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Abstract-Mercier‘s localized perturbed criterion of stability near an arbitrary modulated curvature 
magnetic axis of a non-circular toroidal plasma cross section is investigated. In this magnetic 
configuration, the magnetic surfaces arbitrarily rotate around the magnetic axis. The influence of the 
non-circular cross section of the magnetic surface and that of the modulation of the magnetic axis on 
the domains of equilibrium and stability are studied. 

1. I N T R O D U C T I O N  

MERCER’S general geometric criterion of stability for a magnetic toroidal config- 
uration of a modulated curvature magnetic axis and circular plasma cross section 
is calculated by SHAFRANOV (1968). ADAMS and MERCER (1969) and MIKHAILOV- 
SKII and ABURDZHANNA (1978, 1979), but with a different method from that 
used here. 

In the present work, we study the equilibrium and analyze Mercier‘s criterion 
of stability (MERCER, 1964) near an arbitrary modulated curvature planar magne- 
tic axis (with zero torsion and variable curvature) of non-circular (elliptically and 
triangularly deformed) toroidal plasma cross section with high pressure. A lon- 
gitudinal uniform current is allowed to flow through the plasma. Also, we study 
the influence of the modulation of the magnetic axis on the equilibrium and 
stability of this plasma configuration. 

By introducing the coordinates (p, 8, s) (see Fig. 11, where (p.  8 )  is the polar 
coordinate and s is the curvilinear coordinate. The curvature of modulated 
curvature planar magnetic axis (hereafter referred to as m.a.) is represented by 
(l/R(s)) = ak exp (27~kislL) where a-l, = ack and L = $ ds is the total length 
of the magnetic axis. If all the k’s are even, this curve will be closed with 
a0 = 2 d L .  The simplest form for the closed modulated curvature planar magnetic 
axis is given by: 

where F k  = ak/ao is the depth of modulation and a. = 27~/L. 
At this point, one would like to mention that the magnetic surfaces rotate -k  

(= the  number of modulation periods or the resonance index related to the 
resonant Fourier coefficient aL) times around the magnetic axis (Lcc er al.. 1974). 
This rotation d’(s)/2 (=  27rkiL) which is associated with the non-vanishing lon- 
gitudinal current Is, is necessary in order to apply the method of helical images. 
Also, one can see from the equilibrium solution considered here, that this rotation 
is important when the magnetic surface chosen has a non-circular or circular (at 
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FIG. 1.-System of coordinates. 

high pressure) cross section. It can be neglected at low pressure since the magnetic 
surfaces are nearly concentric circles. This toroidal plasma configuration is a 
geometric model which is only an image of the real configuration. Moreover, the 
MHD equilibria of the Tokamak is just a special case of the equilibrium solution 
given here. 

At the Fusion Laboratory of Fontenay-aux-Roses in France, a toroidal plasma 
configuration with modulated curvature magnetic axis with k = 2, called 
‘Harmonica-11’ was built (see Fig. 2) .  This experiment successfully demonstrated 
Mercier’s result (MERCIER, 1964). 

2. E Q U I L I B R I U M  

The equations of interest are the ideal MHD equations: V B = 0, VX B = j 
and j x B = V P  where B, j, and P are respectively the magnetic field, current 
density, and scalar pressure. 

The expressions for the magnetic field, current density, and the MHD equilib- 
rium equation can be obtained with the aid of the helical images hypothesis by 
putting UT = 0, 6 = Bo, and E ,  = E, in the set of equations given in reference (Luc 
et al., 1974). The result is: 

B=fu+uAFF (2) 

? E J  1 df2 d P  
ag 2 d F  d F  

YOPF + - + - - + g - = 0 

FIG. ?.-Magnetic toroidal configuration with modulated curvature magnetic axis 
‘Harmonica-11’; k = 2. 
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where 

c0 ( = 27ra/L) is the inverse of the aspect ratio. a is the characteristic dimension of 
the plasma cross section. (d(s)/2) (=  27rks/L) is the turning angle of the minor 
axis of the ellipse near the m.a. The functions f and P are arbitrary functions of 
the equilibrium solution F. 

