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Abslmcl. A method for alculating lhe lhermodynamic propcnis of both dassical 
perfect ayslals and defecu by performing a smgk zero-temperature energy minimization 
is described. ?lis melhod is based upon the ralNk4iOn of a l o e l  harmonic fref energy 
as performed by M a r  U ol and by Suuon, and invokes determining the dynamical 
matrix, Gruneisen parameters, and the elastic properties of the system. The dependence 
of the free energy and the !atlice parameter of a perfecl Au ayslal on lemperature are 
accuralely determined with this melhod. 'The validity of lhis method is demonstraled 
by armraleiy determining the temperature dependence of the vacancy formation energy, 
the acess free energy of a (100) surface, and the excess free energy of a C13 [Oal] 
(22.62') hvist grain boundary. 

1. Intmduction 

Atomistic computer simulations are currently employed to determine the structural 
and thermodynamic properties of solids and their defects over a wide range of tem- 
perature and pressure. For example, the free energy (see, e.g. [l]), elastic properties 
[2], and pointdefect formation free energies [3] of clystalline solids have been de- 
termined by using Monte Carlo (MC) and molecular dynamics (MD) methods. Such 
methods, while ideally suited to these calculations, have the disadvantage of requiring 
appreciable computational resources in order to determine the requisite ensemble, or 
equivalently, long-time averages. 

In order to wermme this disadvantage and thereby permit a reasonably quick, but 
accurate, determination of the properties of interest, a new method was introduced 
for calculating the thermodynamic properties of solids, perfect or with defects, by 
minimizing the local harmonic (LH) free energy of the system with respect to the 
coordinates of its constituent atoms at the desired temperature [4, 51. This LH 
free-energy minimization method is computationally efficient because the vibrational 
spectrum of the N atoms constituting the solid is described by N 3 x 3 locd dynamical 
matrices, as opposed to the full 3 N x 3 N dynamical matrix This simplification of the 
harmonic approximation, which neglects the explicit vibrational coupling of the atoms, 
leads to a w free energy that simply depends on the product of the determinants 
of the N local dynamical matrices. Hence, the minimization of the free energy with 
respect to the atomic coordinates requires only the calculation of the determinants 
of N 3 x 3 matrices at each step. Thus, the temperature dependence of quantities 
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such as the free energy, the entropy and the zero-pressure volume of a solid can now 
be determined from a series of ui free-energy minimizations performed at different 
temperatures. 

It is dear that the mmputational efficiency of the free-energy minimization 
method could be further enhanced if it were possible to perform, instead, a single 
energy minimization, say at zero temperature, and obtain, for example, the free en- 
ergy and other thermodynamic properties over a wide range of temperature. Some 
recent work involving the calculation of the specific heat of spin systems [6] and the 
free energy of homogeneous solids p] at finite temperatures by using the MC method 
suggests that this is, indeed, possible. In these MC investigations the properties of the 
system of interest were determined over a wide range of temperature from a single 
simulation performed at some reference temperature by analysing the probability dis- 
tribution for the energy obtained in the simulation at the reference temperature. In 
this work we shall implement these ideas within the framework of the ui free-energy 
minimization method. In particular, the dependence of the volume, and hence of 
the free energy, of a solid on temperature will be expressed in terms of the zero- 
temperature vibrational spectrum of the solid and various mlume derivatives of the 
(local) atomic vibrational frequencies. It will also be shown that, with this informa- 
tion, one can even determine the temperature dependence of the properties of both 
point and extended defects. 

This paper is organized as follows. In section 2 we use the isobariocanonical 
ensemble to derive an expression for the temperature dependence of the average 
volume, ( V ) ( T ) ,  of a solid. This result is then employed to calculate the l oc l l  
harmonic free energy, FLH, for the solid. In section 3 this approach is applied to 
the determination of the temperature dependence of (V) and FLw for solid Au as 
modelled by an embedded-atom method (Em) potential. We also demonstrate that 
the vacancy formation energy, the excess free energy of a (100) free surface, and the 
excess free energy of a Cl3 [Ool] (2262") twist grain boundary in EAM Au can be 
accurately determined from zero-temperature information. The implications of these 
results are discussed in section 4. 

