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I. SURVEY OF GENERAL APPROACH

The purpose of this report is to outline the progress since last May of
the Tire and Suspension Systems Research Group at The University of Michigan.
At a meeting held in Ann Arbor in August, 1959, between representatives of the
sponsoring companies and the Research Group, two areas were agreed upon in
which the Research Group was to operate. These were (1) the determinations
of the elastic constants of tire materials and (2) the use of these elastic
constants in calculating the stress state and deformation in a tire resulting
from a given set of loads, such as would be found by placing the tire under
load on a flat surface. It was also agreed that the Research Group would com-

pile a bibliography and abstracts of publications dealing with tires in a
useful form.

Generally speaking, our goals are as follows:

1. Given the elastic properties of textile fibers and rubber com-
pounds, or given the opportunity to measure these properties,
one goal is to calculate completely the elastic properties at
any point in a tire as a function of the known properties of
textile and rubber and of the geometry of construction.

2. Given the elastic properties of the tire, as described, and
given the shape to which the tire is molded and the loads act-
ing on it, another goal is to calculate the state of stress
and state of deformation at every point in the tire.



ITI. LITERATURE SURVEY

Some of this first year has been spent making a survey of the available
literature dealing with the elastic and mechanical properties of tires. Re-
alizing that we would have to limit our survey, we decided to investigate the
following fields:

1. Wear of rubber and tires

2. Contact pressure between tires and roadway, steering
forces, and car .performance

5. Cord and rubber properties, both physical and mechanical

4. General tire design and the influence of specific vari-

ables on tire design

Calculation of stresses and deformations

Endurance and life testing of tires

(. Measurements of stress, deformations, and temperatures
in tires

o\ \U

Copies of our reference files and translations are being made, and will
continue to be made available to our sponsors.

Because new material is appearing regularly, we plan to continue adding
references and translations to the files. To aid us in our survey of current
literature, we have subscribed to many periodicals dealing with one or more
of these topics. Many others are available through our own library system.
By reviewing these often, we hope to keep abreast of developments in tire me-
chanics and to be able to evaluate them, use them, and to transmit them to
our sponsors.



IIT. MEASUREMENTS ON TIRES

At this time we have planned and are beginning to execute several sets
of measurements on tires or tire-like structures to obtain information which
will be useful in our calculations, or useful in making assumptions to re-
duce the length of our calculations.

The first of these programs, now nearly completed, consists of obtain-
ing the cross-sectional shape of an inner tube under different inflation
pressures. This inner tube was bonded to the rim of a wheel with cement to
simulate attached boundaries. From these measurements we can calculate the
radiil of curvature of the inner tube at any point, a quantity needed to start
the stress calculations. It is our intention to use similar measurements at
higher pressures as a physical check on the accuracy of some of our equations
and of some of our digital computer techniques, since we can compare the cal-
culated shapes from the computer with those actually measured on the tire.
Later on we will extend this technique to a real tire with the tread removed.
Figure 1 illustrates the equipment used here, in which a dial gauge moves on
a circular cam.

We have not been able to develop simple methods of calculating the shape
of the contact patch, even while the tire is stationary on a flat surface.
Consequently a program is being begun in which we hope to be able to classify
contact patches, both in shape and size, so as to use the contact patch as a
known quantity from which to start our calculations, not as an unknown to be
found. It is too early to say whether this attempt will be successful, but
we are hopeful for it. Figure 2 shows the equipment used here, in which the
tire is pressed against a ruled Plexiglas plate and then photographed for la-
ter reduction of data.

