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Abstract. A method for ciculating the thermodynamic properties of both classical
petfect crystals and defects by performing a single zero-temperature energy minimization
is described. This method is based upon the calculation of a local harmonic free energy
as performed by LeSar ¢ a/ and by Sutton, and involves determining the dynamical
matrix, Gruneisen parameters, and the eiastic properties of the system. The dependence
of the free energy and the lattice parameter of a perfect Au crystal on temperature are
accurately determined with this method. The validity of this method is demonstrated
by accurately determining the temperature dependence of the vacancy formation energy,
the excess [ree energy of a (100) surface, and the excess frec energy of a £13 [001]
(22.62°) twist grain boundary.

1. Introduction

Atomistic computer simulations are currently employed to determine the structural
and thermodynamic properties of solids and their defects over a wide range of tem-
perature and pressure, For example, the free energy (see, e.g. [1]), elastic properties
[2], and point-defect formation free energies [3} of crystalline solids have been de-
termined by using Monte Carlo (MC) and molecular dynamics (MD) methods. Such
methods, while ideally suited to these calculations, have the disadvantage of requiring
appreciable computational resources in order to determine the requisite ensemble, or
equivalently, long-time averages.

In order to overcome this disadvantage and thereby permit a reasonably quick, but
accurate, determination of the properties of interest, a new method was introduced
for calculating the thermodynamic properties of solids, perfect or with defects, by
minimizing the local harmonic (LH) free energy of the system with respect to the
coordinates of its constituent atoms at the desired temperature [4, 5). This LR
free-energy minimization method is computationally efficient because the vibrational
spectrum of the /N atoms constituting the solid is described by NV 3 x 3 local dynamical
matrices, as opposed to the full 3N x 3N dynamical matrix. This simplification of the
harmonic approximation, which neglects the explicit vibrational coupling of the atoms,
leads to a LH free energy that simply depends on the product of the determinants
of the N local dynamical matrices. Hence, the minimization of the free energy with
respect to the atomic coordinates requires only the calculation of the determinants
of N 3 x 3 matrices at each step. Thus, the temperature dependence of quantities
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such as the free energy, the entropy and the zero-pressure volume of a solid can now
be determined from a series of LH free-onergy minimizations performed at different
temperatures,

It is clear that the computational efficiency of the free-energy minimization
method could be further enhanced if it were possible to petform, instead, a single
energy minimization, say at zero temperature, and obtain, for example, the free en-
ergy and other thermodynamic properties over a wide range of temperature. Some
recent work involving the calculation of the specific heat of spin systems {6] and the
free energy of homogeneous solids [7] at finite temperatures by using the MC method
suggests that this is, indeed, possible. In these MC investigations the properties of the
system of interest were determined over a wide range of temperature from a single
simulation performed at some reference temperature by analysing the probability dis-
tribution for the energy obtained in the simulation at the reference temperature. In
this work we shall implement these ideas within the framework of the Ly free-energy
minimization mecthod. In particular, the dependence of the volume, and hence of
the free energy, of a solid on temperature will be expressed in terms of the zero-
temperature vibrational spectrum of the solid and various volume derivatives of the
(local) atomic vibrational frequencies. It wili also be shown that, with this informa-
tion, one can even determine the temperature dependence of the properties of both
point and extended defects.

This paper is organized as follows. In section 2 we use the isobaric-canonical
ensemble t0 derive an expression for the temperature dependence of the average
volume, {V}(T), of a solid. This result is then employed to calculate the local
harmonic free energy, F}j, for the solid. In section 3 this approach is applicd to
the determination of the temperature dependence of (V) and Fj for solid Au as
modelled by an embedded-atom method (EAM) potential. We also demonstrate that
the vacancy formation energy, the excess free energy of a (100) free surface, and the
excess free energy of a £13 [001] (22.62°) twist grain boundary in EAM Au can be
accurately determined from zero-temperature information. The implications of these
results are discussed in section 4.

2. Method

2.1. Calculation of lemperature derivatives of the volume

Consider a classical solid of volume V at zero pressure and fixed temperature T
which consists of N atoms with fixed centres of mass. This system can be viewed,
to a reasonable approximation, as a collection of oscillators each vibrating about its
average atomic position. A LH description of this system requires a knowledge of the
three (possibly degenerate) eigenfrequencies w,;{a = 1, 2, 3) for each atom ¢. The
LH free energy A of this crystal [4] is given by

Y. (aDl/®
AT, V)= U +3kT) In (2wk‘BT) _ (1)
i=1

where D; = (w;;wy;wy;)? I the determinant of the local dynamical matrix of the
atom 7. The free-energy minimization method [4] can be used to determine the
equilibrium structure of the solid at various temperatures, and hence its free energy,
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by performing a series of minimizations of A with respect to the atomic coordinates at
different temperatures. For the case of a perfect crystal the free-energy minimization
method yields the temperature dependence of the zero-pressure volume (V') of the
system.