2. Method 

21. Calculalion of lemperalure deiivarives of lhe volume 

Consider a classical solid of volume V at zero pressure and k e d  temperature T 
which consists of N atoms with fixed centres of mass. This system can be viewed, 
to a reasonable approximation, as a collection of oscillators each vibrating about its 
average atomic position. A LH description of this system requires a knowledge of the 
three (possibly degenerate) eigenfrequencies wai(o = 1,  2, 3) for each atom i. The 
LH free energy A of this crystal [4] is given by 

N 
A ( T , V )  = U + 3 k B T x I n  

i=1 

where Di = (wliw2iw3i)2 is the determinant of the local dynamical matrix of the 
atom i. The free-energy minimization method [4] can be used to determine the 
equilibrium structure of the solid at various temperatures, and hence its free energy, 
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by performing a series of minimizations of A with respect to the atomic coordinates at 
different temperatures. Fbr the case of a perfect crystal the freeenergy minimization 
method yields the temperature dependence of the zero-pressure volume (V) of the 
system. 

The temperature dependence of (V) can also be obtained, with a reasonable 
accuracy, from the results of a single zero-temperature energy minimization. In order 
to see this, first observe that if the volume of the solid V, and its temperature 
derivatives at zero temperature are known, then (V) can be determined at higher 
temperatures from the Maclaurin series expansion 

where the temperature derivatives are to be evaluated at T = 0 .  

isobariocanonical ensemble from statistical mechanics [SI. One finds that 
The temperature derivatives in equation (2) can be calculated by using the 

(3) 
where A V  = V - V,, p = l/kBT, the applied pressure is zero, and the volume 
dependence of A is indicated explicitly. Upon substituting equation (1) into equation 
(3) one obtains 

(V) = V, + J m d ( A v )  -m exp(-Pu)f(w)AV/ {Jmd(AV)  -m e x p ( - W ) f ( w ) )  

where f ( w )  = nf l '= , (D, ) - ' /2  = ~ ~ , ( W , ~ W ~ , W ~ , ) - ~ .  
In order to calculate the temperature dependence of (V) at low temperatures, it 

is necessary to expand the functions in the integrand in equation (4) about V,. Upon 
expanding both U and f ( w )  in A V  one obtains 

(4) 

U =  U ( & ) +  ~(t3ZU/~V2),(AV)2+~(a3U/~V3)o(AV)3+ ... (5a) 

f (w) = f(w)lo + ( a f ( w ) / W , ( A v )  + (a2f(w)/al/2),  (AV)'  + . . . (56) 

where the linear term in equation (Sa) is absent since the pressure is taken to be zero. 
If equation (5a) is truncated after the cubic term, then equation (4) can be written 
as the ratio of Gaussian integrals (by treating the cubic term as a perturbation) and 
evaluated to the desired order in temperature. One finds that 

((v - h)) [CI(kBT) + C2(kBT)21/[1 f C3(kBT)I (6) 

c, = ( f ' ( w ) / f ( w , ) ) ( l / U " )  - p " / ( U " y  

where 

Pa) 

C2 = (f"'(w)/f(wo)) 7 - % ( ~ " ' / ( U " ) 3 ) f " ( ~ ) / f ( ~ o )  (76) 

(74 

(l )2 
(73 = (f"(w)/2f(wo))l/U" - f~ f '~w~/ f "U""U ' '~~  
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and the primes denote differentiation with respect to the volume. ?he resulting model 
incorporates anharmonicity, and therefore thermal expansion, through (8’Lr/aV3), 
and the volume derivatives of f ( w ) .  It should be noted that, although the terms 
(X”’/aVn), (n 2 4) are present in the perturbation expansion, they only contribute 
terms of order 1/N to the thermal expansion and higher temperature derivatives of 

The first temperature derivative of the wlume (in the limit N + 00) at zero 
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(V) .  