A very pressing need exists for good experimental data to aid in making
realistic assumptions designed to simplify the present state of toroidal shell
equations. We are anxious to make such simplifications, and so we have planned
a program involving strain-gauge measurements at a number of points, in a num-
ber of directions, on a very slowly rolling loaded tire. Using the elastic
properties of the tire carcass, we can reduce this to stress data, and these
stress data will allow a re-examination of the shell equations of equilibrium
in the light of experimental evidence. It is hoped to have this work completed
by the summer; it is felt that the results will be extremely valuable.
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IV. PREDICTION OF PROPERTIES

A. THE CALCULATION OF TIRE CARCASS ELASTIC CONSTANTS USING TEXTILE AND RUBBER
ELASTIC CONSTANTS

It should theoretically be possible to calculate exactly the elastic be-
havior under load of a typical element of tire carcass, made up of fibers and
rubber, provided that one knows the elastic Properties of the constituents and
the geometry into which they are assembled. We have completed our first phase
of analytical work in this area and are Presently conducting some experimental
work to check the accuracy of the theories we have developed so far. A recent
paper by Hofferberth (translated, and sent under separate cover) dealt with
this problem on a linear basis: the stress-strain curves of both rubber and
textile, and hence of the composite body, were assumed linear. This assump-
tion of linearity is not true for the textiles and rubbers commonly used, and
so our efforts along this line have been directed toward devising a theory in
which the stress-strain curves of arbitrary shape can be inserted. No seri-
ous difficulties are anticipated, but it should be realized that certain ef-
fects must be determined experimentally before the validity of the theory can
be established. For example, we are Presently uncertain about the importance
of the torsion of the layer of insulating rubber between two cords at the
point where they cross over one another in a two-ply structure, and so we are
planning a set of experiments to evaluate this effect. An X-type specimen
(see Fig. 3) will be used in these experiments.

Similarly, there is no clear evidence that a textile cord embedded in
rubber cannot carry compression, and it is planned to test rubber cylinders
(see Fig. 3) in compression and in tension very carefully to resolve this prob-
lem. Our present information from other sources concerning compression-carry-
ing ability is somewhat contradictory. Its importance lies primarily in the
areas of the bending and torsional rigidity of an element of tire carcass, for
under these stress conditions it is possible, if a cord ceases to carry load
in an abrupt manner, to get a discontinuity in the modulus of elasticity of
the composite structure.

Under conditions in which the cord or cords do become ineffective in load-
carrying, the rubber matrix used to embed the cords becomes of real importance.
The stiffness of such a matrix has not, to our knowledge, been investigated in

any way. Here again, some experiments have been planned and will be performed
to indicate the magnitude of the effects.

In general substantial progress in this area has been made since our start

in August, and we expect to issue a report on our calculations and experiments
during the coming year.
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B. ELEMENTARY SHELL-STRUCTURE CALCULATIONS

We have been studying various aspects of the general problem of calcu-
lating the stress state in a tire since last September. There are several
areas of extreme difficulty and we expect the problem to occupy us for quite
a long time. Our method of approach has been to start in the simplest possi-
ble way and to add various degrees of complexity as we proceed. One advan-
tage of this approach is that we will find out rather quickly whether some of
our ideas are going to work.

During the course of our work, Mr. Claus has developed a rather general
method of handling the problem of a tire which is inflated inside a ring, such
as shown in Fig. 4. This solution is quite different from that developed by
Prof. Rivlin and by Dr. Hofferberth for a network of cords. While it does not
represent a physically real case, it does have many features of interest; some
aspects of it are presented in Section V. We plan to describe this work in de-
tail in a future technical report.
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Fig. 4. A tire inflated inside a drum or ring.

Our primary interest has been, and is now, in the area of a tire sub-
Jected to an unsymmetrical load. Nothing has yet been published about this,

although the recent paper of Ames and Lauterbach begins to touch on the sub-
Jject.

To arrive at a simplified model which we can handle mathematically, we
have made the following assumptions about a tire:

(a) 1Its primary load-carrying structure is the carcass. Hence the
tread will be neglected for the time being.

(b) Bending stiffness of the carcass is negligible.

(¢) Transverse shearing forces are negligible.