The temperature dependence of {V') can also be obtained, with a reasonable
accuracy, from the results of a single zero-temperature energy minimization. In order
to see this, first observe that if the volume of the solid V, and its temperature
derivatives at zero temperature are known, then (V) can be determined at higher
temperatures from the Maclaurin series expansion

=%t Z () (5m),™ @

where the temperature derivatives are to be evaluated at 7 = 0.
The temperature derivatives in equation (2) can be calculated by using the
isobaric-canonical ensemble from statistical mechanics {8]. One finds that

WM=Yo [ aav)epi-saaviav /{ [~ aav) exsi-paavi}

)
where AV =V -V, 8 = 1/kgT, the applied pressure is zero, and the volume
dependence of A is indicated explicitly. Upon substituting equation (1) into eguation
(3) one obtains

Vy=Vo+ [ aav) exp-sv)serav /{ [ "aeav) exp(=U) () }
@

where f(w) = TTiZy(D;) 77 = [TiL, (@ 0opi0a) ™"

In order to calculate the temperature dependence of (V') at low temperatures, it
is necessary to expand the functions in the integrand in equation (4} about V. Upon
expanding both U and f(w) in AV one obtains

U=U(Vy) + 2 (8°UfaVvE) (aVY + L (8°U[aV3) (AV)E + ... (Sa)
F(w) = f(w)l + (8f(w)[8V)o (AV) + 1 (8% f(w)/BV?) (AV)P +...  (5b)

where the linear term in equation (5a) is absent since the pressure is taken to be zero.
If equation (5a) is truncated after the cubic term, then equation (4) can be written
as the ratio of Gaussian integrals (by treating the cubic term as a perturbation) and
evaluated to the desired order in temperature, One finds that

(V = Vo)) 1y (ke T) + Cy(ka T/ 4 Cy(kaT)] ©
where
Cy = (S} )1 /U") = 30" [(U")" (7a)
2
= () o)) (7 ) = KU U fe) ()

Cy = (f"(w)/2f(we)) 1/ U" = (' (w) [ F(we))U™ [ (U")? (7c)
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and the primes denote differentiation with respect to the volume. The resulting model
incorporates anharmonicity, and therefore thermal expansion, through (83U /3V?),
and the volume derivatives of f(w). It should be noted that, although the terms
(8"U/3V™),(n > 4) are present in the perturbation expansion, they only contribute
terms of order 1/N to the thermal expansion and higher temperature derivatives of
(V).

The first temperature derivative of the wolume (in the limit N — oo) at zero
temperature is found to be

a=(1/V)(8V/aT), = (kgT'/BV) ®

where o is the thermal expansion parameter, B is the zero-temperature bulk mod-
ulus, and T = —(V/ f(w))8f(w)/BV), The quantities on the right-hand side
of equation (8) are 1o be evaluated at zero temperature. o is, in general, not
zero since our system is classical and anharmonic. For a perfect Einstein crys-
tal with a single frequency w,’ = 3Ny where v = —(V/w)(8w/8V), is the
zero-temperature Gruneisen parameter [9]. The second temperature derivative
r = (1/V)(8*V/3T?), can also be expressed in terms of I" and higher volume
derivatives. Since it is somewhat more involved we present T only for the case of a
perfect Einstein crystal below:

7 = (1/VH@V/IT?)y = 9(ky)*(1/ BN/ V) (27% - 277 - §) ©

where v = (V2/w)(8w/8V), and & = V[(32U /8V3), /(82U 18V?),].

It should be noted here that o, as well as higher temperature derivatives, can be
expressed in terms of the correlation of energy and volume fuctuations that occur in
finite-temperature, isobaric MC and MD simulations [7]. For example, one finds that

a=V " kyB)EV EH) (10)

where the volume fluctuation §V = V — (V) ((V) is the average wlume) and the
enthalpy fluctuation § # = H — (H). By expanding both V and H about the zero-
temperature volume V;, and taking the zero-temperature limit of the right-hand side
of equation (10), one again obtains equation (8). Thus, the procedure outlined above
is equivalent to that used in a histogram {6] or cumulant expansion [7] analysis, except
that the reference temperature here is zero t.