temperature is found to be 

a ( l / v ) ( a v / a T ) ,  = (k , r / sv )  (8) 

where Q is the thermal expansion parameter, B is the zero-temperature bulk mod- 
ulus, and r = -(V/f(w))(ap(w)/aV), .  The quantities on the right-hand side 
of equation (8) are to be evaluated at zero temperature. a is, in general, not 
zero since our system is classical and anharmonic. For a perfect Einstein cays- 
tal with a single frequency w , r  = 3Ny where 7 = -(V/w)(8w/aV),  is the 
zero-temperature Gruneisen parameter [9]. The second temperature derivative 
T ( l /V)(a2V/i3T2) ,  can also be expressed in terms of r and higher volume 
derivatives. Since it is somewhat more involved we present T only for the case of a 
perfect Einstein crystal below: 

r E ( l / V ) ( a 2 V / d T Z ) ,  = 9(kB)2(1/B2)(N/V)2(Zy3-2yy‘- 67’) (9) 

where y’ 3 (Vz/w)(aw/aV),  and 6 = V [ ( a 3 U / a ~ ) , / ( a 2 L r / a V 2 ) , ] .  
It should be noted here that a, as well as higher temperature derivatives, can be 

expressed in terms of the correlation of energy and volume fluctuations that occur in 
finitetemperature, isobaric MC and hm simulations (71. For example, one finds that 

a = V-’(kB@*)(6V6H) (10) 

where the volume fluctuation 6V = V - ( V )  ( (V) is the average volume) and the 
enthalpy fluctuation 6H = H - (H). By expanding both V and H about the zero- 
temperature volume V, and taking the zero-temperature limit of the right-hand side 
of equation (lo), one again obtains equation (8). Thus, the procedure outlined above 
is equivalent to that used in a histogram [6] or cumulant expansion [7l analysis, except 
that the reference temperature here is zero t. 

Since the various parameters B, 7 ,  6 and y‘ can be calculated from a single 
energy minimization at zero temperature, it is possible, then, to determine ( V ) ( T )  
over a wide temperature range from a T = 0 minimization. Further, quantities such 
as the equilibrium free energy, A, and the temperature dependence of the elastic 
properties of a solid can also be determined given (V) (T ) .  

t These resulls can also be obtained fmm thermodynamics by noting lhat at all temperatures, from 
the chain nile, ( B V I B T ) ,  = ( - f C v / B )  h e r e  -f = V ( B p / a E ) v  and E is the internal energy. By 
differentialing again wilh respecl to T a1 mnstant pressure p and using equation (I) for the free energy, 
one again anives a1 equation (9) (for T = 0). This procedure q u i r e s  seyeral tedious applications of the 
chain mle. Therefore, it is possible Lo calculate 0,  r and the higher lemperature derivatives at non-zero 
temperatures from a single fmecnergy minimization. 
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22. Parabolic correction 

As will be demonstrated below, quantities such as the equilibrium free energy and 
the bulk modulus can be determined quite accurately without having to determine 
( V ) ( T )  to high accuracy. In order to do this we make use of the fact that A is 
a nearly parabolic function of V centred around the equilibrium volume (V). In 
fact, rather than calculating the higher-order temperature derivatives of the volume, 
it will be shown that (V) can be determined by using the predicted lower-order 
temperature derivatives, (aV/aT) ,  and ( a2V/aT2),, and the functional form of 
the LH ftee energy (equation (1)). A very accurate determination of (V) can be made 
by first using the temperature derivatives to determine a volume, V’, that is close to 
(but not exactly at) the actual equilibrium volume, (V), and then simply evaluating 
the free energy at two additional values of V near V’ and fitting the results to a 
parabola. That is, given V’ and two other nearby volumes V’ f E, then an excellent 
estimate of the equilibrium volume is 

where fi 3 A( V ‘ )  - A( V’ + E )  and f2 z A( V ‘ )  - A( V’ - E).  The use of the 
parabolic fit here is justified because I( V’ - ( V ) ) / ( V ) l  is small. 

