaining gaps at the ends can be found by multiplying that 
gain term by g., summing over all n, and dividing by the number of new gaps that appear 
during the time interval 

This yields 

(gap(ads. time= t ) )  = e-'ee-' (13) 

by a calculation similar to that shown in ( I  1). 
The average final gap can also be derived by the following calculation: 

(d/dt)[N(t) (gap(ads. time < t ) ) ]  
(djdf ) N ( I )  

(gap(ads. time= t ) )  = ~ ~ 

Here, the numerator (xdt) gives the change in the final gap distribution due to particles that 
arrive in the interval ( t .  r + dt), while the denominator (xdr) gives the number of particles 
that arrive in that interval. Thus, this ratio gives the average gap for those particles that 
arrive in just that interval. Note that, while this approach gives the same final results as 
(12), the corresponding expressions in the numerators and denominators of (12) and (14) 
are quite different from each other. 

The final gap probability distribution (13) has the limiting behaviour 

e-lee-' e-'(I - i t z  + . . .) smdI 1 

large t [ e-' - e-21 + . . , 
so that particles that adsorb near the beginning end up with an average gap of e-' - 
0.367 879 441 2 . .  . , while those that adsorb near the end of the process leave a gap that is 
infinitesimally small (for an infinite system). For a finite system, of course, the system will 
jam in a finite amount of time, and the gaps on the two sides of the final dimer will not 
necessarily be zero. However, as the system size goes to infinity, the time for jamming will 
become infinite, and the expected gaps around the last particle will go to zero. 

The result (13) can also be written in terms of the fraction of occupied sites O ( r )  = 
2N(t) = 1 - e-*(]+-') and O(m) = 1 -e-? 

(gap(ads. coverage = 0)) = - z 'J 1 - 8  " l n \ i - e ( m ) ) .  

A plot of this function is given in figure 3; the average gap around particles at first 
decreases slowly but then falls precipitously to zero for particles arriving near the end of 
the process. Note that the average value of (16) over the interval 0 < 8 6 O(w) agrees 
with (8). 
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Figure 3. Results from theory (equation (16). full corve) and sidation for the average nearest- 
neighbour gap distance in the jammed state as a function of ule coverage = ZilL, where i is 
the sequential particle index. for L = 256 (t) and L = 1024 (0). 

To verify these results, I have also carried out some Monte Carlo simulations. Each 
dimer was labelled sequentially as it was adsorbed, and, when the jammed stak was reached, 
the gap to the right of each particle was measured. These gaps were then averaged over 
all runs for a fixed particle index. A total of 5 x IO' independent runs on a lattice of 
size L = 256, and 5 x 106 runs with L = IO24 were carried out. Periodic boundary 
conditions were used. The resulting average gaps are shown in figure 3, plotted as a 
function of 0 = 2i/L,  where i is the particle index 1,2,3,. . . . For the lattice of size 
256, the average number of particles at jamming was found to be 110.6774, consistent with 
the theoretical value 1280(00) = 110.6770838.. . . For i smaller than this number, the 
measured average gaps agreed closely with the values predicted by (16). However, for 
larger i, which represents runs in which the number of partices to adsorb went beyond 
the expected (average) value, a tail in the gap distribution appeared. This tail represents a 
relatively small number of runs: for example, for L = 256, only 579968 runs (about 1%) 
reached 116 particles, and only 3 runs reached 122 particles, the maximum that was found. 
(An iterative calculation shows that the maximum possible value, 128, would occur with 
probability 1.05339 x IO-'' .) For larger L, that tail shrinks, as the results for L = 1024 
show; this is consistent with recent results on the decrease of the fluctuations in the coverage 
at jamming with increasing size of the system [21,22]. I have not carried out a study of 
the finite-size scaling of this tail. 

In the simulations, I also kept track of the time that each particle adsorbed, with time 
increasing by 1/L for each attempt, and averaged these times over all runs for fixed index 
i. A plot of (13) using this average time for i gave a curve indistinguishable to that 
representing (16). except for the last few points where large fluctuations occurred due to 
the small number of runs at those points. 

Thus, in conclusion, I have derived an explicit formula for the jammed-state gap 
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distribution for dimers as a function of the time or epoch of adsorption. This result shows 
clearly that in RSA. all particles are not created equal: particles that arrive near the beginning 
have, on average, more space around them in the jammed state, while those that anive near 
the end have little. The reason for this is that, as the system saturates, the larger remaining 
openings tend to be filled first, leaving the spaces where just one particle can fit for last. 
Even for a simple system like dimers, this process leaves a record in the jammed state that 
can be observed (statistically) in the gap spacing. 

Undoubtedly, these results can be generalized to longer discrete particles and also to 
a continuum (in ID). For these cases, one may study the entire distribution of gaps rather 
than just their average value (which is sufficient for dimers). Another interesting question 
is to find the jammed-state particleparticle correlation function (as opposed to just the 
nearest-neighbour gap distribution studied h a )  as a function of particle arrival time; this 
would allow a more direct comparison with the Monte Carlo work on squares of [ 111. 

This material is based upon work supported by the US National Science Foundation under 
grant no DMR-9122341. An account of this work was presented at the CECAM workshop 
on RSA held in Orsay, France, June 1992. 
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