Since the various parameters B, -+, é and +' can be calculated from a single
energy minimization at zero temperature, it is possible, then, to determine {V)(T")
over a wide temperature range from a T = 0 minimization. Further, quantities such
as the equilibrium free energy, A, and the temperature dependence of the elastic
properties of a soli¢ can also be determined given {V)(T).

{ These results can also be obtained from thermodynamics by noting that at all temperatures, from
the chain nule, (8V/8T)p = (vCy/B) where v = V(8p/8E), and £ is the internal energy. By
differentiating again with respect to T at constant pressure p and using equation (1) for the free energy,
one again arrives at equation (9) (for T = 0). This procedure requires several tedious applications of the
chain rule. Therefore, it is possible to calculate o, r and the higher temperature derivatives at non-zero
temperatures from a single free-energy minimization.
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2 2. Parabolic correction

As will be demonstrated below, quantities such as the equilibrium free energy and
the bulk modulus can be determined quite accurately without having to determine
{(V)(T) to high accuracy. In order to do this we make use of the fact that A is
a nearly parabolic function of V centred around the equilibrium volume (V). In
fact, rather than calculating the higher-order temperature derivatives of the volume,
it will be shown that (V) can be determined by using the predicted lower-order
temperature derivatives, (8V/9T), and (8?2V/8T?),, and the functional form of
the LH free energy (equation (1)). A very accurate determination of (V') can be made
by first using the temperature derivatives to determine a volume, V’, that is close to
(but not exactly at) the actual equilibrium volume, (V), and then simply evaluating
the free energy at two additional values of V near V'’ and fitting the results to a
parabola. That is, given V' and two other nearby volumes V' + ¢, then an excellent
estimate of the equilibrium volume is

(VY= V' = (/2)I(fi = f)](F1 + £2)] an

where f; = A(V') - A(V' 4+ ¢) and f, = A(V') — A(V' — €). The use of the
parabolic fit here is justified because [(V’ — (V))/(V}| is small.

In short, it is usually not necessary to calculate many of the higher-order tem-
perature derivatives of the volume in equation (2) in order to determine most of
the thermodynamic properties, including the defect properties. By using equations
(8) and (9) along with equation (11) one can accurately determine the temperature
dependence of the lattice parameter and then rescale the T = 0 relaxed atomic
coordinates to obtain a good approximation to the finite-temperature structure and
the properties of defects. This procedure neglects, of course, the excess local thermal
expansion. For the defects considered below it will be shown that the effect of the
excess local thermal expansion on most of the defect properties is small.

3. Simulation results

In order to validate the approach discussed above and determine its range of applica-
bility, we determine some of the bulk thermodynamic and defect properties of solid
Au. In this work we employ the EAM potential to model Au since such potentials
have been used extensively to calculate both the bulk and the surface properties of
pure metals and alloys successfully [10]. The EAM potential is given by

N 1 N N
U=)_ Flp)+5) 2 ®(R;) (12)
=1

i=1 j#¢

where R;; is the distance between the particles ¢ and j, ®(R;;) is a pair potential
and F;(p,;) is an embedding function that represents the energy needed to embed
atom ¢ in a uniform electron gas of density p;.

In this work we consider three distinct types of defects: an isolated vacancy, a
(100) free surface, and a X13 [001] (22.62°) twist grain boundary. The vacancy was
created by removing one atom from a three-dimensionally periodic simulation cell
initially containing 256 atoms. The geometry of the cell used in the simulation of
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the surface is described in detail elsewhere [11}. ‘The two-dimensionally periodic
simulation cell is divided into two regions, a region I in which the atoms respond to
the interatomic forces and a region II in which the atoms are at their perfect-crystal
positions. The surface was created by cleaving a perfect crystal to expose the (100)
atomic plane. The geometry of the cell used to study the £13 grain boundary is also
described in detail elsewhere [11]. It consists of a region I containing the bicrystal
and two region IIs in which the atoms are constrained to be at their perfect-crystal
positions. The two crystals meeting at the grain boundary are free to translate with
respect to one another by the addition of three extra variables in the minimization,

One procedure that was used to determine the thermodynamic properties over
the temperature range of interest was to minimize the LH free energy (equation (1))
at each temperature with respect to the atomic coordinates and thereby determine
the average positions of the atoms as a function of temperature. This procedure
will be referred to as the 1H free-energy minimization hereafter. For the case of a
perfect crystal this procedure amounts to determining the dependence of the lattice
parameter on temperature as the coordinates of the atoms are uniformly rescaled
with temperature.