In short, it is usually not necessary to calculate many of the higher-order tem- 
perature derivatives of the volume in equation (2) in order to determine most of 
the thermodynamic properties, including the defect properties. By using equations 
(8)  and (9) along with equation (11) one can accurately determine the temperature 
dependence of the lattice parameter and then rescale the T = 0 relaxed atomic 
coordinates to obtain a good. approximation to the finite-temperature structure and 
the properties of defects. This procedure neglects, of course, the excess local thermal 
expansion. For the defects considered below it will be shown that the effect of the 
excess local thermal expansion on most of the defect properties is small. 

3. Simulation results 

In order to validate the approach discussed above and determine its range of applica- 
bility, we determine some of the bulk thermodynamic and defect properties of solid 
Au. In this work we employ the EAM potential to model Au since such potentials 
have been used extensively to calculate both the bulk and the surface properties of 
pure metals and alloys successfully [lo]. The EAM potential is given by 

N . N N  

i = l  i = l  j # i  

where Rij  is the distance between the particles i and j ,  Q(  R i j )  is a pair potential 
and F i ( p i )  is an embedding function that represents the energy needed to embed 
atom i in a uniform electron gas of density pi .  

In this work we consider three distinct types of defects: an isolated vacancy, a 
(100) bee surface, and a C l 3  [Ool] (22.62O) twist grain boundary. The vacancy was 
created by removing one atom from a three-dimensionally periodic simulation cell 
initially containing 256 atoms. The geometry of the cell used in the simulation of 
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the surface h described in detail elsewhere [ll]. The twodimensionally periodic 
simulation cell is divided into two regions, a region I in which the atoms respond to 
the interatomic forces and a region I1 in which the atoms are at their perfectcrystal 
positions. The surface was created by cleaving a perfect crystal to expose the (100) 
atomic plane. The geometry of the cell used to study the Cl3 grain boundary is also 
described in detail elsewhere [ll]. It consists of a region I containing the bicrystal 
and two region 11s in which the atoms are constrained to be at their perfectcrystal 
positions. The two crystals meeting at the grain boundary are free to translate with 
respect to one another by the addition of three extra variables in the minimization. 

One procedure that was used to determine the thermodynamic properties over 
the temperature range of interest was to minimize the IU bee energy (equation (1)) 
at each temperature with respect to the atomic coordinates and thereby determine 
the average positions of the atoms as a function of temperature. This procedure 
will be referred to as the IU freeenergy minimization hereafter. For the case of a 
perfect crystal this procedure amounts to determining the dependence of the lattice 
parameter on temperature as the coordinates of the atoms are uniformly rescaled 
with temperature. 

The results obtained with this procedure were then compared with those gener- 
ated by performing only a single zero-temperature energy minimization in which the 
equilibrium crystal volume was determined by using the temperature derivatives of 
the wlume (equations (8) and (9)). Thii procedure will be referred to as the zero- 
temperature energy minimization hereafter. For a perfect crystal the dimensionless 
y and y' were calculated by evaluating the frequency u ( V )  at several volumes near 
the equilibrium T = 0 volume, V,, and then differentiating numerically. The values 
of y and y' were found to be 2650 and 2255 respectively, for EAM Au. The dimen- 
sionless parameter 6 was calculated by evaluating U at several volumes near V, and 
differentiating numerically. 6 was found to be -62049. The T = 0 bulk modulus, 
E,  (1.042 eV and volume, V,, (67.917 A3) are inputs to the potential. For the 
defect calculations, the zero-temperature energy minimization procedure refers to the 
zero-temperature relaxed atomic positions of the defect system rescaled using ( a ) ( T )  
for a perfect crystal as determined by using equations (8) and (9). 

Finally, the results of the zero-temperature energy minimization were supple- 
mented by performing a parabolic fit to the free energy and then using equation 
(11). This procedure will be referred to as the parabolic correction hereafter. As dis- 
cussed in section 22 this procedure amounts to calculating the LH free energy at two 
volumes near the estimated equilibrium volume obtained from the zero-temperature 
energy minimization. Again, when referring to a defect, the parabolic correction pro- 
cedure will mean that the zero-temperature atomic positions of the defect system are 
uniformly rescaled by using ( a ) ( T )  for a perfect crystal as determined by using the 
parabolic correction. 