8



With these assumptions, it is possible to write a set of equations which are
perfectly valid and perfectly general for any piece of carcass properly ori-
ented. These are force-equilibrium equations and as such are independent of
the materials of which the tire is made, being dependent only on the tire shape
and loading. A general solution is not available for these equations. Even
for a specified geometry and set of loads, it is difficult to arrive at a par-
ticular solution, and we are at present investigating several means by which
we may simplify these equations and still retain their most important features.

One method of simplification is to specify the loads on a tire due to
contact with the ground by means of a known pressure distributed over a known
area. In view of our assumptions of negligible bending stiffness in the tire,
we may easily prove that, barring buckling, the pressure distribution over the
contact patch is uniform. We now have studies underway to measure the contact-
patch areas experimentally in a given tire, and we believe that we have several
ways for classifying these areas in terms of the variables upon which they de-
pend.

This and other methods of simplifying the equilibrium equations will be
tried on the simplest tire-like structure available, an inner tube. We plan
to calculate the stresses and deformations in an inner tube while under pres-
sure and loaded against a flat plate, and to compare these quantities with what
we measure experimentally on an actual inner tube under the conditions for
which the calculations are to be made. We hope that these results will become
available soon.

If we find that the shapes of loaded inner tubes can be easily predicted,
then it will be easy to proceed to the anisotropic properties of tires, since
the methods we are using allow the insertion of various physical properties at
different points.

Our calculations are being performed on the University's IBM TO4 computer
due to their extreme length.

C. IMPLICATIONS OF PRESENT WORK

We feel quite strongly that success in calculating the state of stress
and the resulting deformation in a tire carcass will be beneficial. First, it
will provide a rational basis for evaluating the strength of various tires and
the need for given proportions of textiles. Secondly, it may permit examina-
tion of the carcass motion in the contact patch and will allow, perhaps, some
conclusions concerning the wear properties of tires due to their scrubbing ac-
tion on the road. Third, in many instances it will provide the tire designer
with a means of calculation, enabling him to obtain more precise information
on tire characteristics. Finally, it will provide a much more rational basis
for the calculation of automobile behavior, which ultimately rests on a de-
tailed knowledge of the tire behavior.



V. GENERAL SHELL EQUATIONS FOR FUTURE SOLUTIONS

This section discusses different methods for determining the stresses in
a loaded tire. Although it is possible to include every effect that arises in
the mathematical derivation, the resulting equations would make even a numeri-
cal analysis extremely difficult, if not impossible, at the present time. The
features that are mainly responsible for rendering the problem difficult math-
ematically are the lack of symmetry and the fact that the final geometry of the
tire after loading differs from the original geometry before loading by a fi-
nite amount. The lack of symmetry changes the system of ordinary differential
equations into one involving partial differential equations, while the effect
of finite geometry change is to make a nonlinear problem instead of a linear
one. Neglecting or taking bending into account does not alter these conclu-
sions, although it is true that including bending would result in considerably
more complicated equations. However, when a few simplifying assumptions are
made, solutions can be carried out in some cases. The assumptions selected
should not only permit solution of the problem, but also should reduce the
problem to one which exhibits at least some of the characteristics of the real
situation. Although it is true that no exact quantitative results can be ex-
pected, this method of attack has the advantage that it introduces the difficul-
ties one by one.

CASE 1. EFFECTS OF BENDING NEGLECTED—SYMMETRICAL SHELL

a. Geometry not dependent on load provided increments are taken small.—
In this case, three equations (the equations of equilibrium) are available to
determine the three unknown membrane stresses: the two normal stresses NQ,
N¢, and the shear stress N@¢:

( ON
g% (N¢ ro) + ng'rl Ny ray cos g - Py Tiro (1)
oN
(1) < é% (N@¢ ro) + E%? = = Ng¢ r; cos ¢ + Py Tory (2)
N N
LI‘l s