The results obtained with this procedure were then compared with those gener-
ated by performing only a single zero-temperature energy minimization in which the
equilibrium crystal volume was determined by using the temperature derivatives of
the volume (equations (8) and (9)). This procedure will be referred to as the zero-
temperature energy minimization hereafter. For a perfect crystal the dimensionless
v and 4’ were calculated by evaluating the frequency w(V') at several volumes near
the equilibrium T = 0 volume, Vj, and then differentiating numerically. The values
of v and ~' were found to be 2.650 and 2.252, respectively, for EAM Au. The dimen-
sionless parameter é was calculated by evaluating U at several volumes near V,, and
differentiating numerically. é was found to be —6.2049. The T = 0 bulk modulus,
B, (1.042 eV A-3) and volume, V,, (67.917 A®) are inputs to the potential. For the
defect calculations, the zero-temperature energy minimization procedure refers to the
zero-temperature relaxed atomic positions of the defect system rescaled using {a)(T)
for a perfect crystal as determined by using equations (8) and (9).

Finally, the results of the zero-temperature energy minimization were supple-
mented by performing a parabolic fit to the free energy and then using equation
(11). This procedure will be referred to as the parabolic correction hereafter. As dis-
cussed in section 2.2 this procedure amounts to calculating the LH free energy at two
volumes near the estimated equilibrivm volume obtained from the zero-temperature
energy minimization. Again, when referring to a defect, the parabolic correction pro-
cedure will mean that the zero-temperature atomic positions of the defect system are
uniformly rescaled by using {a)(T) for a perfect crystal as determined by using the
parabolic correction,

The first case we consider is a perfect FCC Au crystal under zero pressure. Fig-
ure 1 shows the dependence of the equilibrium lattice parameter, {a}(T"), on the
temperature T determined in three ways: by LH free-energy minimization at each
temperature (circles), by zero-temperature energy minimization (broken curve), and
by using the parabolic correction (full curve). As is evident from the figure, the {(a)
against T curve can be accurately determined over a temperature range of about
600 K from a single zero-temperature energy minimization. In addition, by using
the explicit functional form of the local harmonic free energy and a simple parabolic
fit one can obtain an extremely accurate fit over the entire temperature range from
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Figure 1. The equilibrium lattice parameter, {a}{T"), of a perfect Au crystal plotted
against temperature, T, determined by minimizing the local harmonic (LH) free energy
(circles), by minimizing the zero-temperature energy and then calculating the temperature
derivatives of the volume (broken curve), and by using the zero-temperature encrgy
minimization results and the parabelic correction (full curve).

0 to 1000 K. Figure 2 is a plot of A(T) against T as determined by a series of
LH free-energy minimizations (circles) and by a single zero-temperature energy min-
imization (broken curve). Since A(T) is essentially a parabolic function of a near
its minimum, a discrepancy in the determination of {(a} only affects A(T) to second
order in a. A similar calculation of A using the parabolic correction also leads to
excellent agreement with the results of the LH free-energy minimizations.
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Figure 2. The tH free energy, A(T), of solid Au plotied against T as determined by
a series of LH free-cnergy minimizations (circles) and by using the results of a zero-

lemperature energy minimization (broken curve). Note the good agreement between
these approaches aver a range of about 900 K.

-4.60

The second case that we consider i that of an isofated vacancy in Au in a simu-
lation cell containing 255 atoms. It is of interest to determine the dependence of the
vacancy formation free energy, AA,, on temperature since this quantity is needed
to estimate, for example, the self-diffusion coefficient. The temperature dependence
of the vacancy formation free energy A A, is shown in figure 3 as determined by
a series of LH free-energy minimizations (circles), by zero-temperature energy min-
imization (broken curve), and by using the parabolic correction (full curve). This
figure shows that the results of rescaling the atomic positions using rather limited
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zero-temperature information (the broken curve) can be used to predict AA, ac-
curately over a range of about 500 K. As for the temperature dependence of the
perfect-crystal lattice parameter, incorporation of the parabolic correction results in
extremely accurate vacancy formation energies over the entire temperature range ex-
amined (0-10° K). The good agreement between these various approaches reflects
the fact that most of the relaxation of the atoms near the vacancy occurs when the
system is relaxed at T = 0 K, and any additional temperature-dependent relaxation
is both small and spatially localized. So, to a very good approximation, the tempera-
ture dependence of the vacancy formation energy can be determined by rescaling the
relaxed zero-temperature structure of the defect system to that of the temperature of
interest.