The first case we consider is a perfect FCC Au crystal under zero pressure. Fig- 
ure 1 shows the dependence of the equilibrium lattice parameter, ( a ) ( T ) ,  on the 
temperature T determined in three ways: by LH free-energy minimization at each 
temperature (circles), by zero-temperature energy minimization (broken curve), and 
by using the parabolic correction (full curve). As is evident from the figure, the (U) 
against T curye can be accurately determined over a temperature range of about 
600 K from a single zero-temperature energy minimization. In addition, by using 
the explicit functional form of the local harmonic free energy and a simple parabolic 
fit one can obtain an extremely accurate fit over the entire temperature range from 
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T (K) 
-re t The equilibrium lattice parameter, (a) (T) ,  of a @est Au +I plotted 
against lemperature, T, determined ly minimizing the local harmonic (LH) free energy 
(circles), ly minimizing the zero-temperature energy and then calculating the temperature 
de2ivatives of the wlume (broken cum) ,  and by using the zero-temperature energy 
minimization m u l l s  and the parabolic correction (full cum) .  

0 to loo0 IC figure 2 is a plot of A( T) against T as determined by a series of 
LW free-energy minimizations (circles) and by a single zero-temperature energy min- 
imization proken curve). Since A ( T )  is essentially a parabolic function of a near 
its minimum, a discrepancy in the determination of (a) only affects A(T)  to second 
order in a. A similar calculation of A using the parabolic correction also leads to 
excellent agreement with the results of the LH freeenergy minimizations. 

4 3  

460 Im U 2M 10) a, IDJ 6m 1m m $?a lrm 

T (K) 
Flgum 2 The LH free energy, A(T) ,  of solid Au plotted against T as determined by 
a shes of LH k - e n e r g y  minimizations (cisles) and by using the m u l l s  of a zero- 
temperature energy minimization (broken curve). Note the good agreement between 
these approaches Dyer a range of about 900 K 

The second case that we consider is that of an isolated vacancy in Au in a simu- 
lation cell containing 255 atoms. It is of interest to determine the dependence of the 
vacancy formation free energy, AA,,  on temperature since this quantity is needed 
to estimate, for example, the selfdiffusion coefficient. The temperature dependence 
of the vacancy formation free energy AA, is shown in figure 3 as determined by 
a series of LH freeenergy minimizations (circles), by zero-temperature energy min- 
imization (broken curve), and by using the parabolic correction (full curve). This 
figure shows that the results of rescaling the atomic p i t i o n s  using rather limited 
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zero-temperature information (the broken curve) can be used to predict AA, ac- 
curately over a range of about 500 K As for the temperature dependence of the 
perfect-crystal lattice parameter, incorporation of the parabolic correction results in 
extremely accurate vacancy formation energies over the entire temperature range ex- 
amined (&l@ K). The gwd agreement between these various approaches reflects 
the fact that most of the relaxation of the atom near the vacancy occurs when the 
system is relaxed at T = 0 K, and any additional temperature-dependent relaxation 
is both small and spatially localized. So, to a very good approximation, the tempera- 
ture dependence of the vacancy formation energy can be determined by rescaling the 
relaxed zero-temperature smcture of the defect system to that of the temperature of 
interest. 
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0.4 1 
0 I m m ” m r m m , % m p m  

T (K) 
Figure 3. The wcancy formation energy, AAv, potted against T for an isolated vacanq 
in a 255-atom Au qxml calculated from a series of ui ha erg^ minimizations (cir- 
cles), Ly zem-temperature energy minimization proken am), and by using a parabolic 
“TMion (full curve). 