It may be observed that the above equations do not contain any elastic constant
and the stress field is therefore independent of the material. However, one has
to interpret this latter statement carefully. Equations (1), (2), and (3) de-
termine the stress field,assuming r;, rz, ro to be constant and known, i.e.,
final geometry exactly equal to the original geometry, which is equivalent to

10



assuming a completely rigid structure. This, in turn, corresponds to infinite
elastic constants. The above assumption of final geometry equal to original
geometry is sufficiently accurate for a tire provided the load is small enough.
As a matter of fact, the magnitude of the applied load can always be taken in
such a way as to make the difference between the original and final geometry
small enough. A possible method of solution would then consist of applying a
small internal pressure Ap, and solving system (I) for this load, i.e., find
the stress field Ng, N¢, NG¢) for this load. The stress-strain relations then
give the strains corresponding to the known stresses. The anisotropy of the
material does not introduce a conceptual difficulty at this point, provided,
of course, that all material constants describing the anisotropy are known.
From these strains, the displacements may be evaluated and the new geometry,
such as radii of curvature, may be found. Again, a new load Ap is applied

and the whole cycle is repeated. This is done as many times as is necessary
to build up the pressure at which the stress field, strain field, and displace-
ment field are to be found

Finding the displacement from the strains and the strain from the stresses
presents no special difficulties. However, methods of solution of system (I)
must be found. In the search for methods of attack, the equation governing
the characteristic directions of system (I) was set up:

2 2 2
o NQ . ro2 o Ng )

892 riro 5¢2 B

It can be seen that, if r; and rs have different signs, system (I) is hyperbol-
ic; if r; and rp have the same sign, (I) is elliptic. This means that the
equilibrium equations are hyperbolic in part A of the tire and they are ellip-
tic in part B (see Fig. 5).

\ | ta

: ——t

Fig. 5. A represents the hyperbolic and B the
elliptic regions of a toroidal-like membrane.
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Part of the tire is governed by a hyperbolic system of equations, which is
most unusual since equilibrium equations are invariably elliptic. However,
all this has followed from the assumption of a completely rigid structure. The
peculiarity of an equilibrium equation of the hyperbolic type is that the cru-
cial problem in this type of equations is the initial value problem. Further-
more, each point in the hyperbolic region has a so-called domain of dependence
outside of which the edge tractions do not influence the state of stress at the
point considered. A numerical solution valid in part A of system (I) can be
found provided the surface tractions are prescribed on the boundary. From this,
it is possible to determine the stress state on the line separating the regions
A and B (parabolic line). Solving (I) in region B then becomes a problem in
elliptic equations, the values of the unknown functions being specified on the
boundary. It therefore seems possible, starting from known normal and shear
stresses at the rim, to find the corresponding stress field through the whole
tire. The rest of the cycle can then be completed, as pointed out earlier.

b. Geometry dependent on load.—It is clear that in system (I) r1, ra
have to be the values corresponding to the final geometry if one wants to find
an exact solution. This is Jjust another way of saying that the system is in
equilibrium in its final position. The quantities r;, rz appear therefore as
unknowns and (I) is no longer sufficient to determine the stress field. The
hyperbolic nature of the equations then disappears and the whole problem be-
comes essentially elliptic as is expected from an equilibrium problem. This
is a mathematically consistent problem, but is an extremely difficult one in
nonlinear partial differential equations, an analytic solution of which is
probably out of the question. Even numerical solutions represent great labor.

The three equilibrium equations (I) can be converted into three equations
in the three unknown displacements u, v, w, since the stresses Ng, N¢, and Ng¢
are expressible in terms of the strains, and the strains can be expressed in
terms of the displacements. All this involves a great deal of labor but it
could be done. Furthermore, r,, rs, ro are known functions of u, v, w so (I)
reduces to a system of three equations in the three unknowns u, v, w. This
system is so complicated that it probably could not be solved on a general
basis. This method has been outlined very briefly; but the symmetrically
equivalent case will be handled in detail. It is hoped that this will throw
some light on the general procedure.