AA, (V)

TX)
Figure 3. The vacancy formation energy, A Ay, plotted against 7" for an isolated vacancy
in a 255-atom Au crystal calculated from a series of 11 free-energy minimizations (cir-
cles), by zero-lemperature energy minimization (broken curve), and by using a parabolic
comrection (full curve).

In order to see whether such a rescaling procedure could be used to obtain the
temperature dependence of the properties of more extended defects we consider the
case of a (100) free surface in Au. Figure 4 is a plot of the excess surface free energy
(per unit area), «,(7T), as a function of temperature as determined by a series of LH
free-energy minimizations (circles) and by using the parabolic correction (full curve).
The results obtained by using these two approaches also agree remarkably well over
the entire temperature range examined. This may seem surprising at first and, in
fact, a detailed examination of the temperature dependence of the local thermal
expansion for this system reveals that, as expected, there is a substantial excess local
expansion near the surface. This is made more concrete in figure 5, where we show
the temperature dependence of the spacing between the two (002) planes closest to
the surface normalized by the temperature-dependent perfect-crystal lattice parameter
{a}(T). This figure shows that there is, indeed, a small expansion near the surface
that is not completely accounted for by the temperature dependence of the lattice
parameter (less than 2%). Thus, even though there are spatially local deviations of
the actuai structure from the uniformly rescaled zero-temperature structure, these
deviations do not substantially affect the surface free energy ~,(T).

The final and most complex case considered is a X13 [001] (22.62°) twist grain
boundary in the z—y plane. In figure 6 the temperature dependence of the excess
grain boundary free energy per unit area, ’fgb( T), is shown, as determined by a se-
ries of LH free-energy minimizations (circles) and by using the parabolic correction
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Figure 4. The excess surface free energy per unit area, va(T), of a (100) surface in Au
plotted against T as determined by a series of LH free-cnergy minimizations (cireles) and
by rescaling the lattice parameter of the zero-temperature relaxed structure using e (7%
for the perfect crystal as delermined by the parabolic correction (full curve). Note the
good agreement between the results of these approaches despite the presence of local
temperature-dependent relaxations,
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Figure 5. The ratio of the interplanar spacing to the perfect-crystal lattice parameter,
d/a(T), plotied against T for the wo planes nearest the (100) free surface in Au. This
shows that there are, indeed, local, temperature-dependent relaxations near the surface.

(full curve). Again, the results obtained by using these two approaches agree rather
well over the entire temperature range. However, this agreement is not quite as
good as for the perfect crystal, vacancy or surface. An analysis of the relaxed finite-
temperature structure shows that this may be attributed to inhomogeneous, local
temperature-dependent relaxations that cannot be wholly accounted for by the uni-
form bulk expansion (a¢}(T). In figure 7 we show the average positions of the
atoms in planes adjacent to the grain boundary plane at 0, 600 and 1000 K. As is
evident from the figure the additional temperature-dependent, in-plane relaxations
of the atoms are rather small and so their effect on -y, is small. There is also a
local temperature-dependent volume expansion at the grain boundary, the effect of
which (on +,,) is probably somewhat more pronounced than the details of the local
relaxation shown in figure 7.

4. Discussion and conclusions

We have shown that the temperature dependence of the structure and free energy



4932 J M Rickman et al

N
40 -
o
o
g st E
2
=
2 -
b
wo |- -
Q
o : ] ) I [ B
e 00 400 [ A0 1000 120

T(K)