We will choose P(F) = Po + P,F and f &  = f o 2  + AF where Po. PI, A and fo are 
constant parameters. This respectively corresponds to a parabolic pressure profile 
and a nearly flat current density profile. The function f has been extended to yield 
f = fo+  O ( c 2 ) .  If we take F =  P = 0 on the plasma boundary. this leads to Po = 0. 
The analytical solution of equation (3)  is given by: 

F = F,F, ( 5 )  
1-E 1-E 

FIFO = 1 - X 2  - Y2 (-) - E.[ X 3  - 3XY’ (-)I 
l + E  l + E  

1-E 
F, = 1 - uX i ~~u y1 X 2  + y 2  Y 2  (--)I 

l + E  (7’ 

X = x/a,  Y = yla, x = p cos t .  y = p sin t .  and Fo. U ,  yl. and y2 are constants. E, is 
the appropriate distortion factor. - 1 I E I 1 is the ellipticity parameter of the 
plasma boundary cross section. The equation of the triangular deformation cross 
section is given by: F, = 0. Figure 3 shows the possible shapes of this plasma cross 
section. It has been assumed that P,,, = 0. F = 0 on the toroidal surface of the 

FIG. 3.-Possible shapes of the triangular deformation plasma cross section 
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non-circular cross section given by F' = 0. Also, we assume that E, - &k - E ,  - 
Eo<< 1. 

By introducing the parameters, the mean pressure 

the inverse of the safety factor for an equivalent cylinder 

where Bo and j o  are respectively the longitudinal magnetic field and current 
density at the plasma center, the expresions for F,, v, yl, and y2 are given by: 

(8) QEO Fo = yj- Bo( 1 + E)G 

2 (:) (1-E)(2+E) 
yl=-+ (10) 2 4(2 - E2) 

and 
(1+E)2{-4E'(1-E)+ (5) 2 (2+E)} 

E k  E k  
Y2 = 

4(2 - E')( 1 -E) 
where 

p* = P 
( ~ + E ) E , ~ G ~ '  

Figure 4 shows a typical plot of this magnetic surface. 

magnetic axis appears on the plasma boundary and is given 
The limiting value of p for equilibrium corresponds to v = 1 at which a new 

ppm_=~02G2(1+E)  

= ( e ) ( l  E G2 + E )  (1 + 3 ( 1 +  O(E) )  - E .  

F k  

The investigation of this expression will be given in the stability section. 
The expressions of the ratio jS0/2Bs0 of the longitudinal current density jso and 

the longitudinal magnetic field BsO near the m.a., the rotational transform ~ ,~ /27r  
near the m.a., and the function Po' (which is the derivative near the m.a. of the 
pressure with respect to the poloidal flux function) can be put in the following 
forms: 
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FIG. 4(a).-Magnetic surfaces in the plasma for l/q, = 0.2, E, = 0.1, E = 0.6, E" = 0.1, 
gk = 1, k = 2, E~ = 0.1, CL,, = 0.024, ,¶ = 0.57, and different values of FIFO. The magnetic 

axis is placed at distance x, = -0.246 from the central axis of the plasma. 

FIG. 4(b).-Magnetic surfaces in the plasma for li4, = 0.18. E ,  = 0.1, E = 0.6. 

axis is placed at distance *, = -0.05 from the central axis of the plasma. 

= 0.1, 
= 0.1, K~ = 1, k = 2, a0 = 0.024, ,¶ = 0.07 and different values of FIFO. The magnetic 
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and 

where W =  2&k(~~/a)-(&k2+&m2)(Xl/a)2, &,,/a = [1--]/3~ and the point 
(h, 0) is assumed to be the position of the magnetic axis. The ellipticity Em of the 
magnetic surfaces near the m.a. and the functions i, S which give the corrections 
to the elliptical form of the magnetic surfaces near the m.a. relative to the 
principle normal to the m.a. are given by: 

MI( 1 + E )  - M2( 1 - E )  
M1(1 + E )  + M2(1 - E )  

E,,, = th 7 = 

1 M2N2-M N J(1-Em2) I> (2+Em) 
v&)i = - 

2a ( M1M2 

and 

where 

( U  3&,) -2V[3&, &k (')'I f Y2)]  k) 
(Y 

N2 = ( U -  E , )  +4V(&, - yl&k) - . r3 
The vacuum magnetic well V," near the m.a. for our class of equilibria is given 

by: 

with 

where 

1 3NZ( 1 + E )  + NI (1 - E )  c, =- 
2 a  3 M , ( l + E )  

and 

1 N2( 1 + E ) -  NI( 1 - E )  C2 =- 
2a 2 M , ( l + E )  
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The investigation of the expression (20) shows that it is possible to have a system 
with vacuum magnetic well V/<O with all different magnetic surfaces, and by 
allowing current to flow only in the forward direction (defined by (l/qo) > (- k) or 
G < 0). We have a deeper magnetic well with horizontal elliptical (E  < 0, E, = 0) 
and triangular deformation (E  < 0, E, < 0) cross sections with an increase of the 
depth of modulation pk, and a decrease of the number of modulation periods k. 