In everything we have done so far, the complications that arise from the
contact patch have been carefully avoided. The resultant pressure over the
contact area is equal to zero and this must be considered. The boundary of
the contact area is unknown, and this introduces an additional difficulty.
Since we are dealing with a nonlinear problem, the principle of superposition
does not hold and it seems that methods utilizing Green's function are not ap-
plicable; it may be observed that obtaining a Green's function would in itself
be an extremely hard problem. The only way of handling the contact patch so
far devised is by assuming an approximate shape and letting the external load
be equal to zero within its boundary. The final geometry obtained in this way

12



has to have a flat portion equal to the originally assumed contact patch.
The extent to which this is true will then be a measure of the correctness
of the shape of the assumed boundary.

It will be useful to outline in some detail a method that could be used
to solve the symmetrical case with a contact patch. Consider the following
problem: a tire with no bending stiffness is inflated inside s cylindrical
surface, the centerline of the tire coinciding with the centerline of the
cylinder. The radius of the cylinder is small enough so that the inflated
tire is in contact with the surface. The problem is to find the final geom-
etry and final stress field in the tire.

Consider a curve I' in the x-y plane of Fig. 6. This curve can be trans-
lated to any position I'' by associating a displacement PP' with components u
and v with any point P on AB. Note that u and v are functions of a parameter
such as arc length s along I' locating P on I'. If x(s), y(s) are the coordi-
nates of P, and X(s), Y(s) those of P', the parametric equations of ['' are:

X(s) = x(s) + u(s) (note that x' + y' = 1, primes denoting
Y(s) = y(s) + v(s) derivatives with respect to s)

— x
Fig. 6. The geometry of deformation in general.

The radii of curvature ry; and rp of the surface of revolution generated by ro-
tation of I'' about the x-axis are then:

3/2
= (X'2+Y'2) / B l+2(xlul+ylvv)+u!2+vl2 ~ " " ' ' .y N ' '
1 X' Y = <'+u' vy = ry (x Y XLy ut,vtut,v!)
lxll Y" X"'Hl” yll+vll

(&)
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ra = yN1+ (y7/x')% = yN1+ [(y+")/(x'+u")]® = 1o (y,x',y',u',v")
(5)

An element ds on [' corresponds to an element dS on I'' and we will define the
strains:

(1) meridianal e, = (dS-ds)/ds
(2) along a parallel circle ez = v/y

but
ds® = ax® + ay® = [(x'+u')® + (y'+v')®las® = [1+2(x'u'+y'v') +u'® +v'¥]as®

SO

N1 +2 (xfu'+y'v') +u'2+'2 -1 = ¢ (x',y',u',v') (6)

€1

ez (v,y) (7)

€2

The stress-strain relations can be represented as

Ny = N; (e1, €2) N, and No are known functions of €3
and €p provided it has been decided
No = No (eq, €s) what sort of anisotropy will be assumed.

Since €; and €- are known functions of x!' ! u' v'! v and respectivel
1 2 b b ) ) ) ) )
we can write:

Il

Ny fi (y, x', y', v, u', v')

(8)

N2 f2 (y, x', y's v, u', v')

The equilibrium equations (1) and (3) [noting that (2) becomes trivial in the
symmetric case] can be written as

d(Nyy) as
——== = No cos —
ds 2 g d
Ei + Eg = -p
ry ra

Since Nz cos @ (dS/ds) is a known function of y, v, x', y', u', v', say
g(y,v,x',y',u',v'), we have

Ni'y + Niy' = g(y,v,xiy'uiv')

1L



so that the equilibrium equations become:

_ai:l;y' +§ﬁx"+.a£1_- + _a_f_lv' +_af_lu"+.a_f_v"+fl.3_r_'- = £ (9)
oy ox' dy! ov ou' ov' v y
Mo, Yoo (10)
ry ro

x and y are given functions of s; they represent the parametric form of the
original meridian curve of the tire, before loading. Note also that all de-
rivatives of x and y with respect to s are known at any point of the curve.
The unknown functions are u(s) and v(s) which are the components of the dis-
placement vector at point x(s), y(s). Assume that at point A of Fig. 7

u, v, u', v' are known. The following quantities at that point are then al-
so known:

(1) rs from (5)

(2) N, and Nn from (8)
(3) ri from (10) knowing N;, No, rs

L L/ /L s s

- - : ¢

Fig. 7. ©Starting point A for numerical integration.