In order to see whether such a rescaling procedure could be used to obtain the 
temperature dependence of the properties of more extended defects we consider the 
case of a (100) free surface in Au. Figure 4 is a plot of the excess surface free energy 
@er unit area), y s ( T ) ,  as a function of temperature as determined by a series of LH 
freeenergy minimizations (circles) and hy using the parabolic correction (full curve). 
The results obtained by using these two approaches also agree remarkably well over 
the entire temperature range examined. This may seem surprising at first and, in 
fact, a detailed examination of the temperature dependence of the local thermal 
expansion for this system reveals that, as expected, there is a substantial excess lml 
expansion near the surface. This is made more concrete in figure 5, where we show 
the temperature dependence of the spacing between the two (002) planes closest to 
the surface normalized by the temperaturedependent perfect-crystal lattice parameter 
(a ) (T) .  This figure shows that there is, indeed, a small expansion near the surface 
that is not completely accounted for by the temperature dependence of the lattice 
parameter (less than 2%). Thus, even though there are spatially local deviations of 
the actual structure from the uniformly rescaled zero-temperature structure, these 
deviations do not substantially affect the surface free energy ~~(7‘). 

The final and most complex case considered is a Cl3 [CO11 (22.62O) twist grain 
boundary in the z-y plane. In figure 6 the temperature dependence of the a c e s s  
grain boundary free energy per unit area, -fgb(T), is shown, as determined by a se- 
ries of LH freeenergy minimizations (circles) and by using the parabolic correction 
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*re 4 'Ihe cx- surface h e  energy per unit area. T ~ ( T ) ,  of a (100) surface in ,% 
plotled against T as determined by a &es of r n  bescnergy minimizations (circles) and 
by m l i n g  the latlioe parameter of the um-temperature Elaxed SLmRure using a ( T )  
for the perfest ayxml as determined Ly the parabolic "E t ion  (full curve). Note the 
good agreement between Ule mults  of these approaches despite the F e n c e  of local 
temperaturedependent relaxations. 

I 
11.48 

l l r m  I 
3al im Ml, mull ,m ,?,Y, 

T (K) 
Figure 5. ?he ratio of the interplanar spacing 10 the perfectcrystal lattice parameter, 
d / a ( T ) ,  plotted against T for the two planes nearest fhe (1W) free surface in Au. This 
shows that there are, indeed, local, temperaturedependent relantions near the suhace. 

(full curve). Again, the resuls obtained by using these two approaches agree rather 
well over the entire temperature range. However, this agreement is not quite as 
good as for the perfect crystal, vacancy or surface. An analysis of the relaxed finite- 
temperature structure shows that this may be attributed to inhomogeneous, local 
temperature-dependent relaxations that cannot be wholly accounted for by the uni- 
form bulk expansion (a ) (T) .  In figure 7 we show the average positions of the 
atoms in planes adjacent to the grain boundary plane at 0, 600 and loo0 K. As is 
evident from the figure the additional temperaturedependent, in-plane relaxations 
of the atoms are rather small and so their effect on ygb is small. There is also a 
local temperaturedependent volume expansion at the grain boundary, the effect of 
which (on ysb) is probably somewhat more pronounced than the details of the local 
relaxation shown in figure 7. 

4. Discussion and conclusions 

We have shown that the temperature dependence of the structure and free energy 
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F@m 6. nie excrss grain boundary fme energy pu unit area, ?,(T), plotted against 
T for a Cl3 [Ool] ( 2 2 6 O )  Ws.1 grain boundary in Au as delermined by a Series of LH 
frcecnergy minimizations (eirelcr) and by Rwaling the lattice parameter of the zero- 
temperature lelaxed Ymcture using =(") for a perfen clyslal as determined by the 
parabolic mrrection (full curve). Ihe mulls  of lhese approaches agree Over a nnge  of 
about 8M) K despite a temperaturedependent volume expansion at the grain boundary. 

+re 7. 'he in-plane p i t i o n s  of a t o m  in four 
planes that are adjacent 10 the C13 [MI] ( 2 2 . 6 O )  
p i n  boundaiy plane at three different tempera- 
tures: 0, 0 K; +, Mx) K; X. loo0 K Note that 
the in-plane temperaturedependent relaxations are 
small. 

of both perfect crystals and defects can be accurately determined from a single zero- 
temperature energy minimization. For the case of a perfect crystal this was done 
by first expressing the temperature derivatives of the volume in terms of the volume 
derivatives of the vibrational frequencies of the solid, the interatomic potential and the 
zero-temperature structure. From this information it was possible to calculate (V) (  T) 
or, equivalently, ( a ) ( T )  over a wide range in temperature. This temperature range 
was substantially extended by using the explicit functional form of the bee energy 
and its shape near its minimum (the parabolic correction). It was also found that 
the free energy, A("), can be calculated to high accuracy from the zero-temperature 
structure since the free energy is nearly quadratic about the equilibrium volume such 
that small errors only affect A ( T )  to second order in AV. 