Flgure 6. The excess grain boundary free energy per unit area, +,(T'), plotted against
T for a £13 [001] (22.6°) twist grain boundary in Au as determined by a series of LH
free-energy minimizations (circles) and by rescaling the [altice parameter of the zero-
temperature relaxed structure using 2(7T) for a perfect crystal as determined by the
parabolic correction (full curve). The results of these approaches agree over a range of
about 830 K despite a temperature-dependent volume expansion at the grain boundary.
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& &
E‘ B &
& &
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= & 5]
P
& B
& &
& & Figure 7. The in-plane positions of atoms in four
% @ planes that are adjacent to the L13 [001] (22.6°)
) grain boundary plane at three different tempera-
& ® tures: O, 0 K; +, 600 K X, 1000 K Note that
2] R | the in-plane temperature-dependent relaxations are
small,
X/a(T)

of both perfect crystals and defects can be accurately determined from a single 2ero-
temperature energy minimization. For the case of a perfect crystal this was done
by first expressing the temperature derivatives of the volume in terms of the volume
derivatives of the vibrational frequencies of the solid, the interatomic potential and the
zero-temperature structure. From this information it was possible to calculate (V' )(T")
or, equivalently, {a)(T) over a wide range in temperature. This temperature range
was substantially extended by using the explicit functional form of the free energy
and its shape near its minimum (the parabolic correction). It was also found that
the free energy, A(T), can be calculated to high accuracy from the zero-temperature
structure since the free energy is nearly quadratic about the equilibrium volume such
that small errors only affect A(T) to second order in AV,

The bulk expansion {a}(T") for the perfect crystal was used to rescale the relaxed
zero-temperature structure of defect systems uniformly to the temperature of interest
and to thereby calculate the point-defect formation energy, the excess free energy of a
(100) surface, and the excess free energy of a £'13 [001] (22.62°) twist grain boundary.
Our results from single T = 0 simulations were found to be in excellent agreement
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with those obtained by performing a series of LH free-energy minimizations for each
defect over the same temperature range. This excellent agreement may be attributed
to the fact that the temperature-dependent relaxations in these systems are often
small, spatially localized and, as discussed above, because of the nearly parabolic
shape of the free energy near its minimum.

It should be emphasized here that our procedure can also be applied to the
quasi-harmonic free energy [12], which is a function of the full (3N —3) x (3N —3)
dynamical matrix. In that case, the function f({w) in equation {(4) would be replaced
by the (inverse of) the product of eigenfrequencies of the full dynamical matrix. In
this way one can investigate the impact of making the local harmonic approximation
on the thermodynamic properties of a system.

Although we have focused on determining thermodynamic information from the
zero-temperature energy minimization, it is also possible (see earlier footnote) to
obtain the thermal expansion, a, and higher temperature derivatives, such as =, by
performing a single LH free-energy minimization at some non-zero temperature, T.
This approach would be necessary if, for example, one were interested in determining
the properties of a solid phase that was stable only at high temperatures. In the
appendix we demonstrate that the temperature dependence of the lattice parameter,
{a}, of Au can be calculated from a single free-energy minimization, in this case at
T =500 K. ’

Although the method described here enables one to calculate a great deal of
finite-temperature thermodynamic information from a zero-temperature energy min-
imization it does have its limitations at high temperaturss and in some defect sys-
tems where local, temperature-dependent relaxations are large. At high temperatures
(T » ©p, where Op, is the Debye temperature) the local harmonic description should
strictly be modified to include contributions from the higher-order anharmonic terms
in the energy. Nevertheless, the LH description captures much of the anharmonicity
and permits an accurate calculation of both perfect crystal and defect properties, even
at high temperatures [4]. Future research will focus on determining the temperature
dependence of local relaxations from the zero-temperature relaxed structure.
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Appendix

In this appendix the temperature dependence of {e) for Au is determined by calcu-
lating its thermal expansion, «, at T = 500 K and then using a parabolic correction.
In order to apply equation (8) at this temperature it is necessary to calculate both
the Gruneisen parameter, <, and the bulk modulus, B. The former is calculated,
as before, by evaluating the frequency, w, at several volumes near the equilibrium
volume and then differentiating numerically. The latter is calculated by evaluating
the LH free energy, A, at several volumes near the equilibrium volume and deter-
mining its second volume derivative from a fit to the data. We find that v = 2,823
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Figure A.l. The lattice parameter, {)(T), as a function of temperature as determined

by a series of LH free-enerpy minimizations, by a single free-energy minimization at
T = 500 K in which « is calculated, and by using a parabolic correction.

and B = 0.887 eV A-3. The temperature dependence of the lattice parameter,
as determined by a series of LH free-energy minimizations (circles), by a single LH
free-energy minimization at 7 = 500 K in which only « is calculated (dotted line),
and by a parabolic correction (full curve), is shown in figure A.l. The excellent
agreement between the finite-temperature simulation results and those obtained from
the parabolic correction to the 500 K thermal expansion indicates that the present
approach is equally applicable based upon either a single T = 0 or finite-temperature
simulation.
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