It is then possible to evaluate u" and v" at point A, using the following
two equations in which the only unknowns are u'" and v":

ry (XK: YX_; XA: YA; U-K: V‘x’ U-A) VA) = (ra )A
1\ (af w o, [OFf Of Of
=) yr + (=) x + (=) y" +[ 1) ' 4+ (SI1) y»

V'/A Y /A A



The final curve can now be constructed using a standard numerical integration
technique. The Euler method will be utilized here. The application of the
more refined and much more accurate Runge-Kutta scheme would not introduce any
conceptual difficulties, but the labor would increase considerably. The gen-
eral ides is that from known values of u, v, u', v' at, for example, point A,
we can compute the values of u, v, u', v' at neighboring point B. Let s =0
locate point A, and s = As locate point B. The functions u(s) and v(s) can be
expanded in a Maclaurin series to evaluate their values at point B:

2
ug = up + As up + %ST up o
_ AsZ noy .
vg = Vp +t As vp o+ e vp t
Also
A32 m
1 - '+ n + —
uB uA As uAv o uA
As®
vé = VA + As vx + T VX'+ ..

If As is chosen small enough, the following approximation can be made:

2
ug ¥ up + As up + ég— VA
(12)
Vv, T v, + As v, + 282 v
B A A 5 A
1 — 1 "
uB = uA + As uA
(13)
vp = vyt As vy

It was shown that, knowing Up s uA, VA, Va the values of u) could be found.
From (12) and (13) then, up, vg, uj, vy can be found. It is therefore clear
that a step-by-step construction of the final curve of the tire shape can be
carried out. The beginning of the contact patch is then indicated by a zero
value of the slope, namely, by a zero of (y'+v'). From that point on, the re-
sultant pressure becomes an unknown but it is necessary that (y'+v') remains
equal to zero; this should be enough to determine the pressure variation over
the contact patch and the total load applied on the tire by the cylinder.

CASE 2. EFFECTS OF BENDING NEGLECTED—UNSYMMETRICAL SHELL

A few words may be said about extending the method described above, which
applies only to the symmetric case, to the general nonsymmetric case. It is
clear how to go about extending this procedure up to the point where the dif-

16



ferential equations are set up. The original surface can be represented as

a function of independent parameters & and B; the curves O = constant, B =
constant are curves on the surface and Q,B can be selected so that the two
families of curves are orthogonal. A displacement field u(q,B), v(a,B),
w(x,B) transforms the original surface into its final geometry when the load
is applied. One can then carry out operations analogous to those described in
the presentation of the symmetric case. This leads, in principle, to a con-
sistent set of equations in u, v, w, which are, of course, partial differen-
tial equations, the independent variables being @ and B. It can well be im-
agined how complicated this set would be.

Energy methods, which in many cases are powerful tools for finding ap-
proximate equilibrium configurations, seem to be of limited use in the non-
symmetric case. If we consider, for example, the Ritz method, then we know
that a function has to be minimized. This function is the total potential en-
ergy of the system including strain energy, energy in compressed air, etc.,
and can be expressed as a function of the displacements u, v, w. In selecting
the coordinate functions, linear combinations of which will give the approxi-
mate equilibrium geometry, it is known that nongeometrically admissible func-
tions are not permitted. However, although the displacements are known to be
zero at the rim, they are not known in the contact patch and the selection of
geometrically admissible functions is therefore highly complicated.

17
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