The bulk expansion ( a ) ( T )  for the perfect crystal was used to rescale the relaxed 
zero-temperature structure of defect systems uniformly to the temperature of interest 
and to thereby calculate the point-defect formation energy, the excess free energy of a 
(100) surface, and the excess free energy of a E13 [Ool] (22.62O) twist grain boundary. 
Our results from single T = 0 simulations were found to be in excellent agreement 
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with those obtained by performing a series of LH freeenergy minimizations Cor each 
defect over the same temperature range. This excellent agreement may be. attributed 
to the fact that the temperaturedependent relaxations in these systems are often 
small, spatially localized and, as discussed above, because of the nearly parabolic 
shape of the free energy near its minimum. 

It should be emphasized here that our procedure can also be applied to the 
quasi-harmonic free energy [IZ], which is a function of the full ( 3 N  - 3 )  x ( 3 N  - 3 )  
dynamical matrix. In that case, the function f ( w )  in equation (4) would be replaced 
by the (inverse of) the product of eigenfrequencies of the full dynamical matrix In 
this way one can investigate the impact of making the local harmonic approximation 
on the thermodynamic properdes of a system. 

Although we have focused on determining thermodynamic information from the 
zero-temperature energy minimization, it is also possible (see earlier footnote) to 
obtain the thermal expansion, CY, and higher temperature derivatives, such as 7 ,  by 
performing a single LH free-energy minimization at some non-zero temperature, T.  
This approach would be necessary if, for example, one were interested in determining 
the properties of a solid phase that was stable only at high temperatures. In the 
appendix we demonstrate that the temperature dependence of the lattice parameter, 
(a), of Au can be calculated from a single freeenergy minimization, in this case at 
T=500 K. 

Although the method described here enables one to calculate a great deal of 
bite-temperature thermodynamic information from a zero-temperature energy min- 
imization it does have its limitations at high temperatures and in some defect sys- 
tems where local, temperaturedependent relaxations are large. At high temperatures 
(T B OD, where 0, is the Debye temperature) the local harmonic description should 
strictly be modified to include contributions from the higherader anharmonic terms 
in the energy. Nevertheless, the LH description captures much of the anharmonicity 
and permits an accurate calculation of both perfect crystal and defect properties, even 
at high temperatures [4]. Future research will focus on determining the temperature 
dependence of local relaxations from the zero-temperature relaxed structure. 
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Appendix 

In this appendix the temperature dependence of (a) for Au is determined by calcu- 
lating its thermal expansion, a, at T = 500 K and then using a parabolic correction. 
In order to apply equation (8) at this temperature it is necessary to calculate both 
the Gruneisen parameter, 7, and the bulk modulus, B. The former is calculated, 
as before, by evaluating the frequency, w, at several volumes near the equilibrium 
volume and then differentiating numerically. 'Ihe latter is calculated by evaluating 
the LH free energy, A, at several volumes near the equilibrium volume and deter- 
mining its second volume derivative from a fit to the data. We find that y = 2.823 
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F b r e  Al. The lallice panmeler, (a)(T). as a function of t e m p m u r e  as determined 
by a series of w free-energy minimizations, b/ a single freeenergy minimizafion a1 
T = 500 K ffl which o( is calculated. and Ly using a parabolic m c t i o n .  

and B = 0.887 eV A-3. The temperature dependence of the lattice parameter, 
as determined by a series of LH free-energy minimizations (circles), by a single 
freeenergy minimization at T = 500 K in which only a is calculated (dotted line), 
and by a parabolic correction (full curve), is shown in figure Al. The excellent 
agreement between the finite-temperature simulation results and those obtained from 
the parabolic oorrection to the 500 K thermal expansion indicates that the present 
approach is equally applicable based upon either a single T = 0 or finite-temperature 
simulation. 
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