3. STABILITY 

The final form of Mercier's criterion near the m.a. is given by formula (70) of 
reference (MERCIER, 1964). This criterion for the class of equilibria described by 
the parameters E,,, = (th q(s)), jso, BsO, d'(s) /2,  f ( s ) ,  and 's(s) being constants 
and the torsion of the m.a. l/T(s) = 0, has the form: 

+ 3 th q ( ~ ~ B , o i e ~ ' ( ( R o l , ~ ~ s ~ ~ ~ ~ " ( - ) )  cos d /2  sin d/2 
R (s) 

where the average is taken over the length of the magnetic axis. i.e. 

l L  
(g(s)> = L dsg(s). 

the prime (') means the derivatives with respect to s. 9 = 9,-i9,. Z(s) = 
Xl(s) + iZ2(s) and the functions X1(s) and Z2(s) are the solutions of the couple of 
equations: 

(22) 

9, and P2 for this class of equilibria are given by: 

9, = ( 2 c h q - s h q )  {(k)(z)+ (2/\ Fo )eq /2  sin d/2 ~ iCd  (aEl~F0) sh' q/2 
4 ch 712 

It will be interesting to consider Mercier's criterion (21) for the real plasma 
configuration of modulated cunature m.a. without the rotation of the magnetic 
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surfaces. This will enable us to compare the domains obtained with and without 
this helical images hypothesis. This criterion for the considered case (d’(s)/2 = 0) 
has the form: 

where 

Condition (25) with E, = 0 is equivalent to that given by formula (26) in MERCER 
(1963), and does not depend on the plasma pressure P,’ term. 

Figures ( 5 )  and (6) show the plots of LjSo/4d?,o vs \icol Po’/Bso for the domains 
of stability with vertical elliptical (E, = 0.6, JB;di = 0) and triangular deformation 
(E,,, = 0.6, asoF = 0.1) plasma cross sections near the m.a. respectively. The 
domains of stability for a real plasma configuration are given by the dotted curves 
and are calculated from the condition (25) with the expression (1). These domains 
have a perfect symmetry between k and -k (without this rotation related to k )  
and will not change if the longitudinal current is inversed (i.e. j so --j - jso). The 
limiting value of /3 for stability in this case becomes zero if Ljs0/4T&,=0. 

6 t 
5 1  

L 

FIG. 5.-Comparison between the domains of stability with vertical elliptical plasma 
cross section near the magnetic axis for E, = 0.6, JB,,,i = 0, a0 = 0.0233, and pk = 1. 
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FIG. 6.--Comparison between the domains of stability with triangular deformation 
plasma cross section near the magnetic axis for E, = 0.6. \'B,,i = 0.1. uo = 0.0233. and 

kk  = 1. 

For the case in which the rotation of the magnetic surfaces has the form: 

d ( s )  2irNS 
2 L 

-- -- (26) 

where N is an integer. The criterion of stability (21) corresponding to the 
resonance case M/27r<< 1 is given by: 

+so B '  Re f (k) 2Z ds] > 0 ( 2 7 )  
L ch q 

with 

\2Bs0 2 

Condition (27 )  represents the criterion of stability in a geometrical plasma 
configuration model. The domains of stability given in Figs. 5 and 6 represented by 
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the broken and solid curves are calculated from condition (27) with expression (1) 
for N = k and N f  k respectively. The influence of the rotation d'(s) /2  (= 
27rNIL) of the magnetic surfaces (which is associated with the helical hypothesis) 
casued a disturbance to the domains of stability and is symmetry when the 
longitudinal current is inversed. The limits of these domains in this case are given 
by the condition: N 2 s  (Ljso/4.;rB,o)2r N2/& where 6, is a numerical factor less 
than one. Kruskal limit is exceeded within this condition (the case N = 1 corres- 
ponds to Kruskal limit). Indeed, the magnetic axis of the plasma configuration 
could become strongly inadequate for a plasma machine. The limiting value of p 
for stability in the geometrical model plasma configuration becomes zero if 
Ljso/4.srBs0 = -N, 

The final form of criterion (27) for the toroidal plasma configuration with an 
arbitrary rotation of d'(s) /2 ( = 27rk/L) related to the k Fourier coefficient of the 
development of the m.a. curvature which is given by expression (1) can be written 
as : 

(-P,?[(Em2- l ) ( ~ ) L - ( k a o E m ) Z + U o 2 { p k Z ( E m  2Bso - 2 ) -  1} 

The explicit expression for Mercier's criterion (29) for the class of equilibria 
described in the equilibrium solution can be determined by substituting respec- 
tively for the parameters jso/2Bso, lc0/27r, E,,, f from formulae (14)-( 18). At high 
value of beta (p" - 0(1 /~ ) )  the expressions for these parameters with all magnetic 
surfaces (circular or non-circular) depend on the plasma pressure. In other words, 
the effect of the plasma pressure on the criterion of stability (29) is not linear with 
respect to 6". It is not easy to determine analytically to what order of 6" the 
plasma pressure has an effect on this criterion. At low beta ( P X S  1) we find 
that xm/cz - E. v - E. Em - E, M ,  = M2 = -1. NI = v + 3 ~ , .  N 2  = v - E,. 

[ ( .kf2NZ - M ,  NI )/Ml M2] - 4~,. W = 0. jso - io. B, - Bo and 

I n  this case condition (29) takes the form: 
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FIG. 7.-Domains of equilibrium and stabilit! for the considered toroidal plasma 
configuration characterized by k = 7.  pL = 1. F ~ )  = U. l .  CY = 4.791s.  CY^) = 0.0233. and 

different \aiucs of E And E , .  

It is clear that the effect of the plasma pressure on the condition (301 is linear with 
respect to /3* and vanishes with that of the circular cross section. 

The numerical calculations represented by Figs. 7 and 8 show the plot of liq, 
vs the limiting value of for equilibrium calculated from equation [ 13). These are 
shown by the solid cunes  while those for stability as calculated from (291 are 
indicated by the broken curves. The intersection of cunes limiting the domain of 
equilibrium and stability gives the limiting value of /3 for each magnetic surface. 
We obsene that the domains for all the equilibrium and stability depend on the 
direction of the longitudinal current I,. Figures 7 and S show respectively the 
influence of the non-circular cross section and the number of modulations with 
their depths on the domain of equilibrium and stability. 
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FIG. 8.-Domains of equilibrium and stability for the considered toroidal plasma 
configuration with vertical elliptical cross section characterized by E = 0.6, E, = 0, 

E,=O. I ,  a =1.2918, a,=0.0133, K =3 ,  and different valuesof F ~ .  

As it is clear from equation (13) that the case l /qo = -ko corresponds to the 
resonance case at which G = 0 and /3 = 0. We note that the influence of triangular 
deformation on the limiting value of beta for equilibrium is weak and can be 
neglected. A vertically elongated elliptic ( E  > 0, E ,  = 0) plasma cross section is 
preferable for equilibrium. The limiting value of beta for equilibrium increases 
with the increasing of the number of modulation periods and the decreasing of the 
depth of modulation. 

The domains of stability exist with all possible shapes of the magnetic surfaces. 
It increases in the forward direction due to the appearance of the magnetic well 
(V/<O). This domain decreases in the backward direction (defined by l /qo< 
(-ko) or G > O ) .  In both directions with ( p  < Pp,_), the horizontal elliptical and 
triangular deformations are the most preferable plasma cross sections for stability 
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(a deeper magnetic well exists with these cross sections). Also, the domains of 
stability increase by increasing the depth of modulation and decreasing the 
number of modulation periods. 

4. CONCLUSIONS 

The equilibrium and stability near an arbitrary modulated planar magnetic axis 
of a toroidal plasma configuration with non-circular cross sections are studied. 
This plasma configuration is a geometrical configuration model in which the 
magnetic surfaces arbitrarily rotate along the magnetic axis. From investigating 
the domains of stability in both real and geometrical model plasma configurations, 
it is found that these rotations of the magnetic surfaces cause a disturbance to the 
domains of stability and their symmetry. These domains are given the condition 
N 2 5 ( L j , 0 / 4 ~ ~ , 0 ) 2 ~ N 2 / a N  where N is the number of rotations of the magnetic 
surfaces and aN is a numerical factor less than one. Kruskal limit is exceeded 
within this condition. 

Also, it is found from the domains of equilibrium and stability (which belong 
to the k-Fourier resonant coefficient of the development of the curvature of the 
magnetic axis) that the vertical elliptical plasma cross section with increasing the 
number of modulation periods and decreasing the depth of the modulation is 
preferable for equilibrium. On the other hand, a horizontal elliptical or triangular 
deformation plasma cross section with decreasing of the number of modulation 
periods and increasing the depth of modulation is preferable for stability. 

At this point, one would like to mention qualitatively that the influence of the 
other neglected Fourier coefficient a0 on the stability of the plasma configuration 
under consideration may add a stabilization contribution within the above condi- 
tions. and otherwise add a de-stabilization contribution. 
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